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Abstract

We propose to use the attractiveness of pooling relatively short time series that
display similar dynamics, but without restricting to pooling all into one group.
We suggest to estimate the appropriate grouping of time series simultaneously
along with the group-specific model parameters. We cast estimation into the
Bayesian framework and use Markov chain Monte Carlo simulation methods.
We discuss model identification and base model selection on marginal likeli-
hoods. A simulation study documents the efficiency gains in estimation and
forecasting that are realized when appropriately grouping the time series of
a panel. Two economic applications illustrate the usefulness of the method
in analyzing also extensions to Markov switching within clusters and hetero-
geneity within clusters, respectively.1 JEL classification: C11,C33,E32
Panel data, clustering, mixture modelling, Markov switching, Markov chain
Monte Carlo.

1 Introduction

Let {yit} , t = 1, . . . , T be a panel of multiple time series observed for N units
i = 1, . . . , N . The modelling approach pursued in this paper is based on formulating
a time-series models for each univariate time series yi = {yi1, . . . , yiT} in terms of
the joint predictive density p(yi|ϑ), where ϑ is an unknown parameter that needs to
be estimated from the data. If T were large, the parameter ϑ could be estimated
for each time series yi individually. However, if T is relatively small one might
use information from the other time series in the panel to estimate ϑ. In the case
that all time series were generated by the same parameter, one would of course
estimate ϑ from the pooled panel. This approach, however, introduces a bias, if the
data-generating parameter ϑ differs substantially between all or some of the time
series.

The basic idea of our model-based clustering approach is to assume that among
the N multiple time series, K hidden groups are present, whereby all time series
within each group, say k, are characterized by an econometric model with group-
specific parameter ϑk. Consequently, information from all time series in the group
can be used to estimate ϑk. An important feature of our approach is to assume
that group membership of a certain time series is unknown apriori, and is estimated
along with the group-specific parameters.

Consider, for illustration, a panel of time series where the main goal is forecast-
ing a few steps ahead. In order to capture the short-term dynamics of each time
series, model-based clustering is based on an AR(p) model, with the autoregressive
parameters being different among K groups:

yit = ck + δ1,kyi,t−1 + . . .+ δp,kyi,t−p + εit, (1)

1A draft version of the paper was presented under the title “Bayesian Clustering of Many Short
Time Series” at the 57th European Meeting of the Econometric Society in 2002, at the 7th Valencia
International Meeting on Bayesian Statistics in 2002 and at seminar presentations given in October
2002 at CORE, Louvain-la-Neuve, and the Erasmus University Rotterdam. The work of the first
author was partly supported by the Austrian Science Foundation (FWF) under grant SFB 010
(’Adaptive Information Systems and Modelling in Economics and Management Science’). The
views expressed in the paper are those of the authors and do not necessarily reflect those of the
OeNB.
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where εit ∼ Normal (0, σ2
k). Bayesian econometric inference will then yield estimates

for each ϑk = (ck, δ1,k, . . . , δp,k, σ
2
k), k = 1, . . . , K, as well as individual forecasts for

each time series yi, together with the posterior probability that time series yi belongs
to group k.

The idea of model-based clustering of time series is quite general and may be
applied to a much broader class of time series models than only the AR(p) model.
The choice of a specific model class usually will be guided by the general features
prevalent in the observed time series. One example we will study in this article, is
model-based clustering of dynamic regression models in which we allow for group-
specific dependence on exogenous variables. Our approach bears similarities to the
technique of stratifying a panel of time series by some variable prior to estimation,
see e.g. Baltagi (1995). A distinctive feature of our clustering technique, however,
is that group membership is estimated simultaneously with the remaining model
parameters rather than determined prior to estimation.

A further example will be model-based clustering of Markov-switching autore-
gressive processes, introduced to econometrics by Hamilton (1989). Thereby we
allow for structural breaks at unknown dates, with the additional feature that these
breaks are allowed to occur at different times in the different groups. The inclusion
of hidden Markov chains to allow for structural changes in a panel is related to,
but different from the threshold panel data technique of Hansen (1999). Finally, we
will consider model-based clustering of random effect models, where heterogeneity
is present also within each group. This model is rather popular in marketing re-
search, see for instance Lenk and DeSarbo (2000); economic applications, however,
are rather rare. Canova (2004) applied a related classification technique to test for
convergence in income data, and we will present additional evidence obtained with
his data in the last one of our case studies.

Our approach is closely related to model-based clustering based on mixture mod-
els for non time-series data, see for instance the monograph of McLachlan and Bas-
ford (1988) and Bensmail et al. (1997). Whereas for non-time series data, distance-
based clustering methods such as K-means clustering are attractive alternatives to
model-based clustering, distance-based clustering methods are not easily extended
to time series, hindered mainly by the difficulty of defining an appropriate distance
measures between time series. The investigations of this paper will demonstrate
that model-based clustering methods extend to time series in a quite natural way.

Concerning estimation, we pursue a fully Bayesian approach, using Markov chain
Monte Carlo (MCMC) methods based on data augmentation, where we heavily draw
from a lot a related paper on MCMC methods for mixture models, in particular from
Diebolt and Robert (1994) and Frühwirth-Schnatter (2001b).

The outline of the rest of the paper is as follows. In Section 2 we formulate
the general model framework. In Section 3 we discuss Bayesian estimation using
MCMC methods, whereas Section 4 deals with selecting the number of groups. In
Section 5 we discuss in more detail pooling within clusters using dynamic panel
data models, and demonstrate the usefulness of our idea by means of a simulation
study. In Section 6, we study clustering time series under regime switching, and
consider clustering of industrial production growth rates of twenty-one countries as
an application. In Section 7, we discuss heterogeneity within clusters, and look for
convergence clubs in income data from 144 European NUTS2 units as illustration.
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2 Model-based Clustering of Time Series

2.1 Model Formulation and Notation

Let {yit} , t = 1, . . . , T be time series observed for N units i = 1, . . . , N . The
approach pursued in this paper is very general and is based on formulating a time-
series models for each univariate time series yi = {yi1, . . . , yiT} in terms of the
joint predictive density p(yi|ϑ), where ϑ is an unknown parameter taking values in
a parameter space Θ. The predictive density may depend on observed exogenous
variables, however this dependence will not be made explicit in our notation to
keep it simple. Typically, p(yi|ϑ) will be specified in terms of the one-step ahead
predictive densities p(yit|yi,t−1, . . . , yi,t−p, ϑ):

p(yi|ϑ) =
T
∏

t=p+1

p(yit|yi,t−1, . . . , yi,t−p, ϑ). (2)

Our approach may be applied to discrete-valued as well as continuous-valued time
series. For discrete-valued time series, p(yit|yi,t−1, . . . , yi,t−p, ϑ) is a discrete probabil-
ity distribution. Emphasis of the present paper, however, lies on continuous-valued
time series.

To be more specific, assume that the one-step ahead predictive density arises
from a normal distribution:

yit|yi,t−1, . . . , yi,t−p, ϑ ∼ Normal
(

ŷit|t−1(ϑ), Cit|t−1(ϑ)
)

, (3)

where ŷit|t−1(ϑ) and Cit|t−1(ϑ) are the mean and the variance of the one-step ahead
predictive density, which may depend on yi,t−1, . . . , yi,t−p and on exogenous variables.
A typical example is the AR(p) model, where ϑ = (c, δ1, . . . , δp, σ

2), with mean
and variance given by ŷit|t−1(ϑ) = c + δ1yi,t−1 + . . . + δpyi,t−p, and Cit|t−1(ϑ) = σ2,
respectively. Another example is the GARCH(1,1)-model, where ϑ = (γ, α, δ), with
mean and variance given by ŷit|t−1(ϑ) = 0 and Cit|t−1(ϑ) = γ+αy2

i,t−1+δCi,t−1|t−2(ϑ).
Following a well-developed tradition in Bayesian econometrics (Zellner 1971,

Geweke 1993) a certain robustness against outliers in time series is achieved by
choosing model densities from the tν-distribution rather than the normal distribu-
tion. Here, robustness against atypical time series is achieved by assuming that
p(yi|ϑ) arises from a multivariate t-distribution. To simplify estimation, we repre-
sent the tν-distribution as a scaled mixture of normal distributions as in Geweke
(1993) and define the following one-step ahead predictive densities,

yit|yi,t−1, . . . , yi,t−p, λi, ϑ ∼ Normal
(

ŷit|t−1(ϑ), Cit|t−1(ϑ)/λi
)

, (4)

where

λi ∼ Gamma
(

ν

2
,
ν

2

)

, (5)

and ŷit|t−1(ϑ) and Cit|t−1(ϑ) are the same as in (3).
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2.2 Model-based Clustering

Let us further assume that the N observed time series in fact form K groups,
whereby within each group, say k, an econometric model based on the same param-
eter ϑk for all time series could be used for inference and forecasting, or in other
words, we could pool all time series within a cluster. To this aim, a latent group
indicator Si is introduced for each time series yi, which takes a value out of the dis-
crete set {1, . . . , K}, i.e. Si = k if time series yi belongs to group k. Thus, knowing
Si is equivalent to knowing the unit specific parameter:

p(yi|Si, ϑ1, . . . , ϑK) = p(yi|ϑSi
) =















p(yi|ϑ1), if Si = 1,
...

...
p(yi|ϑK), if Si = K.

(6)

An important aspect of model (6) is that we do not assume to know a priori which
time series belong to which group. For each time series, the group indicator Si is
estimated along with the group-specific parameters ϑ1, . . . , ϑK from the data. The
Bayesian classification rule (see equation (9) below) combines the information in
the data with the prior information available on group indicator Si to obtain the
inference on group membership. Two sensible prior structures for Si are discussed
in the next subsection.

2.3 Modelling the Prior of the Group Indicators

In order to complete the model specification, we have to formulate a probabilistic
model for the group indicators SN = (S1, . . . , SN). This probabilistic model turns
out to be the prior distribution of SN within the Bayesian approach we pursue in the
present paper. First, we assume that S1, . . . , SN are a priori independent. For each
i = 1, . . . , N we can then define the prior probability, Pr{Si = k}, that a certain
time series yi belongs to group k. We consider here two probabilistic structures for
this prior.

The first prior is the one that is commonly used in the context of mixture model,
namely to assume complete prior ignorance about the group membership of a certain
unit. Then the prior probability of time series yi to belong to group k is equal to
the relative size ηk of that group:

Pr{Si = k|η1, . . . , ηK} = ηk. (7)

The group sizes (η1, . . . , ηK), which obviously sum to 1, are assumed to be unknown
and are estimated along with the data.

In practice, however, a unit-specific factor, which may be economic, geographic
or sociopolitical, might contain a priori information on how to group the time series
of a panel. Such information might be included in a priori clustering by assuming
a logit-type model for Pr{Si = k}. For instance, to model dependence on a single
unit-specific exogenous variable zi for K = 2, the corresponding prior would read:

Pr{Si = 1|γ1, γ2, zi} =
1

1 + exp(γ1 + ziγ2)
, (8)

Pr{Si = 2|γ1, γ2, zi} =
exp(γ1 + ziγ2)

1 + exp(γ1 + ziγ2)
,
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where (γ1, γ2) are unknown parameters also estimated from the data. If γ2 equals
zero, then prior (8) reduces to prior (7), with a different parameterization for the
group sizes, however. Note that in this case η1 = 1/(1 + exp(γ1)), whereas η2 =
exp(γ1)/(1 + exp(γ1)). If γ2 is different from 0, then zi helps to predict group
membership. We may analyze Pr{Si = 1|γ1, γ2, zi} for all observed time series, in
order to evaluate the discriminative power of zi with respect to group membership.
By testing if γ2 is actually different from 0, as well as by analyzing the discriminate
power of zi for the observed time series, we obtain important insights into the factors
that determine group membership. Prior (8) is easily extended to deal with more
than one exogenous variable and with more than two groups.

3 Estimation

Estimation of the model introduced in Section 2 is carried out within a Bayesian
framework through the help of Markov chain Monte Carlo methods and data aug-
mentation methods. Markov chain Monte Carlo methods have been applied for re-
lated models with hidden groups such as mixture models by, among many authors,
Diebolt and Robert (1994) and Frühwirth-Schnatter (2001b).

3.1 Estimation Using MCMC

Subsequently ϑ1, . . . , ϑK denote the unknown model parameters in the different
groups, whereas φ summarizes unknown parameters in the prior of the group in-
dicators, i.e. φ = (η1, . . . , ηK) for the ignorance prior (7) and φ = (γ1, γ2) for
the logit-type prior (8). To pursue the Bayesian approach, we assume that a prior
p(ϑ1, . . . , ϑK , φ) is available. Further quantities that are estimated jointly with these
model parameters are the group indicators SN = (S1, . . . , SN ), either under the ig-
norance prior (7) or the logit-type prior (8).

Estimation of ψ = (ϑ1, . . . , ϑK , φ, S
N ) using MCMC basically iterates between

the two following step:

(a) Classification for fixed parameters: each time series as a whole is classified
into one of the K groups by sampling the group indicator Si for all time series
i = 1, . . . , N from the posterior p(Si|y, ϑ1, . . . , ϑK , φ).

(b) Estimation for a fixed classification: conditional on known indicators, the pa-
rameters (ϑ1, . . . , ϑK) and φ are conditionally independent. Estimation is car-
ried out by sampling the group-specific parameters ϑ1, . . . , ϑK from the poste-
rior p(ϑ1, . . . , ϑK |S

N , y) and the parameters φ relevant for prior classification
from the posterior p(φ|SN , y).

Step (a) makes use only of the predictive density p(yi|ϑ), defined for each time series
in (2), as well as the prior classification probabilities (7) or (8):

Pr{Si = k|y, ϑ1, . . . , ϑK , φ} ∝ p(yi|ϑk)Pr{Si = k|φ}, k = 1, . . . , K. (9)

Equation (9) shows that model-based clustering of time series is a very general
method that may be applied to many different classes of time series models.
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Sampling the group-specific parameters ϑ1, . . . , ϑK in step (b) is particularly
easy, if the various groups share no parameters. Then, each group parameter ϑk is
estimated by pooling all time series that currently belong to group k:

p(ϑk|y, S1, . . . , SN) =
∏

i:Si=k

p(ϑk|yi). (10)

To sample from this posterior one can make use of the many results available on
MCMC estimation of particular time series models. Chib (2001) gives an excellent
review on MCMC estimation of common econometric time series models; see also
Chib and Greenberg (1994) in particular for ARMA models and Nakatsuma (2000)
for GARCH models.

Sampling the prior parameters φ of the group indicators in step (b) is standard
for the ignorance prior (7). The posterior of φ = (η1, . . . , ηK) follows a Dirichlet
distribution. Under the logit-prior (8), the posterior p(φ|S1, . . . , SN) is not of closed
form and a Metropolis-Hastings-algorithm is used to sample φ, see Albert and Chib
(1993b) and Scott (1999) for more details.

Under the robust predictive density (4), the scale factors λN = (λ1, . . . , λN)
have to be added to the vector ψ of unknown quantities, and an additional step is
necessary to sample these scale factors:

(c) Determining the weights for robust estimation and classification: conditional
on known indicators and known parameters, λi is sampled from the posterior
p(λi|y, ϑSi

) for each time series:

λi|y, ϑSi
∼ Gamma





ν + T − p

2
,
ν

2
+ .5

T
∑

t=p+1

(

(yit − ŷi,t|t−1(ϑSi
))2

Ci,t|t−1(ϑSi
)

)2


 . (11)

In this case, step (a) and (b) are carried out conditional on λN . The classification
rule (9), for instance, is substituted by:

Pr{Si = k|y, ϑ1, . . . , ϑK , λ
N , φ} ∝ p(yi|ϑk, λi)Pr{Si = k|φ}, (12)

using the augmented normal distribution p(yi|ϑk, λi) rather than the t-distribution
p(yi|ϑk).

3.2 Unit-specific inference

The MCMC draws may be used to recover individual parameters for each time
series and to obtain forecasts for each individual time series. Assume that after an
appropriate burn-in-phase M MCMC draws ψ(m), m = 1, . . . ,M , are retained for
inference.2 Unit-specific inference is available from these draws, especially posterior
draws of the unit-specific parameters and unit-specific forecasts.

The unit-specific parameter ϑ̃i of time series yi may be expressed as:

ϑ̃i =
K
∑

k=1

ϑkI{Si=k}, (13)

2In the following, we use the superscript (m) whenever we refer to MCMC draws, e.g. S
(m)
i

for
the mth draw of the group indicator Si.
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where the indicator function I{Si=k} takes the value 1, iff Si = k and zero otherwise.
Therefore posterior draws of the unit-specific parameters are given by,

ϑ̃
(m)
i =

K
∑

k=1

ϑ
(m)
k I

{S
(m)
i

=k}
, (14)

and may be evaluated for instance by determining posterior estimates of all unit-
specific parameters as the mean of these draws:

E(ϑ̃i|y) ≈
1

M

M
∑

m=1

K
∑

k=1

ϑ
(m)
k I

{S
(m)
i

=k}
. (15)

The unit-specific draws ϑ̃
(m)
i , together with MCMC draws of parameters common

to all series, may be used to sample future paths {y
(m)
i,T+1, . . . , y

(m)
i,T+h} for each time

series yi in a similar way as in Albert and Chib (1993a). For each m = 1, . . . ,M ,

y
(m)
i,T+h is a Bayesian forecast sampled recursively from (4):

yi,T+h|yi, y
(m)
i,T+1, . . . , y

(m)
i,T+h−1 ∼ Normal

(

ŷi,T+h|T (ϑ̃
(m)
i ), Ci,T+h|T (ϑ̃

(m)
i )/λ

(m)
i

)

.(16)

For each forecasting horizon h, these draws are then evaluated, for instance by
considering the mean of all draws y

(m)
i,T+h as a point forecast, or by deriving interval

forecasts in an evident manner.

3.3 Identification and Classification

To perform posterior classification and unit-specific inference using the group-specific
parameters, the groups have to be identified through some inequality constraint on
the group-specific parameters, in order to avoid label switching, see Celeux et al.
(2000) and Frühwirth-Schnatter (2001b) for an extensive discussion of this subtle
issue.

Usually, to find an appropriate restriction, we can use scatter plots of the MCMC
sample and plot marginal distributions of the model parameters. These explorative
tools often give a clear inference on distinct clusters in the data. The applications
in Subsections 6.2 and 7.2 will present some examples. In particular, identification
schemes for Markov switching panel data models are also discussed in Frühwirth-
Schnatter and Kaufmann (2004) and Kaufmann (2004).

Once the model has been identified, it is possible to classify the time series into
the various groups by estimating for each time series the posterior classification
probability Pr{Si = k|y} from the MCMC draws:

Pr{Si = k|y} ≈
1

M
#
{

S
(m)
i = k

}

.

4 Selecting the Number of Groups

In practice the number K of groups will be unknown. Each model specification
with a fixed number K of groups will be denoted by MK . Following a long tradi-
tion in Bayesian econometrics initiated by Zellner (1971) in the context of selecting
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regression models, the marginal likelihood will be used to select among M1, . . . ,
MKmax

. Marginal likelihoods have been applied to various complex econometric
model selection problems, for instance by Frühwirth-Schnatter (1995), Shively and
Kohn (1997), and Koop and van Dijk (2000) in the context of state space models and
by Chib et al. (2002) to select among stochastic volatility models; see also Geweke
(1995) for a general discussion of Bayesian comparison of econometric models based
on marginal likelihoods. An alternative Bayesian approach, which is not considered
here, to select the number of hidden groups is the reversible jump Markov Chain
Monte Carlo methods used by Richardson and Green (1997).

For a fixed number of clusters K, the marginal likelihood p(y|MK) is defined
by:

p(y|MK) =
∫

p(y1, . . . , yN |ψ,K)p(ψ)dψ. (17)

Analytical integration of (17) with respect to the whole parameter ψ = (ϑ1, . . . , ϑK , φ, S
N , λN)

is not possible, but the dimension of integration can be reduced substantially by an-
alytically integrating with respect to SN and λN :

p(y|MK) =
∫

p(y1, . . . , yN |ϑ1, . . . , ϑK , φ,K)p(ϑ1, . . . , ϑK , φ)dϑ1 . . . dϑKdφ, (18)

where p(y1, . . . , yN |ϑ1, . . . , ϑK , φ,K) is the integrated likelihood, derived from (2)
and (7):

p(y1, . . . , yN |ϑ1, . . . , ϑK , φ) =
N
∏

i=1

p(yi|ϑ1, . . . , ϑK , φ), (19)

where:

p(yi|ϑ1, . . . , ϑK , φ) =
K
∑

k=1

p(yi|ϑk)Pr{Si = k|φ}. (20)

Even for the reduced integral (18), the computation of the marginal likelihood is a
non-trivial integration problem, see for instance the discussion in Geweke (1999).
Marginal likelihoods have been estimated using methods such as the candidate’s
formula Chib (1995) and importance sampling based on mixture approximations
Frühwirth-Schnatter (1995); see also the review in Chib (2001) and the references
therein for more detail. Although these methods proved to be useful for a wide range
of econometric models, they are apt to fail when estimating the marginal likelihood
of mixture models, as the posterior density of such a model is highly irregular due
to lack of identification for these models, see Frühwirth-Schnatter (2004).

To compute the marginal likelihood (18), we follow Frühwirth-Schnatter (2004)
who demonstrated that the technique of bridge sampling (Meng and Wong 1996) is
a useful method of computing the marginal likelihood for mixture models. Bridge
sampling generalizes the method of importance sampling which has been applied
to various complex econometric inference problems by, among others, van Dijk and
Kloek (1980) and Geweke (1989). Like importance sampling, bridge sampling is
based on an iid sample from an importance density, however, this sample is com-
bined with the MCMC draws from the posterior density in an appropriate way.
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One might wonder, why this extension is sensible. For importance sampling it is
well-known that the variance of the resulting estimator depends on the ratio of
the non-normalized posterior density over the importance density which may be un-
bounded for poorly chosen importance densities, see e.g. Geweke (1989) and Geweke
(1999). An important advantage of bridge sampling is, that the variance of the re-
sulting estimator depends on a ratio that is bounded regardless of the tail behavior
of the underlying importance density. This allows the econometrician far more flex-
ibility in the construction of the importance density. In Frühwirth-Schnatter (2004)
the importance density is constructed during MCMC sampling in an unsupervised
manner as a mixture of complete data posteriors.

5 Pooling within Clusters

5.1 Dynamic Panel Data

Panel data consisting of many, rather short time series occur frequently in various
areas of applied econometrics such as macroeconomics, business or marketing. To
analyze the data, usually the dependent variable yit, i = 1, . . . , N and t = 1, . . . , T ,
is regressed on a set of explanatory variables Xit, which may include strictly exoge-
nous variables and/or lagged values of yit. Assuming first unit-specific regression
coefficients, β̃i, the model may be formulated (Baltagi 1995):

yit = Xitβ̃i + εit, (21)

where the error term is either homoscedastic, εit ∼ Normal (0, σ2), or conditionally
heteroscedastic, εit ∼ Normal (0, σ2/λi), which together with the prior (5) implies
that, marginally, yit follows a tν-distribution.

If the time series in the panel are rather short (either absolutely or relatively
compared to the dimension of β̃i in model (21)), then estimation of β̃i from the
individual time series yi = {yi1, . . . , yiT}, will exhibit large estimation errors. In
such cases, panel data are often pooled for estimation which means that a joint
parameter β̃i ≡ β is estimated for all N time series in the panel, see Garcia-Ferrer
et al. (1987), Maddala (1991), Zellner and Hong (1989) and Zellner et al. (1991),
Mittnik (1990), and Hoogstrate et al. (2000) for a recent review. As all time series
are pooled, we call this technique overall pooling in what follows.

One of the main advantages of overall pooling is to borrow strength from all time
series in the panel to estimate the coefficient of an individual time series. Overall
pooling, however, is known to introduce a bias for unit specific coefficients, if β̃i
were different between time series. The results reported in Hoogstrate et al. (2000)
suggest that only in those cases where the parameters are “similar” enough, the
gain in reducing the estimation errors may be larger than the loss due to the bias,
leading in total to reduced mean squared estimation and forecasting errors. Here we
suggest pooling within clusters, which inherits the appealing property of borrowing
strength, without restricting the estimation to overall pooling, however.

To formalize, the general model introduced in Section 2 is specified as a dynamic
regression model:

yit = Xitβk + εit, if Si = k, (22)
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where the clusters defined by Si are estimated along with the model parameters using
the MCMC approach described in Section 3.1. Model (22) is related to the switching
regression model introduced by Quandt (1972), as the parameters switch between
the units whereas for each time series the parameter remains the same over time.
The later assumption will be relaxed in Section 6, where we allow additionally for
switching over time according to a hidden Markov chain in order to make clustering
less sensitive to structural changes.

Clustering might be performed with respect to some coefficients only. The model
then reads:

yit = X1
itα +X2

itβk + εit, if Si = k, (23)

where α are parameters subject to overall pooling, whereas βk is pooled within
clusters. For the sake of identifiability we have to assume that X1

i,· and X
2
i,· share no

common columns meaning that a variable has either a fixed effect α or group-specific
effect βk on yit.

We end this section by the rather obvious remark, that for K = 1, clustering
based on model (22) collapses to overall pooling. By testing K > 1 against K = 1
by means of marginal likelihoods (see Section 4), we are in a position to test overall
pooling against pooling within clusters and to test for the appropriate number of
clusters.

5.2 A Simulation Study

5.2.1 The simulation design

We generate synthetical panels from the following dynamic regression model where
reaction to an exogenous variable zt is group-specific:

yit = c+ δyi,t−1 + βkzt + εit, (24)

with εit ∼ Normal (0, σ2), whereN = 200, T = 24, σ2 = 0.1, and zt ∼ Normal (0, 0.1).
We assume three hidden groups (K = 3) and combine a small group (η1 = 0.1) with
a large (η2 = 0.6) and a medium sized (η3 = 0.3) one.

We investigate six different scenarios of heterogeneity, by choosing different sets
of group-specific parameters (β1, β2, β3). The first scenario is actually a setting of
homogeneity with β1 = β2 = β3 = −0.45. For the remaining five scenarios, the
group-specific parameters (β1, β2, β3) are chosen such that the overall mean β,

β =
3
∑

k=1

βkηk, (25)

is identical to –0.45. However, heterogeneity measured by the variability Q of the
group-specific parameters around the overall mean,

Q =
3
∑

k=1

(βk − β)2ηk, (26)

increases and ranges from Q = 0.0039 to Q = 0.3, see Table 1. In all settings, the
parameter of the largest group is the closest to the overall mean and the distribution
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Table 1: Comparing pooling withinK clusters with overall pooling by the ratio of the
average mean squared estimation error MSEβ̃i

. A ratio bigger than 1 favors overall
pooling, a ratio smaller than 1 favors pooling within K clusters. Q: heterogeneity,
see (26); D: coefficient of determination, see (29).

Q 0 0.00395 0.0188 0.05 0.113 0.3
D 0 0.0500 0.2000 0.4000 0.6000 0.8

K = 2 9.44 1.45 1.05 0.676 0.326 0.145
K = 3 14.5 1.75 1.08 0.691 0.343 0.106
K = 4 14.8 1.85 1.09 0.67 0.345 0.109

of heterogeneity is asymmetric, whereby the parameter of the smallest group is
further away from the overall mean than the one of the medium sized group. The
fixed parameters always take the values (c, δ) = (3.5, 0.3).

For each setting we simulate 100 panels for each of which we estimate model
(24) for K = 1, . . . , 4 using the MCMC methods described in section 3.1. Only the
first T = 20 observations are used for estimation, while the last four are left for
out-of sample evaluation. After a burn-in-phase of 1000 draws, M = 1000 MCMC
draws are used to evaluate the estimation and the forecasting performance of pooling
within clusters (K = 2, 3, 4) relative to overall pooling (K = 1).

In each scenario, we estimate clustering models (for each panel) setting K equal
to K = 1, . . . , 4, and evaluate the estimation and forecasting performance of pooling
within clusters, i.e. K = 2, 3, 4, relative to overall pooling, K = 1.

5.2.2 Estimation performance

First of all, we consider the mean squared estimation error between the true unit-
specific coefficient β̃i,

3 which is equal to βk if series i belongs to group k (see equation

(24), and the posterior simulations β̃
(m)
i (see equation (14) in Subsection 3.2). For

each panel, we then compute the mean estimation error by:

MSEβ̃i
=

1

N

N
∑

i=1

1

M

M
∑

m=1

(β̃
(m)
i − β̃i)

2. (27)

Table 1 reports the average of the mean squared errors MSEβ̃i
of the 100 sim-

ulated panels in each scenario, when K is alternatively set to K = 2, 3, 4, relative
to overall pooling. A ratio bigger than one favors overall pooling, a ratio smaller
than one favors pooling within clusters. Not surprisingly, we loose efficiency in esti-
mating the individual parameters by introducing clusters in a case where none are
present (Q = 0). Interestingly, a loss of efficiency is also present for Q = 0.00395
and Q = 0.0188, which is in line with the result of Hoogstrate et al. (2000) that
overall pooling is preferable to unit-individual estimation when parameters, albeit
being different, are quite similar across units. There is a clear gain when pooling
within clusters for the last three scenarios.

To gain additional understanding of these results, we rewrite model (24) as

yit = c+ δyi,t−1 + βzt + ε̃it, (28)

3The notation is in analogy to subsection 3.2, in particular equation (13).
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where β is the overall mean defined in (25) and ε̃it = εit+zt(β̃i−β) are heterogeneous
errors. Whether for a given data set pooling within clusters is preferable or not,
depends on how much of the variance of ε̃it in (28) is caused by heterogeneity among
the groups. The contribution of heterogeneity usually is measured by the coefficient
of determination D which is defined by the ratio of explained over total variance
(see e.g. Gelfand et al. 1995):

D =
QTz2

QTz2 + σ2
, (29)

where Q is defined in (26) and z2 = 1/T
∑T

t=1 z
2
t . D obviously ranges from 0 to

1. For our synthetical data D increases from 0 to 0.8 within the six scenarios (see
Table 1). If D is small, unobserved heterogeneity is not the cause of variability in
ε̃it in (28). In this case the gain of clustering is negligible and overall pooling yields
the lowest estimation error. The more D moves away from 0, the higher the share of
heterogeneity in explaining the variance of ε̃it, and pooling within clusters becomes
worth the effort.

5.2.3 Forecasting Performance

We proceed with an out-of-sample evaluation, involving the true values yi,T+1, . . . , yi,T+4

in comparison to the forecasts y
(m)
i,T+h defined in Subsection 3.2, equation (16). We

consider for each time series yi in a certain panel the mean squared forecasting error,
for various forecasting horizons h, and aggregate over all time series in the panel:

MSFEh =
1

N

N
∑

i=1

1

M

M
∑

m=1

(y
(m)
i,T+h − yi,T+h)

2. (30)

Table 2 reports for each scenario the average of the mean squared forecasting
errors MSFEh over the 100 simulated panels for h = 1, . . . , 4. We compare pooling
within clusters with overall pooling through the ratio of these averages. A ratio
bigger than 1 favors overall pooling, a ratio smaller than 1 favors pooling within
clusters. Interestingly, when forecasting, one never looses efficiency by using a model
with pooling within clusters. Whereas there is practically no gain in efficiency for
scenarios of little heterogeneity, the gain increases with the amount of heterogeneity.

5.2.4 Selecting the Number of Clusters

The results reported so far indicate that we are likely to gain from introducing
clusters in settings of considerable heterogeneity. For an empirical panel, however,
we are faced with the problem of selecting the number of clusters. We end the
simulation study by evaluating the usefulness of the marginal likelihood as a tool
for choosing the number of clusters. Given the marginal likelihood of each panel
for K = 1, . . . , 4, in each scenario we select K according to the highest marginal
likelihood. Table 3 reports the relative frequencies over the 100 simulated panels of
choosing K = 1, 2, 3, 4.

Evidently, for short panels like the ones considered here, the selected number of
clusters if often smaller than the true number of groups which is equal to one for
D = 0 and equal to three, otherwise.
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Table 2: Comparing pooling within clusters with overall pooling by the ratio of the
average mean squared forecasting errors MSFEh. A ratio bigger than 1 favors overall
pooling, a ratio smaller than 1 favors pooling within K clusters. Q: heterogeneity,
see (26); D: coefficient of determination, see (29).

Q 0 0.00395 0.0188 0.05 0.113 0.3
D 0 0.0500 0.2000 0.4000 0.6000 0.8

K = 2 MSFE1 1 0.998 0.995 0.985 0.958 0.889
MSFE2 1 1 0.999 0.987 0.962 0.896
MSFE3 0.998 1 0.995 0.986 0.961 0.879
MSFE4 1 1 1 0.987 0.963 0.882

K = 3 MSFE1 1 1 0.996 0.985 0.953 0.861
MSFE2 1 0.999 1 0.986 0.956 0.863
MSFE3 1 0.997 0.997 0.987 0.956 0.847
MSFE4 1 1 1 0.989 0.959 0.849

K = 4 MSFE1 0.998 0.999 0.997 0.983 0.95 0.857
MSFE2 1 0.999 0.999 0.985 0.956 0.864
MSFE3 1 0.997 0.995 0.984 0.954 0.847
MSFE4 1 1 1 0.989 0.957 0.85

Table 3: Frequency of selecting a model with K clusters among the 100 simulated
panels.

Q 0 0.00395 0.0188 0.05 0.113 0.3
D 0 0.0500 0.2000 0.4000 0.6000 0.8

K = 1 0.989 0.967 0.533 0.0326 0 0
K = 2 0.0109 0.0326 0.467 0.957 0.087 0
K = 3 0 0 0 0.0109 0.913 0.707
K = 4 0 0 0 0 0 0.293

It is, however, very illuminating, to compare Table 3 with Table 1 and Table 2.
The marginal likelihood is very reliable, when it comes to decide whether overall
pooling is preferable to pooling within clusters in terms of recovering individual
coefficients and forecasting performance. For those scenarios, where overall pooling
is significantly more efficient in recovering the individual parameters (see columns
D = 0 and D = 0.05 in Table 1), K = 1 is practically selected all the time. For the
third scenario, where the efficiency of both methods is comparable, one would select
overall pooling in about 50 percent of the cases. Overall pooling is hardly selected
in those cases where efficiency gains and an improved forecasting performance is
achieved by pooling within clusters.
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6 Regime Switching within Clusters

6.1 Regime Switching Dynamic Panel Data

Since the seminal paper of Hamilton (1989), Markov switching models became very
popular in the analysis of macro-economic time series, as they are rather flexible,
non-linear time series models that are able to capture asymmetric patterns found
in many economic time series such as GDP, investment, and industrial production,
see Kim and Nelson (1999), Kaufmann (2000) and Hamilton and Raj (2002) for a
review.

To capture asymmetry in the panel with a Markov switching model, model (22)
or (23) are extended to:

yit = X1
itα +X2

it(β
G
k + βR

k (Ikt − 1)) + εit, if Si = k. (31)

For each group k, Ikt takes on the value 0 or 1 and follows a hidden two-state Markov
chain with unknown transition matrix ξk. As in Section 5, pooling within clusters
takes place, however pooling is toward different values, depending on the state of
the group-specific indicator Ikt. If Ikt = 1, then pooling is toward βG

k , if Ikt = 0
pooling is toward βG

k − βR
k .

Model (31) combines Quandt (1972) and Goldfeld and Quandt (1973), as we
allow for parameters that are switching between the groups as well as for changes
of the parameters over time. The inclusion of hidden Markov chains to allow for
structural changes in the panel is related to the threshold panel data technique of
Hansen (1999). Pooling under structural breaks, however without including a hidden
Markov chain, is also discussed in Hoogstrate et al. (2000) for a panel of growth
rates of real GDP of 18 OECD countries.

For model (31), the MCMC procedure discussed in Subsection 3.1 needs an
additional step to sample the hidden Markov chain ITk = (Ik0, . . . , IkT ) as well as
the transition matrices ξk = (ξk00, ξ

k
01, ξ

k
10, ξ

k
11) in each group, where ξkjl = Pr{Ikt =

l|Ik,t−1 = j} is the probability that Ikt will be in state l given that Ikt was in state j in
the previous period. We apply here full conditional Gibbs sampling, meaning that
the steps (a) - (c) in Subsection 3.1 are carried out conditional on known values
for (ITk , ξ

k), k = 1, . . . , K. Conditional on the actual value for SN , (ITk , ξ
k) are

independent across the groups. Sampling (ITk , ξ
k) within each group follows closely

the standard MCMC methods developed for a single hidden Markov chain, see,
among many others, Robert et al. (1993), Albert and Chib (1993a) McCulloch and
Tsay (1994), Chib (1996) and Frühwirth-Schnatter (2001b). Specifically, a detailed
description of a sampling scheme for model (31) is found in Kaufmann (2004). A
variant of model (31) where the switching variable is the same for all groups is
applied in Frühwirth-Schnatter and Kaufmann (2004).

It is quite a challenge to obtain the marginal likelihood for this model, as it is not
possible to integrate analytically with respect to all latent variables λN , SN , and IT .
Nevertheless the bridge sampling method suggested in Frühwirth-Schnatter (2004)
may be extended to this model by marginalizing over λN and SN , and applying the
bridge sampling technique to the augmented parameter (IT , α, βG

1 , . . . , β
G
K , β

R
1 , . . . , β

R
K , ξ

1, . . . , ξK , η1, . . . , ηK , σ
2)

in a similar way as in Frühwirth-Schnatter (2001a).
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6.2 Economic Application: Clustering IP Growth Rates

6.2.1 Model specification

The method proposed here is also helpful in finding answers to some questions that
have been raised since the implementation of the single European currency. Are the
business cycles of the euro area countries synchronized? Has this synchronization
also prevailed in the past. Including overseas countries, one might investigate the
relationship between European and overseas countries.

Let yit represent the quarterly growth rate of industrial production of country i in
period t. Some business cycle features common to European and overseas countries
might be captured by specifying model (31):

yit = cGk + δG1,kyi,t−1 + . . .+ δGp,kyi,t−p

+(Ikt − 1)
(

cRk + δR1,kyi,t−1 + . . .+ δRp,kyi,t−p

)

+ εit, Si = k,

where εit ∼ i.i.d. Normal (0, σ2
i ) with σ2

i = σ2/λi. In the investigation, we include
21 countries irrespective of their size, and as usually small or some catching up
countries display higher volatility in their growth rates, we specify country-individual
variances. With this robust specification we can also account for occasional outliers
(due to changing definitions or other unexpected economic breaks).4

We estimate the model for a panel of quarterly growth rates covering the pe-
riod from 1978 through the end of 2002 for all Western European countries and
some overseas countries, in particular Australia, Canada, Japan and the United
States. As such, the general specification of the model is able to capture the fol-
lowing features of business cycles. Each series is demeaned by its sample average
growth rate. The two growth states that we expect to identify should then repro-
duce common periods of above-average and of below-average growth. The group-
and state-specific autoregressive terms might reflect differences in the dynamics of
business cycles across country groups and differences between business cycle phases
within the groups.

To perform model selection, we estimate the marginal likelihood of various speci-
fications combiningK = 1, 2, 3, p = 1, . . . , 4. Table 4 contains the estimates. We also
estimate the marginal likelihood of a specification assuming that the autoregressive
parameters are not group-specific (but switching). The preferred model specification
is the one that allows for two groups with one group- and state-specific autoregressive
parameter. To save space, the marginal likelihoods for the non-switching specifica-
tion with and without group-specific dynamics are not reported here. In any case,
the switching specification is clearly favored and it is interesting to note that, for
all group- and state-specific parameterizations, for a given lag length, i.e. p fixed,
it is always the K = 2 specification that is chosen, and for K fixed, p = 1 always
performs best.

4Another possibility would be to define obvious outliers as missing values. This approach has
been pursued in Frühwirth-Schnatter and Kaufmann (2004); note that this would have to be taken
into account in the estimation of the marginal likelihood, however.
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Table 4: Log of the marginal likelihood of various Markov switching model spec-
ifications with group-specific autoregressive coefficients and without group-specific
autoregressive coefficients in parenthesis.

p = 1 p = 2 p = 3 p = 4
K = 1 -4093.55 -4097.57 -4102.61 -4099.25

(-4094.60) (-4096.07) (-4098.60) (-4091.71)
K = 2 -4061.33 -4074.05 -4081.96 -4084.68

(-4090.48) (-4093.92) (-4096.92) (-4091.66)
K = 3 -4064.67 -4082.89 -4093.65 -4101.89

(-4098.99) (-4098.93) (-4101.59) (-4098.26)

6.2.2 Model identification

To identify the model, two restrictions are necessary. First, the state indicator
in each group is identified by means of the constants. State 1 (Ikt = 0) in each
group will refer to below-average growth periods, i.e. the corresponding identification
restriction is

cRk > 0, ∀k, (32)

Secondly, the groups can be identified by means of the autoregressive parameter
δG1,k:

δG1,1 < δG1,2. (33)

This restriction is motivated by the scatter plot in figure 1 which plots the simulated
group-specific values cGk against δG1,k. Note that the restriction cG1 > cG2 would yield
the same result. Therefore, group 1 will therefore be the group of countries which
grew at a higher unconditional quarterly rate over the observation period and which
at the same time display less persistence in the dynamics than the countries of group
2.

6.2.3 Interpretation

Which countries fall into the tow groups? Figure 2 depicts the posterior group
probabilities for each country. Note the rather clear inference on the classification for
each country, the posterior group probability is 80% in only two cases, Luxembourg
and Australia, otherwise the group probability is nearly 1 for one of the two groups.
Australia, Canada, Japan and the US fall into the second group, and define what we
call the overseas group. Interestingly and in accordance with previous studies, the
United Kingdom (UK) follows more closely the overseas group. Over this long-term
historical perspective, it appears that Italy and Luxembourg were also moving more
closely with overseas countries. In the recent past and due to increased European
integration, one would expect that these two countries would also join the bulk of all
other European countries which is effectively reported in Kaufmann (2004). Quite
remarkably, these countries define a single business cycle pattern already over this
long-term historical perspective.

16



Figure 1: Scatter plot of the simulated group-specific parameters, (cGk against δG1,k).

0 1 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

cG
k

δG 1k

Table 5: Business cycle dating

P T P T P T P T P T P T P T
Europ. 80:1 82:4 85:4 87:1 90:4 93:2 95:2 96:1 98:3 99:1 01:1
Overs. 80:1 80:3 81:3 82:4 90:2 91:1 00:4 01:4
CEPR 80:1 82:3 92:1 93:3
NBER 80:1 80:3 81:3 82:4 90:3 91:1 01:1 01:4

What characterizes the two groups? Let us first look at the inference on the
posterior state probabilities depicted in figure 3. In both groups, the inferred state
indicator is able to identify the recession periods also defined by official dating
institutions like the NBER and the CEPR (see Table 5). As we identify growth cycles
rather than classical cycles only, some periods of growth deceleration are additionally
identified for the European countries. Note the changing synchronization between
the groups. Up to the 1990s, the overseas cycle was leading the European cycle up to
half a year. This leading behaviour disappears during the 1990s, it seems that during
this decade, the European countries were more exposed to and affected by some
specific shocks (German re-unification, Asian and Russian crisis) than the overseas
countries. The recent downturn affected all countries again, which is consistent with
analyzes of Helbling and Bayoumi (2003) and Canova et al. (2004).

Table 6 summarizes the posterior mean of the parameters of interest along with
the confidence interval in parenthesis. In both groups, the mean below-average
growth rate is larger (in absolute terms) than the mean above-average growth rate.
An interesting feature of the European countries (group 1) is the estimated neg-
ative autoregressive coefficient in industrial production growth rates which turns
insignificant during periods of below-average growth rates. This volatile behaviour
of European industrial production series may be the result of different data defini-
tions and handling by the national statistical agencies or simply reflect measurement
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Figure 2: Mean posterior group probabilities P (Si = k|y)

AUT BEL DEU ESP FIN FRA GRC IRL ITA LUX NLD PRT DNK GBR SWE CHE NOR AUS CAN JPN USA
0

0.2

0.4

0.6

0.8

1
S i=1

AUT BEL DEU ESP FIN FRA GRC IRL ITA LUX NLD PRT DNK GBR SWE CHE NOR AUS CAN JPN USA
0

0.2

0.4

0.6

0.8

1

S i=2

error. This issue might be worth pursuing but is beyond the scope of the example.
Finally, the persistence of above-average growth periods is much higher for the over-
seas countries. On average, above-average growth periods last for over 3 years, while
for European countries the duration averages to about 1 and a half year. On the
other hand, below-average growth periods last about half a year longer for European
countries than for overseas countries.

Just to give a notion of the variance spread across the countries, figure 4 depicts
boxplots of the simulated values for the country-specific variances.

7 Heterogeneity within Clusters

7.1 Heterogeneity in Dynamic Panel Data

The models discussed so far assume that no additional heterogeneity is present
within the clusters. The idea of Bayesian clustering may be extended to allow for
heterogeneity within each group. The appropriate group-specific time series model
is then a random effects model:

yit = X1
itα +X2

itβ̃i + εit, (34)

β̃i ∼ Normal (βk, Qk) , if Si = k, (35)

where X1
it and X

2
it may again contain lagged values of yit.

Model (35) is an extension of the general heterogeneity model suggested by
Verbeke and Lesaffre (1996). A special version where X1

it and X
2
it are not allowed

to depend on lagged values of yit has been applied very successfully in marketing
research to deal with unobserved heterogeneity in repeated measurements (Lenk
and DeSarbo 2000). Also Canova (2004) used (35) to find convergence clubs in
macroeconomic panels, see Section 7.2. In (35), pooling within clusters is substituted
by the softer tool of shrinkage within a cluster. The individual coefficients of each

18



Figure 3: Mean posterior state probabilities P (Ikt = 0|y) for European and overseas
countries.
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time series in group k are pulled toward the group mean βk, however the presence
of a priori variation in β̃i around βk allows for differences in the individual β̃i within
the group. The covariance matrix Qk influences the amount of shrinkage taking
place with the limiting case of pooling within clusters if Qk = 0. As the covariance
matrices Q1, . . . , QK are estimated simultaneously with the remaining parameters
and latent indicators, the data tell us how much shrinkage is actually needed for the
time series at hand.

The MCMC procedure discussed in Subsection 3.1 needs to be extended for
model (35) due to the presence of the additional latent parameters β̃N = (β̃1, . . . , β̃N ).
As in Lenk and DeSarbo (2000), step (a) - (c) are carried out conditional on β̃N

and Q1, . . . , QK , and β̃N and Q1, . . . , QK are sampled from the corresponding full
conditional distributions given the actual sampled values of all other parameters and
indicators. It has been demonstrated in Frühwirth-Schnatter et al. (2004) that this
sampler may be slowly mixing, if the within group heterogeneity is small compared
to σ2. It seems preferable to apply a partially marginalized Gibbs sampler where
the random effects β̃N are integrated out, when sampling SN and α, β1, . . . , βK , see
Frühwirth-Schnatter et al. (2004) for more details.

7.2 Economic Application: Convergence Clubs in Income
Data

7.2.1 Model specification and identification

Recent theories of growth and development (Galor 1996 and Temple 1999) suggest
the presence of convergence clubs in income data, i.e. a tendency of the stationary
distribution to cluster around a small number of poles of attractions. Unit specific
characteristics such as the initial condition of income per capita, the dispersion
of the income per capita, as well as geographical location may determine, which
“club ,” i.e. which group the unit will finally join. Empirical studies supporting
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Table 6: K = 2, p = 1: Posterior mean and confidence interval (measured as the
shortest interval containing 95% of the simulated values).

It = 1 It = 0
(cGSi

, δG1,Si
) (cGSi

, δG1,Si
)− (cRSi

, δR1,Si
) (cRSi

, δR1,Si
)

Si = 1 Si = 2 Si = 1 Si = 2 Si = 1 Si = 2
cSi,It

0.66 0.24 -0.91 -1.42 1.57 1.65
(0.45 0.87) (0.11 0.37) (-1.19 -0.67) (-1.87 -0.92) (1.34 1.79) (1.18 2.09)

δ1,Si,It
-0.28 0.26 -0.08 0.30 -0.20 -0.04

(-0.36 -0.20) (0.16 0.35) (-0.17 0.02) (0.11 0.48) (-0.33 -0.08) (-0.26 0.16)
no. countries 14 7

ξSi

00 0.71 0.67
conf.int. (0.55 0.88) (0.46 0.88)
quarters 3.44 3.07

ξSi

11 0.78 0.92
conf.int. (0.63 0.92) (0.85 0.98)
quarters 4.61 12.87

this finding are among others Durlauf and Johnson (1995) and Canova (2004). For
illustration, we reanalyze the data set considered in Canova (2004)5. It consists of
yearly per-capita income data for 144 European NUTS2 units and covers the period
1980 - 1992. Not all indicators which may determine group membership of a certain
region are available at this regional level and therefore using model-based clustering
is quite sensible in this case.

As far as modelling is concerned, we follow closely Canova (2004), but use a
totally different approach toward econometric estimation. In contrast to the multi-
step estimation procedure of Canova (2004), we use here the fully Bayesian approach
discussed in detail in Frühwirth-Schnatter et al. (2004). Following Canova (2004),
we allow for K groups whereby in each group heterogeneity is described by an AR(1)
process with random coefficients:

yit = c̃i + yi,t−1δ̃i + εit, εit ∼ Normal
(

0, σ2/λi
)

, (36)

where β̃i = (c̃i, δ̃i), and

β̃i ∼ Normal (βk, Qk) , if Si = k. (37)

yit is the per-capita income of each region relative to the European average. To
obtain a certain degree of robustness, we assume, λi ∼ Gamma

(

ν
2
, ν

2

)

with ν = 8.

Concerning the prior on SN , we compare the two specifications introduced in
Subsection 2.3, the exchangeable prior (7) which assumes prior ignorance about
group membership, and the logit-type prior (8), which includes the initial per-capita
income as predictor zi for group membership. From Table 7 we find, that a model

5We kindly thank Fabio Canova for making available his data set.
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Figure 4: Country-specific variances, σ2/λi. The box demarcates the lower and the
upper quartile, the whiskers show the extent of the simulated values.
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Table 7: Log of the marginal likelihood of various model specifications differing in
the number of groups and in modelling the prior of group membership

No Clustering
K = 1 2742.5552

Clustering
K = 2 logit prior 2748.7182
K = 2 ignorance prior 2735.8733
K = 3 logit prior 2748.4384

with two groups which includes initial income into the prior of group membership
has highest marginal likelihood among all model specification we considered.

Adding a third group does not lead to an improvement in the marginal likelihood.
Also, the posterior draws in the last row of Figure 5 indicate, that it is not possible to
identify more than two groups. Either the third group is empty, causing the scattered
draws from the prior, or the parameters of the third group are not different from the
parameters of the other two groups, making the posterior draws of the third group
indistinguishable from the other two groups.

To identify the two groups, for a model with K = 2 based on the logit-type
prior (8), we consider the posterior draws in Figure 5, where we find significant
difference in the first diagonal elements of Qk in the two groups, which determines
heterogeneity in the income level c̃i. Therefore we use the constraint

Q1,11 > Q2,11 (38)

for identification, which corresponds to β1 < β2 when K = 2 when prior information
on group membership is included (see Figure 5, second row).

According to the marginal likelihood in Table 7, the initial per-capita income
helps to predict group membership. This is in accordance with the posterior den-
sity p(γ2|y) of the relevant parameter γ2 in the logit prior (8) (see Figure 6, panel
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Figure 5: Posterior draws; first row: K = 2, ignorance prior (7); second row: K = 2,
logit prior (8) including initial per-capita income, last row: K = 3, logit prior (8)
including initial per-capita income

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.2

0

0.2

0.4

0.6

0.8

1

β
1

β 2

Scatterplot of MCMC (boom)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.05

0.1

0.15

0.2

0.25

Q
11

Q
33

Scatterplot of MCMC 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

β
1

β 2

Scatterplot of MCMC (boom)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.05

0.1

0.15

0.2

0.25

Q
11

Q
33

Scatterplot of MCMC 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.2

0

0.2

0.4

0.6

0.8

1

β
1

β 2

Scatterplot of MCMC (boom)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.05

0.1

0.15

0.2

0.25

Q
11

Q
33

Scatterplot of MCMC 

22



Figure 6: Posterior of γ2 in the logit prior (8) and resulting prior group probability
given initial per-capita income
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Figure 7: Posterior Classification of the regions, ordered according to initial per-
capita income; left hand side: classification under the logit prior (8) including initial
per-capita income, right hand side: classification under the ignorance prior (7)
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(a)), which is strongly shifted away from 0. Nevertheless, the resulting prior group
probability Pr{Si = 1|γ1, γ2, zi} depicted in panel (b) of Figure 6, nicely shows that
initial income is not an absolute criterion for discrimination between the two groups.

It is illuminating to analyze the posterior classifications for each region in Figure 7
under the two priors. Under the ignorance prior, there is only weak information for
the presence of two groups, whereas including initial per-capita income helps to
identify two groups. These findings are in accordance with the marginal likelihoods
in Table 7 which prefers K = 1 over K = 2 for the ignorance prior, but prefers
K = 2 over K = 1 for the logit prior.
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Table 8: Posterior estimates; estimates for K = 2 are based on the logit-type prior
E(c̃i) E(δ̃i) Q11 Q12 Q22

K = 1 -0.0184 0.9330 0.0044 -0.0032 0.0377
K = 2, Group 1 -0.4971 0.3231 0.0565 0.0279 0.0684
K = 2, Group 2 -0.0139 0.9281 0.0069 0.0005 0.0273

7.2.2 Interpretation

Posterior estimates based on the identification constraint (38) are summarized in
Table 8. While Canova (2004) identified four convergence clubs we are able to
identify two of them. If we compare the clusters, it turns out that group 1 and
group 2 of Canova (2004) (the first 23 units) nearly subsume in our group 1; group 3
and group 4 (units 24-144) gather into group 2 of our posterior inference (see table 1
of Canova 2004). Our mean posterior estimates of the intercept and the persistence
in group 1 and 2 nearly correspond to the mean of both posterior estimates of group
1 and 2, and group 3 and 4 of Canova (2004), respectively. Group 1 has a lower
mean intercept relative to average and a lower persistence coefficient than group 2.
Concerning the dispersion for the coefficients, our estimated dispersion is lower for
the parameters of group 2, while for group 1, the dispersion is again approximately
the mean of the dispersion for the parameters of group 1 and 2 parameters in Canova
(2004).

Therefore, the interpretation of the results can be made along the lines of Canova
(2004). We find two convergence clubs with different speeds of adjustments (1− δ̃i)
whereby group 1 is moving more quickly to the group’s steady state. The higher dis-
persion in this group reflects the often very volatile catching-up process of countries
having a below-average income initially (see Figure 2 in Canova 2004). The signifi-
cant difference in the intercept c̃i and persistence δ̃i between the groups also confirm
the evidence of two convergence clubs. In the long run, the first group’s mean steady
state is expected to be approximately half (48%) of the regional average.

8 Concluding Remarks

In the present paper we propose to use the attractiveness of pooling time series
to obtain posterior inference but without restricting to overall pooling. This means
that within a panel of relatively short time series, only those which display “similar”
dynamic properties are pooled to estimate the parameters of the generating process.
Rather than forming the grouping prior to estimation, we propose to estimate the
appropriate grouping along with the model parameters. This is achieved within the
Bayesian framework applying Markov chain Monte Carlo simulation methods.

We also discuss two possibilities of designing the prior assumption on each se-
ries’ group membership: Prior ignorance about group membership is reflected in
a probability distribution which is proportional to the groups’ relative size within
the panel and unit-specific prior information on group membership reflected in a
logit-type prior distribution. After estimation, we suggest to use explorative tools
like scatter plots and marginal distributions to perform model identification. Model
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selection, in particular with respect to the appropriate number of groups, is based
on marginal likelihoods.

Three applications illustrate the usefulness of the method. First, a simulation
study demonstrates that efficiency gains in estimation and forecasting may be re-
alized when pooling time series with similar dynamics. The simulation study also
reveals that pooling time series in different clusters improves efficiency, if there is
a minimum heterogeneity between clusters. In the second application we introduce
Markov switching within the clusters and investigate a panel of industrial produc-
tion growth series of all Western European countries and Australia, Canada, Japan
and the US. We find two groups of countries and the identified below-average growth
states of each group relate to the European in the first group and to the overseas
business cycle in the second group, respectively. Finally, we introduce heterogeneity
within clusters, whereby pooling is substituted by shrinkage within each cluster. We
apply the method to the data set used in Canova (2004) and find similar results on
convergence clubs in regional income per capita series.

Overall, the method proposed here relates to other approaches of dimension
reduction as in Forni, Hallin, Lippi, and Reichlin (2000), Stock and Watson (2002)
and Canova and Ciccarelli (2004).

We want to conclude the paper by discussing potential extensions of our model.
We see potential extensions to models with conditional distributions that are non-
normal by the nature of the observations yit, an example being panels where yit is a
binary indicator or a categorial variable. Clustering of non-normal time series could
be carried out as outlined in this paper, with pooling all time series within a group
using a logit-, probit- or multinomial model. Such a model could be applied to a
large panel of firms’ credit risk data.
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