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Abstract

In this article we consider parameter-driven models of time series of small

counts, where the observed value follows an inhomogeneous Poisson process,

with the mean changing over time according to a latent process. Estimation

of these models is carried out within a Bayesian framework using data aug-

mentation and MCMC methods. We suggest a new MCMC sampler, which

possesses a Gibbs transition kernel, where we draw from full conditional dis-

tributions belonging to standard distribution families, only. Emphasis lies on

application to state space modelling of small count. Nevertheless we show that

our Gibbs sampling approach is more general than that and may be applied

to a wide range of parameter-driven models, including random-effects models

and panel data models based on the Poisson distribution.

Key words: count data, data augmentation, Gibbs sampling, partially Gaus-

sian state space models

1 Introduction

Applied statisticians commonly have to deal with time series of counts, recording the
number of events occurring in a given interval. Typical examples are the number of
road accidents recorded during a given period or data on disease occurrences. Such
data are necessarily non-negative integers and it is often appropriate to assume
that the observed process yt follows a Poisson distribution. To capture the effect of
exogenous variables, summarized in the row vector Zt, a log-linear model could be
applied, where

yt|λt ∼ Poisson (λt) , λt = exp(Z
′

tβ),

with λt being the mean of the time series observation yt given β, and β being a
vector of unknown coefficients to be estimated from the data. In the standard log-
linear model it is assumed that the count observations are pairwise independent.
To account for the dependency likely to be present in time series data of counts,
various extensions of the log-linear model have been suggested which, following Cox
(1981), may be classified into parameter-driven and observation-driven models. For
observation driven models, the conditional distribution of yt is specified as a func-
tion of the past observations yt−1, yt−2, . . ., see for instance Zeger and Qaqish (1988).
In this article we consider parameter-driven models, where the conditional distribu-
tion of yt is allowed to change over time according to a latent process. This latent
process could be a hidden Markov chain as in Leroux and Puterman (1992), or ran-
dom effects as in Albert (1992). Smooth changes of the conditional distribution of
yt through state-space models have been considered by, among others, West et al.
(1985), and Harvey and Fernandes (1989). Alternatively, a latent stationary au-
toregressive process has been introduced into the generalized linear model by Zeger
(1988) and Chan and Ledolter (1995).

Estimation of parameter-driven Poisson time series models is known to be a
challenging problem. In fact, estimation of these models using maximum likelihood
estimation is hampered by the fact that the marginal likelihood, where the latent
process is integrated out, is in general not available in closed form. Each evaluation

1



of the likelihood function requires to use some numerical method for solving the
necessary high-dimensional integration. One particular useful method in this respect
is importance sampling which was applied in Durbin and Koopman (2000) to state
space modelling of count data, see also Durbin and Koopman (2001).

Alternatively, estimation of these models is feasible within a Bayesian framework
using data augmentation as in Tanner and Wong (1987) and Markov chain Monte
Carlo methods, as illustrated first by Zeger and Karim (1991) for generalized linear
models with random effects. Since this seminal paper, a number of authors have
contributed to MCMC estimation of parameter-driven models for count data. We
mention here in particular Albert (1992) for Poisson random-effects models, Wake-
field et al. (1994) for more general random effect models, Shephard and Pitt (1997)
for non-Gaussian time series models based on distributions from the exponential
family, Gamerman (1998) for dynamic generalized linear models, Chib et al. (1998)
for panel count data models with multiple random effects, Lenk and DeSarbo (2000)
for mixtures of generalized linear models with random effects, and Chib and Winkel-
mann (2001) for correlated multivariate count data. A major difficulties with any of
the existing MCMC approaches, however, is that practical implementation requires
the use of a Metropolis-Hastings algorithm at least for part of the unknown param-
eter vector, which in turns make it necessary to define suitable proposal densities
in rather high-dimensional parameter spaces. Single-move sampling for this type of
models is likely to be very inefficient, see e.g. Shephard and Pitt (1997).

The main contribution of the present article is to show that straightforward Gibbs

sampling of all parameters, requiring only random draws from standard distributions
such as multivariate normals, inverse Gamma, exponential and discrete distributions
with a few categories is feasible for most of the parameter-driven models for time
series of counts suggested in the literature so far. This rather unexpected result is
achieved by introducing two sequences of latent variables through data augmenta-
tion. The first of these sequences are the unobserved inter-arrival times of a suitably
chosen Poisson process. The introduction of this first sequence eliminates the non-
linearity of the observation equation, whereas the non-normality of the error term,
which follows a log Exponential (1)-distribution, remains. The log exponential dis-
tribution is approximated by a mixture of normal distributions in a similar way as
in Kim et al. (1998) and Chib et al. (2002) who used a normal mixture approxi-
mation to the density of a logχ2-distribution in the context of stochastic volatility
models. By introducing the component indicator of this normal mixture as a second
sequence of missing data, the resulting model may be thought of as a partially Gaus-
sian model as in Shephard (1994), and Gibbs sampling becomes feasible. This will
be shown to be particularly useful for state space models for Poisson time series, as
multi-move-sampling of the whole state process through forward-filtering backward
sampling as in Frühwirth-Schnatter (1994b), Carter and Kohn (1994), de Jong and
Shephard (1995) and Durbin and Koopman (2002) is feasible.

The rest of the paper is organized as follows. In Section 2, we introduce in detail
our new method of data augmentation for parameter-driven models based on the
Poisson distribution, that will be exploited in Section 3 to implement a new and
rather general Gibbs sampling scheme for parameter-driven models based on the
Poisson distribution. Applications to state space modelling of Austrian road safety
data are considered in Section 4, whereas Section 5 concludes.
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2 Data Augmentation for Parameter-Driven Mod-

els based on the Poisson Distribution

This section introduces a new method of data augmentation for parameter-driven
models based on the Poisson distribution that will be exploited in the following sec-
tion to implement straightforward Gibbs sampling for various time series models for
count data. This data augmentation scheme is based on introducing two sequences
of artificially missing data, leading to a Gaussian model, once we condition on the
missing data. Thus we are able to show that any parameter-driven models based
on the Poisson distribution may be regarded as a partially Gaussian model in the
sense of Shephard (1994).

2.1 Model Specification

Let y1, . . . , yT be a sequence of count data. In what follows, we assume that yt|λt

follows a Poisson (λt) distribution, where the risk λt is allowed to depend on exoge-
nous information Zt = (Z1

t Z
2
t ) through fixed model parameters α and time-varying

model parameters βt in the following way:

yt|λt ∼ Poisson (λt) , (1)

λt = exp(Z1
t α + Z2

t βt). (2)

The precise model for βt will be left unspecified at this stage, we only assume that the
joint distribution p(α, β1, . . . , βT |θ) follows a normal distribution, which is allowed
to be indexed by an unknown model parameter θ. Furthermore we assume that
conditional on knowing α, β1, . . . , βT , the observations yt|λt and ys|λs are mutually
independent.

These model assumptions are sufficient to derive the conditional posterior density
p(α, β1, . . . , βT |θ, y) formally by Bayes’ theorem, given the whole time series y =
(y1, . . . , yT ):

p(α, β1, . . . , βT |θ, y) ∝ p(α, β1, . . . , βT |θ)
T
∏

t=1

p(yt|λt). (3)

The resulting posterior density, however, in general does not belong to a density
from a well-known distribution family. Although log λt in (2) is linear in the un-
known model parameters α, β1, . . . , βT , the presence of the Poisson distribution in
the observation equation (1) causes non-normality as well as non-linearity of the
mean λt in α, β1, . . . , βT . We are going to demonstrate in this section, how the in-
troduction of two sequences of artificially missing data within a data augmentation
scheme eliminates both non-normality and non-linearity and leads to a conditional
posterior distribution for α, β1, . . . , βT that, in contrast to p(α, β1, . . . , βT |θ, y), is a
joint normal distribution, once we conditioned on the artificially missing data.
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2.2 Step 1: Data augmentation through hidden inter-arrival

times

For each t, the distribution of yt|λt may be regarded as the distribution of the
number of jumps of an unobserved Poisson process with intensity λt. The first step
of data augmentation introduces for each t, t = 1, . . . , T , the inter-arrival times
τtj, j = 1, . . . , (yt + 1) of this Poisson process as missing data. From the basic
properties of a Poisson process, the inter-arrival times τtj are known to follow the
Exponential (λt)-distribution:

τtj|α, βt ∼ Exponential (λt) =
Exponential (1)

λt

.

This may be reformulated as following linear model:

log τtj|α, βt = −Z
1
t α− Z2

t βt + εtj, εtj ∼ log(Exponential (1)). (4)

Let τ = {τtj, j = 1, . . . , (yt + 1), t = 1, . . . , T} denote the collection of all inter-
arrival times. Our first data augmentation step introduces the inter-arrival times τ
as missing data, with two effects. First, the full-conditional posterior distribution
p(α, β1, . . . , βT |θ, τ, y) of α, β1, . . . , βT , where additionally to θ and y the inter-arrival
times τ appear as conditioning argument, is independent of y:

p(α, β1, . . . , βT |θ, τ, y) = p(α, β1, . . . , βT |θ, τ).

Second, conditional on τ , we are dealing with model (4), which is non-normal,
but where the mean of the observation equation is linear in the unknown model
parameters α, β1, . . . , βT :

E(log τtj|α, βt) = −Z
1
t α− Z2

t βt − 0.57722. (5)

2.3 Step 2: Data augmentation through a Mixture Approx-

imation

As discussed above, the first augmentation steps eliminates the non-linearity of the
observation equation, the non-normality of the error term, however, remains. It
is important to realize that the error term in (4) follows a log Exponential (1)-
distribution which is independent of any unknown model parameter. To obtain a
model that is conditionally Gaussian, we start by approximating the non-normal
density of εtj ∼ log(Exponential (1)) by a normal mixture of R components with
parameters mr and sr for the r-th component:

p(εtj) = exp{εtj − eεtj} ≈
R
∑

r=1

wrfN(εtj;mr, s
2
r). (6)

This idea is influenced by the related articles of Kim et al. (1998) and Chib et al.
(2002), who used a normal mixture approximation of the density of a logχ2-distribution
in the context of stochastic volatility models. The appropriate parameters (wr,mr, s

2
r), r =

1, . . . , R, however, are different for our problem and are tabulated in Table 1 for
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Table 1: Normal mixture approximation of the density of the log Exponential (1)-
distribution (5 components)

r 1 2 3 4 5
wr 0.2924 0.2599 0.2480 0.1525 0.0472
mr 0.0982 -1.5320 -0.7433 0.8303 -3.1428
s2

r 0.2401 1.1872 0.3782 0.1920 3.2375
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Figure 1: Comparing the density of the log(Exponential (1))-distribution with a
normal mixture approximation with 5 components

R = 5, a number that we found to be sufficiently large in practice. For illustration,
Figure 1 compares the true density with a normal mixture approximation based on
5 components.

Following Kim et al. (1998) and Chib et al. (2002), the mixture distribution (6)
is regarded as the marginal distribution of a problem where additional to εtj the
component indicators rtj is observed. The second step of our data augmentation
scheme introduces for each εtj the latent component indicator rtj as missing data.
Let S = {rtj, j = 1, . . . , (yt+1), t = 1, . . . , T} denote the collection of all component
indicators rtj. The introduction of S as additional missing data has the desirable
effect, that conditional on τ and S the non-normal, non-linear model (1) and (2)
reduces to a linear, Gaussian model where the mean of the observation equation is
linear in the unknown model parameters α, β1, . . . , βT and the error term follows a
normal distribution:

log τtj|α, βt, rtj = −Z
1
t α− Z2

t βt +mrtj
+ εtj, εtj ∼ Normal

(

0, s2
rtj

)

. (7)

Consequently, the conditional posterior p(α, β1, . . . , βT |θ, τ, S, y), which is propor-
tional to:

p(α, β1, . . . , βT |θ, τ, S, y) (8)

∝ p(α, β1, . . . , βT |θ)
T
∏

t=1

yt+1
∏

j=1

fN(εtj; log τtj −mrtj
+ Z1

t α + Z2
t βt, s

2
rtj
),

is a multivariate normal density, which is easy to sample from.
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3 Gibbs Sampling for Parameter-driven Models

for Time Series of Counts

As mentioned in the introduction, Markov chain Monte Carlo estimation of parameter-
driven models for time series of counts has been considered by many authors, in par-
ticular by Zeger and Karim (1991); Albert (1992); Shephard and Pitt (1997); Chib
et al. (1998) and Chib and Winkelmann (2001). A major difficulties with any of
the existing MCMC approaches, however, is that practical implementation requires
the use of a Metropolis-Hastings algorithm at least for part of the unknown param-
eter vector, which in turns make it necessary to define suitable proposal densities
in rather high-dimensional parameter spaces. Single-move sampling for this type
of models is known to be potentially very inefficient, see e.g. Shephard and Pitt
(1997).

In Section 2, we were able to show that any parameter-driven models based
on the Poisson distribution may be regarded as a partially Gaussian model in the
sense of Shephard (1994). This very useful result will be exploited in this section
to implement straightforward Gibbs sampling for rather general parameter-driven
models for time series of counts.

3.1 The Basic Four-block Gibbs Sampler

Select a starting value for the unknown model parameter θ, the component indicators
S = {rtj, j = 1, . . . , yt + 1, t = 1, . . . , T}, and the inter-arrival times τ = {τtj, j =
1, . . . , yt + 1, t = 1, . . . , T} and repeat the following steps:

(a) Multi-move sampling of α and the whole sequence β = {β1, . . . , βT} from the
multivariate normal distribution (8), conditional on knowing τ , S, θ and y;

(b) sample θ conditional on knowing α, β, τ , S, and y;

(c) sample the inter-arrival times τ = {τtj, j = 1, . . . , yt + 1, t = 1, . . . , T} condi-
tional on knowing y, θ, α and β;

(d) sample the component indicators rtj for each τtj, j = 1, . . . , yt + 1, t = 1, . . . , T .

The first two steps are model dependent, but for many models involve only standard
draws, as we are dealing with a Gaussian model, once we conditioned on τ and S.
Steps (c) and (d), however, deserve detailed investigation.

3.1.1 Sampling the inter-arrival times

The inter-arrival times {τtj, j = 1, . . . , yt + 1} are independent for different time
points t, given y, S, θ, α and β:

p(τ |y, θ, α, β, S) =
T
∏

t=1

p(τt1, . . . , τt,yt
, τt,yt+1|yt, θ, α, β). (9)
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For fixed t, the inter-arrival times τt1, . . . , τt,n+1, where yt = n, are stochastically
dependent, and the joint distribution factorizes as:

p(τt1, . . . , τtn, τt,n+1|yt = n, θ, α, β)

= p(τt,n+1|yt = n, θ, α, β, τt1, . . . , τtn)p(τt1, . . . , τtn|yt = n).

Note that the first n inter-arrival times are independent of all model parameters and
in particular of the component indicator S, and are determined only by the observed
number of counts yt. Only the final inter-arrival time τt,n+1 depends on the actual
model parameters α, β and θ through the risk λt, but is also independent of the
component indicator S. Due to well-known properties of a Poisson process, the first
n arrival times are distributed as the order statistics of n Uniform [0, 1]-distributed
random variables. Therefore to sample τt1, . . . , τtn we perform the following steps:

(c1) sample n uniform random numbers ut1, . . . , utn;

(c2) sort them to obtain the first n arrival times ut,(1), . . . , ut,(n);

(c3) define the inter-arrival times τtj as the increments of the arrival times:

τtj = ut,(j) − ut,(j−1), j = 1, . . . , n

where ut,(0) := 0.

Conditionally on yt = n and τt1, . . . , τtn, the last arrival time τt,n+1 has an exponen-
tial distribution with mean 1/λt, truncated at 1−

∑n

j=1 τtj.
Therefore the final step reads:

(c4) define τt,n+1 = 1−
∑n

j=1 τtj + ξt, where ξt ∼ Exponential (λt).

If yt = 0, we sample only a single arrival time τt1 as τt1 = 1 + ξt, where ξt ∼
Exponential (λt).

3.1.2 Sampling the component indicators

The component indicators rtj are mutually independent for different t as well as for
different j, given y, τ , θ, α and β. For t, j fixed, the posterior of each component
indicator rtj depends on the data only through τtj and on the model parameters θ,
α and βt only through the risk λt:

Pr{rtj = k|τtj, θ, βt, α} ∝ p(τtj|rtj = k, βt, α, θ)wk, (10)

where

ln p(τtj|rtj = k, θ, βt, α) ∝ − ln sk −
1

2

(

ln τtj + log λt −mk

sk

)2

.

The quantities (wk,mk, s
2
k), k = 1, . . . , 5 are the parameters of the finite mixture

approximation tabulated in Table 1.
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3.1.3 Starting values

Starting values for each component indicators rtj are obtained as random draws from
1 to R. Steps (c1) to (c3) could be used to sample starting values for τt1, . . . , τtn for
each t, given the observed counts yt. To obtain a starting value for τt,n+1, we use
(c4) and sample ξt from Exponential (λt) with λt = yt. For all t, where yt = 0, λt

can be set to a “small” value for λt, in our examples we used λt = 0.1.

3.1.4 Remarks

Sampling the inter-arrival times τ is carried out without conditioning on the com-
ponent indicators S, whereas the component indicators are sampled conditional on
knowing the inter-arrival times. Thus step (c) and (d) actually correspond to sam-
pling (τ, S) jointly from the posterior p(τ, S|y, θ, α, β).

Both steps (c) and (d) for sampling the artificially missing sequences τ and S
involve draws from standard densities, only; namely sampling from uniform distri-
butions, sampling from an exponential distribution and sampling from a discrete
distribution with R = 5 categories. Thus if Gibbs sampling is possible for a model,
where the Poisson observation equation is substituted by a univariate normal dis-
tribution with mean − log λt and known variance, then the whole sampling scheme
(a) to (d) is actually a Gibbs sampler for Poisson data.

3.2 Gibbs Sampling for State Space Models based on the

Poisson Distribution

3.2.1 Introduction

For illustration of our Gibbs sampling scheme, we consider in detail state space mod-
elling of time series of small counts. West et al. (1985) and Harvey and Fernandes
(1989) extended the idea of generalized models based on the Poisson distribution
to the framework of state space models which allows to introduce changing model
parameters. In its most general form, the model reads:

yt|α, βt ∼ Poisson
(

exp(Z1
t α + Z2

t βt)
)

, (11)

βt = Fβt−1 + ut + wt, wt ∼ Normal (0, Q) . (12)

Prior to the advent of MCMC methods, various approximations methods have been
suggested in the literature to cope with the estimation problem for state space model
for time series of counts. An approach that is related to, but different from MCMC
methods is Monte Carlo EM estimation as implemented by Chan and Ledolter
(1995). Another rather popular approximation method is based on assuming nat-
ural conjugate priors for βt, based on discounting information from the past. Such
methods have been studied in Harvey and Fernandes (1989) for state space mod-
els for time series of counts and qualitative observations, and in West et al. (1985)
for the general dynamic linear model. Alternative approximate approaches which
also allow for smoothing are based on the posterior mode filter of Fahrmeir (1992)
and the integration-based Kalman-filter of Frühwirth-Schnatter (1994a). Each of
these approximation methods is likely to introduce an approximation error of un-
known magnitude, that is not reducible by increasing the computational effort of
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the investigator. A first attempt to compute the exact likelihood function for the
Poisson local level model is reported in Kashiwagi and Yanagimoto (1992), which
is basically an application of the numerical integration filter of Kitagawa (1987),
and therefore limited to one- or two-dimensional state vectors. An advantage of
MCMC methods in comparison to any of these methods, first of all lies in general in
the fact that increasing the computational effort leads to increased accuracy of the
algorithm. Second, the MCMC approach suggested in this paper allows for rather
high-dimensional state vectors.

3.2.2 Illustrative example: local level model for count data

A simple example of the model defined in equations (11) and (12) is the local level
model for a univariate time series {y1, . . . , yT} of count data:

yt|µt ∼ Poisson (exp(µt)) , (13)

µt = µt−1 + wt, wt ∼ Normal (0, Q) .

Application of the first data augmentations steps described above introduces a total
of nt = yt + 1 inter-arrival times τtj, j = 1, . . . , nt for each of the T count observa-
tions yt, t = 1, . . . , T . The second data augmentation step introduces a component
indicator rtj for each of the T +

∑T

t=1 yt inter-arrival times τtj. After conditioning
on all inter-arrival times as well as the component indicators, we end up with the
following observation equation which is linear in the state vector µt and has a normal
observation error with known variance:

log τtj|µt, rtj = −µt +mrtj
+ εtj, εtj ∼ Normal

(

0, s2
rtj

)

. (14)

Thus for a state space model for Poisson count data, application of the two data
augmentations steps described above leads to a partially Gaussian state space model
for repeated measurements. The corresponding state space form reads

ỹt|µt ∼ Normal
(

−Z̃2
t µt, Rt

)

(15)

µt = µt−1 + wt, wt ∼ Normal (0, Q)

where the transition equation is the same as for the original Poisson state space
model. The Poisson observation equation for the single count observation yt, how-
ever, is substituted by a Gaussian observation equation with a multivariate obser-
vation vector ỹt given by:

ỹt =







log τit,1 −mrit,1

...
log τit,nt

−mrit,nt






.

Z̃2
t is a column vector of ones of length nt = yt + 1 and Rt is a diagonal matrix

containing the variances of the mixture components according to the sampled com-
ponent indicators.
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Gibbs sampling for this model is particularly simple. In step (a), multi-move
sampling for µ = {µ0, . . . , µT} by forward-filtering-backward sampling involves only
draws from one-dimensional normal distributions. For t = T ,

µT ∼ Normal
(

µ̂T |T , PT |T

)

, (16)

where µ̂T |T and PT |T are the moments of the final filtering density p(µT |y, S, τ). For
t < T

µt|µt+1 ∼ Normal
(

µ̂t|T , Pt|T

)

t = T − 1, . . . , 0 (17)

where µ̂t|T and Pt|T are the moments of p(µt|µt+1, y, S, τ), see Frühwirth-Schnatter
(1994b) for more details. Based on the conditionally conjugate priorQ ∼ InvGamma (c0, C0),
the process variance Q is sampled in step (b) from an inverted Gamma distribution

Q|µ ∼ InvGamma

(

c0 +
T

2
, C0 +

1

2

T
∑

t=1

(µt − µt−1)
2

)

.

Step (c) and (d) are carried out as described above.

3.2.3 Gibbs Sampling Scheme for General State Space Models

For general state space models for count data, the unknown elements in the variance-
covariance matrix Q in (12) in general constitute the unknown model parameter θ.
The four-block Gibbs sampler works as follows. Select starting values for θ, and for
the inter-arrival times and the component indicators as indicated in Subsection 3.1.3
and repeat the following steps:

(a) Multi-move sampling for the whole sequence α, β0, . . . , βT by forward-filtering-
backward sampling as in Frühwirth-Schnatter (1994b), Carter and Kohn (1994)
or de Jong and Shephard (1995) or by the sampler of Durbin and Koopman
(2002) for the following conditionally Gaussian state space form:

ỹt = −Z̃
1
t α− Z̃2

t βt + εt, εt ∼ Normal (0, Rt) , (18)

βt = Fβt−1 + ut + wt, wt ∼ Normal (0, Q) . (19)

The observation equation is Gaussian, with ỹt being the following multivariate
observation vector of dimension nt = yt + 1:

ỹt =







log τit,1 −mrit,1

...
log τit,nt

−mrit,nt






. (20)

Z̃1
t and Z̃2

t are matrices with nt rows, containing nt copies of the design matrices
Z1

t and Z2
t :

Z̃1
t =







Z1
t
...
Z1

t






, Z̃2

t =







Z2
t
...
Z2

t






. (21)

Rt is the diagonal matrix containing the variances of the mixture components,

Rt = Diag
(

s2
rit,1

, . . . , s2
rit,nt

)

.
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(b) Sample θ conditional on knowing α, β, τ and S from the conditionally Gaussian
state space form (18) and (19).

(c) For each yt, t = 1, . . . , T , sample the inter-arrival times {τtj, j = 1, . . . , yt +1},
conditional on knowing α, β and y as in Subsection 3.1.1. Sampling {τtj, j =
1, . . . , yt} requires yt draws from a uniform distribution, sampling τt,yt+1 re-
quires a single draws from the Exponential (λt)-distribution with

log λt = Z1
t α + Z2

t βt.

(d) Sample the component indicators rtj for each τtj, j = 1, . . . , yt+1, t = 1, . . . , T
as in Subsection 3.1.2 from the discrete distribution (10) with log λt being the
same as in step (c).

The precise details in step (b) depend on the specific state space form. If Q is
an unrestricted variances covariance matrix, than Q is sampled from an inverted
Wishart distribution. If only some diagonal elements of Q are unknown as for the
basic structure model to be considered in Section 4, these parameters are sampled
independently from inverted Gamma distribution.

3.3 Gibbs Sampling for other Parameter-driven Models of

Count Data

The application of the four-block Gibbs sampler to state space modelling, discussed
in the previous section, demonstrates two important features of our sampling scheme,
which render it useful also for other parameter-driven models of counts.

First, the introduction of the two latent sequences τ and S eliminates non-
normality and non-linearity caused by choosing the Poisson distribution as distri-
butional law for the observations. Thus to extend a particular model class to count
data, we may exploit any result that is available for MCMC estimation of this par-
ticular model class within the Gaussian family, when implementing step (a) and (b)
of the four-block Gibbs sampler.

Second, in the sampling steps for the two latent sequences τ and S in step (c)
and (d), where we condition on α, β and θ, knowledge of the conditional mean λt of
the Poisson distribution of yt is sufficient. Although λt depends on α, β and θ in a
specific way described by the model, step (c) and (d) are independent of the specific
structure of the model, once we determined λt. To sample the inter-arrival times τtj

we only need to know the observed counts and the conditional mean λt, whereas to
sample the component indicator rtj we need to know τtj and λt.

Assume, for further illustration, that we are fitting a random-effects model to
panel count data yit, i = 1, . . . , N, t = 1, . . . , T :

yit ∼ Poisson (exp(λit)) , (22)

as in Chib et al. (1998), who considered panel data models with multiple random
effects. With our data augmentation scheme any random-effect model for small
counts reduces to the same random-effects model for repeated Gaussian data. At
each sweep of our Gibbs sampler, each count observation yit is substituted by yit +1

11



repeated Gaussian measurements log τit,j −mrit,j
, j = 1, . . . , yit +1 with observation

variance s2
rit,j

. It is important to realize the following. First, these Gaussian mea-
surements are completely determined by the most recent draws of the two latent
sequences τ and S. Second, the unknown model parameters are conditionally in-
dependent of the original counts yit, conditional on knowing the repeated Gaussian
measurements log τit,j −mrit,j

, j = 1, . . . , yit + 1. Third, once we conditioned on τ
and S, the mean of each of the Gaussian observations log τit,j − mrit,j

is equal to
−λit, with the model for λit being identical with the original model.

4 Applications

We illustrate the usefulness of the proposed Gibbs sampler on various data sets
provided by the Austrian Road Safety Board . These data are monthly observations
of numbers of fatal accidents of female drivers in our first example and numbers of
killed or injured pedestrians of two age-categories in the second. We deal with series
of small counts not exceeding 4 in the first, and respectively 5 and 15 in the second
example. State space modelling seems quite natural for these data but the smallness
of the counts makes an analysis using normal state space models as in Harvey and
Durbin (1986) clearly inappropriate.

All series are modelled using a basic structural model for count data, i.e.

log(λt) = µt + st

where the level µt and slope at follow a random walk

µt = µt−1 + at−1 + w1t, w1t ∼ Normal (0, θ1) (23)

at = at−1 + w2t, w2t ∼ Normal (0, θ2) , (24)

and the monthly seasonal component is generated by

st = −st−1 − · · · − st−11 + w3t, w3t ∼ Normal
(

0, θ2
3

)

In both examples a legal intervention intended to increase road safety took place
during the observation period. The intervention effect δ is modelled as a level shift
at the time point t = tint when legal amendments became effective, so

µt = µt−1 + at−1 + δ + w1t for t = tint.

The state vector βt therefore has 14 dimensions, namely βt = (µt, at, st, . . . , st−11, δ),
where only the first three components are dynamic. Data augmentation through the
mixture approximation leads to a partly dynamic model in the sense of Frühwirth-
Schnatter (1994b) with process variances θ = (θ1, θ2, θ

2
3) for the three dynamic com-

ponents. In this model the process variances can be sampled independently from
inverse Gamma distributions.

4.1 Example 1: Female Drivers in Rohrbach

In this example we analyze monthly counts of killed or seriously injured female
drivers in the district of Rohrbach, which is a rural district typical for northern
Austria. The time period covered was 1981 to 2003.
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Table 2: Estimates of the parameters for killed or seriously injured female drivers
Parameter Mean Std.dev 95%H.P.D. regions

θ1 0.0049 0.0058 [0.0001, 0.0168]
θ2 0.0003 0.0002 [0.0001, 0.0007]
θ3 0.0011 0.0216 [-0.0407, 0.0447]
δ -0.1156 0.9055 [-1.8994, 1.6673]

This series allows to investigate the effect of Austrian seat belt legislation anal-
ogous to the analysis in Harvey and Durbin (1986). Use of the seat belt for front
seat occupants was made compulsory in Austria in 1976, but violations were not
prosecuted till July 1, 1984.

The Gibbs sampler described in Subsection 3.2.3 was run 12000 times with a burn
in of 2000 runs. As the chain did not converge for the original formulation of the
model we used a reparametrization where the seasonal component was noncentred
for location as well as scale:

log(λt) = µt + Z1
t α + θ3s̃t (25)

Here the initial seasonal pattern is introduced as fixed effect, α = (s−1, . . . , s−11),
and Z1

t is a row vector selecting the appropriate initial value according to the season
of time point t. For t being a multiple of 12, Z1

t is a row vector of -1, otherwise all
elements of Z1

t are 0, apart from the element in the column corresponding to the
actual season, which takes the value 1. The non-centered seasonal component s̃t is
the standardized deviation of st from α:

s̃t =
st − Z1

t α

θ3

. (26)

Introducing the non-centered state vector βt = (µt, at, s̃t, . . . , s̃t−11, δ) and choosing
θ = (θ1, θ2, θ3) led to a Gibbs sampler with quick convergence to the stationary
distribution.

Table 2 summarizes the obtained estimates for the model. Process variances for
all components are low, particularly variances for the linear trend and the seasonal
component are close to 0. Recall that θ3 is the process standard error of the seasonal
component. Due to noncentring estimates of θ3 may also have negative signs. The
variance of the seasonal component is not significantly different from 0, indicating
a stable seasonal pattern over the observation period. The intervention effect is
negative, though not significant. Thus prosecution of non-wearers of the seatbelt
does not have a significant effect on female drivers in this rural area.

Figure 2 shows the observed counts with the exponentiated estimated level µt

and pointwise 95% credible intervals, figure 3 the (multiplicative) trend exp(at) and
a typical seasonal pattern exp(st). Obviously neither trend nor seasonal effects are
significantly different from 1.

4.2 Example 2: Killed or injured pedestrians

In this application we study series of monthly counts of deaths or injured pedes-
trians from 1987-2002 in Linz, which is the third largest town in Austria. We use
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Figure 2: Counts of killed or seriously injured female drivers in Rohrbach with
estimated rate (posterior means) within 95% credible regions
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Figure 3: Trend and seasonal component (posterior means) within 95% credible
regions
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Table 3: Parameter estimates for killed and injured children and seniors

Children Senior people
Parameter Mean Std.dev 95%H.P.D. regions Mean Std.dev 95%H.P.D. regions

θ1 0.0042 0.0046 [ 0.0002, 0.0140] 0.0040 0.0043 [ 0.0002, 0.0121]
θ2 0.0004 0.0002 [ 0.0001, 0.0007] 0.0003 0.0002 [ 0.0001, 0.0006]
θ3 0.0002 0.0195 [-0.0378, 0.0387] -0.0004 0.0154 [-0.0306, 0.0288]
δ -0.5128 0.5779 [-1.6920, 0.5812] 0.2966 0.3700 [-0.4202, 1.0259]

1987         1989         1991         1993         1995         1997         1999         2001
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5
intervention

Figure 4: Counts of killed or injured children with estimated rate (posterior means)
within 95% credible regions

series for two different age groups, children aged 6-10 and senior persons above 60.
Legal intervention in this application concerns an amendment increasing priority for
pedestrians which became effective on October 1, 1994: since then pedestrians who
want to use a crosswalk have to be allowed a riskless crossing.

For both series we fitted a basic structural model including an immediate inter-
vention effect. Again we had to use the reparametrized version of the sampler due
to non convergence of the original version.

Figures 4 and 6 show the observed counts with the smoothed level and point
wise 95% credibility intervals for both series. Table 3 reports point estimates as well
as 95%-H.P.D. regions for all modell parameters. All components show an almost
equal variability. As θ3 is not significantly different from zero, also in these series
the seasonal pattern is stable along the observation period.

The (multiplicative) trend component and typical seasonal patterns are shown in
figures 5 and 7. The trend component is not significantly different from 1 in neither
of the series. There are however marked differences for the two series in the seasonal
patterns: for the children series rates are significantly lower than the annual average
in the holiday months July and August and higher June and October. For senior
people there is solely a significant decrease in August.

As the main feature of the seasonal pattern in the children series is the decrease
in holiday months July and August we fitted a simpler model with a dummy variable
indicating summer holidays and omitting the insignificant trend component at. In
this model the estimated variance of the level component was θ̂1 = 0.0018,with an
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Figure 5: Killed or injured children: Trend and typical seasonal component (poste-
rior means) within 95% credible regions
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Figure 6: Counts of killed or injured senior persons with estimated rate (posterior
means) within 95% credible regions
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Figure 7: Senior persons: Trend and typical seasonal component (posterior means)
within 95% credible regions
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estimated intervention effect of δ̂ = −0.4006. For the senior series a similar model
with a dummy variable for August gave estimates θ̂1 = 0.0030 and δ̂ = 0.1334.

5 Concluding Remarks

The Gibbs sampler suggested in this paper provides an important step toward op-
erational MCMC estimation for a broad class of parameter-driven models of time
series of Poisson counts, as the sampler typically requires only draws from standard
densities and no tuning of proposal densities is required.

Some care must be exercised with respect to parameterization issues, as straight-
forward Gibbs sampling often leads to convergence problems. Such problems are
well-known for Gaussian random-effects model (Gelfand et al., 1995; van Dyk and
Meng, 2001) and Gaussian state space models (Papaspiliopoulos et al., 2004; Frühwirth-
Schnatter, 2004). For Poisson count data parameterization issues are also addressed
in Chib et al. (1998). As our application demonstrated, the mixing properties of
our new Gibbs sampling scheme dramatically improves in cases, where the orig-
inal parameterization leads to a slowly mixing sampler, by using a non-centered
parameterization similar to the one studied in Frühwirth-Schnatter (2004).

The Gibbs sampler introduced in this paper is easily modified to deal with vari-
ous extensions of the model structure. If the latent process follows a t-distribution as
in Chib and Winkelmann (2001), rather than a normal distribution, our estimation
approach needs to be adapted only slightly along the lines of Shephard (1994), by
expressing the t-distribution as a scale mixture of normals. Furthermore, the ob-
servations yt may be regarded as realizations from a negative binomial distribution,
which is an important alternative to the Poisson distribution that is able to capture
overdispersion often present in count data. By writing the negative binomial distri-
bution as an infinite mixture of Poisson distributions, an MCMC scheme is easily
designed along the lines indicated in this paper.

Although we focused on count data throughout the paper, the main ideas are
likely to be useful for constructing straightforward Gibbs sampling schemes for
parameter-driven models for other discrete observations such as binary or multi-
nomial data. This issue, however, will be pursued in more detail in a subsequent
paper.
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