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Abstract

We considered a non-centered parameterization of the standard random-
effects model, which is based on the Cholesky decomposition of the variance-
covariance matrix. The regression type structure of the non-centered param-
eterization allows to choose a simple, conditionally conjugate normal prior on
the Cholesky factor. Based on the non-centered parameterization, we search
for a parsimonious variance-covariance matrix by identifying the non-zero el-
ements of the Cholesky factors using Bayesian variable selection methods.
With this method we are able to learn from the data for each effect, whether
it is random or not, and whether covariances among random effects are zero or
not. An application in marketing shows a substantial reduction of the number
of free elements of the variance-covariance matrix.

Key words: covariance selection, random effects models, Markov chain
Monte Carlo, fractional prior, variable selection

1 Introduction

This article addresses various problems associated with estimating the variance-
covariance matrix Q of the random effects within the framework of hierarchical
linear models. A computational challenge is to select a suitable parameterization of
the variance-covariance matrix, which typically has a large number of parameters,
that are related by the very complex constraint that the resulting matrix needs to
be positive definite. Within the Bayesian approach we pursue in the present article,
a further important issue is prior elicitation for the variance-covariance matrix of
the random effects. Finally, for practical applications of the random-effects model,
model selection deserves consideration, as one would like to learn from the data, if
actually all effects are random.

A particularly useful parameterization of variance-covariance matrices is based
on the Cholesky decomposition of either Q or Q−1. As pointed out by (Pinheiro
and Bates 1996), this parameterization is of considerable numerical convenience as
is involves unconstrained parameters, only. For directly observed data, arising from
a multivariate normal distribution with unknown variance-covariance matrix Q, it
is usual to consider the Cholesky decomposition Q−1 = CSC

′

, with S being a diag-
onal matrix and C being a lower triangular matrix with ones on the diagonal. This
parameterization is preferred, because zeros in the Cholesky factors of Q−1 may be
interpreted as conditional independence between the corresponding variables, see
(Dempster 1972), (Pourahmadi 1999), (Smith and Kohn 2002), and (Wong, Carter,
and Kohn 2003), among others. Based on this parameterization, (Smith and Kohn
2002) made two important contributions to variance-covariance estimation for mul-
tivariate, normally distributed data, first by realizing that the natural conjugate
conditional prior for the Cholesky factors of Q−1 is a normal distribution, and sec-
ond by introducing a Bayesian variable search method for parsimonious variance-
covariance matrices. In this article we going to generalize the work of (Smith and
Kohn 2002), in order to deal with data arising from a hierarchical model, rather
than the multivariate normal distribution.

Within the framework of hierarchical models, it is usual to work with the Cholesky
decomposition of Q, as illustrated by (Lindstrom and Bates 1988), (Meng and van
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Dyk 1998), and (Chen and Dunson 2003), among others. Following this tradition,
we will consider in this article a parameterization of the variance-covariance matri-
ces based on the Cholesky decomposition Q = CC

′

with a lower triangular matrix
C. This Cholesky decomposition of Q leads in a natural way to a non-centered
parameterization of a random-effects model, where all free elements of C appear as
unknown coefficients in a regression type model. This parameterization is slightly
different from the non-centered parameterization considered by (Meng and van Dyk
1998), and (Chen and Dunson 2003). With our parameterization, we are able to
introduce a new prior for the variance-covariance matrix of the random effects, by
choosing a conditionally conjugate normal prior for all elements of the Cholesky
factors C in the decomposition Q = CC

′

.
The choice of an appropriate prior on Q is rather challenging for hierarchical

models, resulting from the need to estimate the variance-covariance matrix of la-
tent, rather than directly observed variables. The most commonly used approach is
to work with a conditionally conjugate inverted Wishart prior on Q, as this allows
a straightforward implementation of a Gibbs sampling scheme for Bayesian estima-
tion, and automatically leads to positive definite variance-covariance matrices. A
problem with the conditional conjugate inverted Wishart prior, however, is that the
prior parameters may be extremely influential on posterior inference, especially with
increasing dimension of Q, see in particular (Natarajan and McCulloch 1998) and
(Natarajan and Kass 2000). Another problem is that certain inverted Wishart pri-
ors, for instance the improper prior where both prior parameters are equal to zero,
lead to improper posterior densities, see (Hobert and Casella 1996), (Natarajan and
McCulloch 1998) and (Sun, Tsutakawa, and He 2001).

Numerous alternatives to the inverted Wishart prior have been suggested in the
literature, like selecting a uniform prior on the shrinkage factor appearing in the fil-
tered estimate of each random effect, see (Daniels 1999), (Natarajan and Kass 2000)
and (Everson and Morris 2000). Many interesting non-conjugate priors have been
constructed by considering different parameterizations of a variance-covariance ma-
trix. Some approaches focus on parameterization in terms of eigenvalues and eigen-
vectors, and select non-conjugate priors involving these quantities, see in particular
(Leonard and Hsu 1992), (Yang and Berger 1994), (Chiu, Leonard, and Kam-Wah
1996), and (Daniels and Kass 1999). An alternative line of research focuses on the
statistically motivated decomposition Q = SRS of a variance-covariance matrix Q,
with S being a diagonal matrix of standard deviations and R being the correla-
tion matrix. Whereas it is possible to assume a conjugate inverted gamma prior
for the standard deviations, non-conjugate priors have to be chosen for the corre-
lation coefficients, see (Daniels and Kass 1999), (Barnard, McCulloch, and Meng
2000), (Daniels and Kass 2001), and (Liechty, Liechty, and Müller 2004) for various
suggestions.

Although lack of conjugacy nowadays is no problem in a Bayesian analysis, poste-
rior simulations from hierarchical linear models with non-conjugate priors on Q may
cause computational difficulties resulting from the need to produce positive definite
matrices, see (Liechty, Liechty, and Müller 2004) for a recent discussion. In contrast
to most non-conjugate priors, the prior suggested in this paper automatically leads
to non-negative definite variance-covariance matrices, and allows for Bayesian esti-
mation using straightforward Gibbs sampling. Whereas this prior is as convenient
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as the inverted Wishart prior, we demonstrate by means of a simulation study that
it is less influential on posterior inference than the inverted Wishart prior.

As a second contribution of the paper, we aim for parsimonious variance-covariance
selection, rather than estimating a full rank variance-covariance matrix of the ran-
dom effects, as is usually done. Little work, has been done for parsimonious variance-
covariance selection for hierarchical models, exceptions being (Albert and Chib 1993)
and (Chen and Dunson 2003). As in these papers, we propose a data-driven method
to achieve parsimony in a variance-covariance matrix, by identifying zeros in the
Cholesky decomposition of Q. Whereas (Albert and Chib 1993) and (Chen and
Dunson 2003) perform variable selection only on the free elements of the diagonal
matrix S in the Cholesky decomposition Q = SLL′S, where L is a lower triangular
matrix with ones in the diagonal, we consider variable selection on all free elements
in the matrix C appearing in the Cholesky decomposition Q = CC ′. To some ex-
tend, we also follow the seminal work of (Smith and Kohn 2002) and (Wong, Carter,
and Kohn 2003), who identify zeros in the Cholesky factors C of the decomposition
Q−1 = CSC

′

. However, we operate on the Cholesky factors of Q rather than on
Q−1. It will be shown, that our approach allows to shrink random effects toward
fixed ones, a feature that would not result with a direct application of (Smith and
Kohn 2002) and (Wong, Carter, and Kohn 2003) to the matrix Q−1 appearing in
a hierarchical model. We will show that a straightforward MCMC scheme for joint
variable selection and parameter estimation is available, that involves sampling from
standard densities, only.

The rest of the article is organized as follows. In Section 2 we define a parsi-
monious representation of the random-effects model. In Section 3 we specify the
MCMC sampling steps. In Section 4 we describe the improvements of the new al-
gorithm in comparison to existing algorithms for simulated data and we apply the
algorithm to real data coming from marketing in Section 5.

2 Model Specification and Prior Distributions

2.1 The Non-centered Parameterization based on the Cholesky

Decomposition

For each subject i, i = 1, . . . , N we write the random-effects model in the following
way:

yi = Z1
i α + Z2

i β
G + Z2

i Cz̃i + εi, εi ∼ NormalTi

(

0, σ2
εI
)

, (1)

z̃i ∼ Normald (0, I) . (2)

The vector yi contains Ti observations and Z1
i is a design matrix of dimension Ti×df

for the df -dimensional vector α containing the fixed . Z2
i is the Ti × d-dimensional

design matrix for the d-dimensional vector of random effects. C is a lower triangular
square matrix with d rows. The quantities α, βG, C, and σ2

ε are unknown parameters
that need to be estimated from the data. By rewriting (1) as

yi = Z1
i α + Z2

i (β
G + Cz̃i) + εi,
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it is easy to verify, that model (1) and (2) is equivalent to the well-known random-
effects model:

yi = Z1
i α + Z2

i βi + εi, (3)

βi = βG + ui, ui ∼ Normald (0, Q) , (4)

where the random effects are normally distributed with mean parameter βG and
variance-covariance matrix Q = CC ′. Evidently, parameterization (1) and (2) is
based on the following Cholesky decomposition of the variance-covariance matrix
Q:

Q = CC ′.

Parameterization (3) and (4) is known as the centered parameterization, whereas
in (1) and (2) the random-effects model is formulated in the non-centered parame-
terization, introduced by (Meng and van Dyk 1998), and studied in much detail in
(van Dyk and Meng 2001). The non-centered parameterization defined in (1) and
(2), however, is slightly different from the parameterization appearing in the work
of (Meng and van Dyk 1998), which reads

yi = Z1
i α + Z2

i βG + Z2
i LSz̃i + εi, εi ∼ NormalTi

(

0, σ2
εI
)

,

and is based on the Cholesky decomposition Q = LSS ′L′, where L is a lower trian-
gular matrix with ones in the diagonal and S is a diagonal matrix.

2.2 Parsimonious Variance-Covariance Matrices for Hierar-

chical Linear Mixed Models

Statistical inference for the variance-covariance matrix of a random-effects model
is usually based on the estimation of a full rank variance-covariance matrix of the
random effects. In contrast to that, we follow the principle of parsimony with respect
to Q. Parsimony is achieved by restricting certain elements appearing in the matrix
of the Cholesky factors C of Q to be 0. We let the data tell us which elements this
should be.

2.2.1 Parsimonious Variance-Covariance Matrices through Variable Se-

lection

Following the seminal work of (Smith and Kohn 2002), we treat the problem of
finding those elements of C that are non-zero as a variable selection problem and
pursue a Bayesian approach. We introduce for each element Clm, m = 1, . . . , d, l =
m, . . . , d, an indicator γlm which takes the value 1, if Clm 6= 0, and 0 otherwise:

Clm = 0, iff γlm = 0,
Clm 6= 0, iff γlm = 1.

(5)

Note that Clm is 0 by definition for all 1 ≤ l < m. Thus we actually need only a total
of d(d + 1)/2 indicators to represent all possible variance-covariance matrices. We
will use γ to denote the collection of all d(d + 1)/2 indicators γlm. If all indicators
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are equal to 1, all d(d + 1)/2 elements of C are unconstrained and we are actually
dealing with an arbitrary, positive definite variance-covariance matrix Q.

Our approach of choosing parsimonious variance-covariance matrices for a hi-
erarchical model reduces the problem of variance-covariance selection to the more
common problem of Bayesian variable selection in multiple regression models, as
reviewed in (George and McCulloch 1997). This relation becomes more evident by
rewriting the observation equation (1) as follows. Depending on the indicators vec-
tor γ, various elements of C will be restricted to 0, whereas the remaining, non-zero
elements of C are treated as an unknown parameter, denoted by Cγ . The parameter
vector Cγ is constructed from C by stacking the non-zero elements of C column by
column. For known random effects z̃i, observation equation (1) may be regarded as
following regression model in Cγ:

yi = Z1
i α + Z2

i βG + W γ
i Cγ + εi, (6)

where the predictor matrix W γ
i depends on the design matrix Z2

i , and on the latent
random effects z̃i. We will provide details of how W γ

i is constructed at the end of this
subsection. Like in standard Bayesian variable selection, elements in the predictor
matrix W γ

i will be included or deleted, depending on γ. As a notable difference,
however, variable selection in (6) is with respect to predictors that are latent, rather
than directly observed.

For a fixed value of γ, W γ
i is constructed from the design matrix Z2

i and the latent
random effects z̃i in the following way. For each column C·m of C, the predictor
matrix W γ

i in (6) contains a sub-matrix W γ·m

i , which corresponds to all non-zero
elements of the column C·m:

W γ
i =

(

W γ·1

i z̃i1 · · · W γ·d

i z̃id

)

.

z̃im, m = 1, . . . , d refers to the m-th element of the latent variable z̃i. For each
column C·m of C, the sub-matrix W γ·m

i is constructed as follows. If all elements
in column C·m were unrestricted, then W γ·m

i would be equal to the matrix Z2
i . To

account for the zero elements in column C·m, the following columns of Z2
i have to

be deleted in order to obtain W γ·m

i : the first m − 1 columns (remember that C is
lower triangular by definition) as well as those columns l, where Clm is restricted to
0 (γlm = 0).

2.2.2 Related Work

Our approach of finding a parsimonious variance-covariance matrix through Bayesian
variable selection is related to (Smith and Kohn 2002) and (Chen and Dunson 2003),
but differs from these papers in various important aspects.

By performing variable selection on the Cholesky decomposition of Q, our ap-
proach is substantially different from (Smith and Kohn 2002), who use the Cholesky
decomposition Q−1 = LSL′ of the inverse of Q where L is a lower triangular ma-
trix with ones in the diagonals and S is a diagonal matrix of full rank. (Smith
and Kohn 2002) introduce only d(d − 1)/2 indicators γlm to perform variable se-
lection on the strictly lower diagonal elements of L, whereas the elements of S are
assumed to be positive. If all indicators are equal to 1, all d(d − 1)/2 elements
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of L are unconstrained, leading to the estimation of an arbitrary positive definite
variance-covariance matrix Q as in our approach. If all indicator are equal to 0,
however, Q is shrunk toward the diagonal matrix S−1. Thus a direct application of
the (Smith and Kohn 2002) approach to the inverse of the variance-covariance ma-
trix of a random-effects model would not allow to reduce any of the random effects
to a fixed one.

Our own approach is more flexible in this respect. As we work with the Cholesky
decomposition of Q rather than Q−1, it is possible to reduce some or all random
effects to fixed ones, by choosing the indicators γlm appropriately. From

βil = βG
l +

l
∑

m=1

Clmγlmz̃im, (7)

where z̃il ∼ Normal (0, 1) are l = 1, . . . , d independent standard normals, we find
that the l-th random effect βil is shrunk toward a fixed effect with coefficient βG

l , if
all elements in l-th line of C are equal to 0. In this case, the rank of Q is reduced
by one. If all indicators were 0, then Q is equal to a zero matrix, and all random
effects are shrunk toward an effect with fixed coefficient.

Our approach is related to (Chen and Dunson 2003), who apply a similar but
more specific approach to the Cholesky decomposition Q = SLL′S, where L is
a lower triangular matrix with ones in the diagonal and S is a diagonal matrix.
In order to reduce random effects to fixed ones, they allow the diagonal elements
of S to have a positive probability of being zero, whereas no variable selection is
performed for the elements of L. Thus our approach is more general than theirs, as
we introduce variable selection also on the lower diagonal elements of the Cholesky
factor, and therefore are able to capture the finer structure of Q especially in higher
dimensional problems.

2.3 Prior Distributions

2.3.1 Defining the prior for the indicators γ

For Bayesian estimation one has to select the prior of the indicator variables γlm.
Conditional on a known value τ ∈ [0, 1], the indicator variables γlm are assumed to
be apriori independent with

Pr{γlm = 1|τ} = τ.

This implies that for fixed τ the number of non-zero elements in C follows the
binomial distribution Bino (ds, τ), where ds = d(d + 1)/2 is the total number of free
parameters in C. For variance-covariance matrices Q of moderate size this density is
fairly non-informative on the number of non-zeros elements, whereas with increasing
number of elements this density approaches a normal distribution with mean dsτ
and variance dsτ(1− τ) and the apriori probable number of non-zero elements will
crucially dependent on τ .

To reduce the sensitivity with respect to choosing τ , we consider it as a hyper-
parameter and use a uniform prior for τ on [0, 1] as in (Smith and Kohn 2002). If
we integrate the hyperparameter τ out of the analysis, we obtain:

p(γ) =
∫

p(γ|τ)p(τ)dτ = Beta(qγ, ds − qγ + 1). (8)
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Here, Beta(·, ·) is the beta function, qγ is the number of non-zero elements in C.
Note that the marginal prior (8) implies apriori dependence between the elements
of γ.

2.3.2 Selecting the Prior of the Variance-Covariance Matrix of the Ran-

dom Effects

A convenient starting point for prior selection of the variance-covariance matrix of
the random effects under the Cholesky decomposition is model (6) which is a linear
normal regression model in Cγ . Conditional on knowing the indicator variable γ and
the standardized random effects z̃N , we choose as prior for the non-zero elements
Cγ of the Cholesky decomposition C of Q, the conditionally conjugate normal prior

p(Cγ|σ2
ε) ∼ Normal (a0, σ

2
εA0) . (9)

This conditionally conjugate normal prior leads to a normal posterior distribution

p(Cγ |z̃N , σ2
ε , α, βG, y) ∼ Normal (aN , σ2

εAN) , (10)

where aN and AN are given by:

aN = AN

(

N
∑

i=1

(W γ
i )′(yi − Z1

i α− Z2
i βG) + A−1

0 a0

)

,

A−1
N =

N
∑

i=1

(W γ
i )′W γ

i + A−1
0 .

This prior is related to the one introduced in (Smith and Kohn 2002), who real-
ized that for data from a multivariate normal distribution with unknown variance-
covariance matrix Q, the normal distribution is a natural conjugate conditional prior
for the free elements of the lower triangular matrix L in the Cholesky decomposition
Q−1 = LSL′. In the context of random-effects models, a conditionally conjugate
normal prior for the Cholesky factors of the variance-covariance matrix Q was in-
dependently suggested by (Tüchler and Frühwirth-Schnatter 2003) and (Chen and
Dunson 2003).

It is worth mentioning that the prior we consider in this article is different from
the prior of (Chen and Dunson 2003), who considered the Cholesky decomposition
Q = SLL′S, in various aspects. (Chen and Dunson 2003) use a conditionally normal
prior on the free elements of the lower triangular matrix L, and consider a zero
inflated half normal distribution for the free elements in the diagonal matrix S,
consisting of a mass point at zero (with probability 1 − τ) and a normal density
with mean a0 and variance A0 truncated below zero. Their prior may be formulated
in terms of d variable indicators γl, l = 1, . . . , d, for the d free elements of S, in which
case τ is found to be the prior probability of γl = 1. (Chen and Dunson 2003) hold
τ fixed for posterior inference. As discussed above, fixing τ will be of considerable
influence on posterior inference within increasing size of Q, whereas our prior is more
flexible. Second, we include the diagonal into the Cholesky decomposition, which
allows to define a normal prior on all non-zero elements of C, not only on the lower
triangular matrix L.
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2.3.3 Remaining Priors

It remains to choose a prior for the mean parameters (α, βG) and the observation er-
ror variance σ2

ε . For the mean parameters (α, βG) we assume a joint Normal (b0, B0)
prior distribution, whereas the observation error variance σ2

ε is a priori InvGamma (s0/2, S0/2).

2.3.4 Prior Selection Without Variable Selection

The conditionally conjugate normal prior on the free elements of the Cholesky fac-
tors, introduced in Subsection 2.3.2 in the context of variance-covariance selection,
is also of interest for the standard normal random-effects model, without doing vari-
able selection on the elements of C. The conditionally conjugate normal prior on
the d(d + 1)/2 free elements of C, together with the non-centered parameterization
(1) and (2), provides a convenient alternative to the inverted Wishart prior applied
together with the centered parameterization (3) and (4). We will demonstrate in
Section 3, that a straightforward Gibbs sampling scheme is available for this new
prior, whereas the simulation study in Section 4 demonstrates, that this prior is less
influential on posterior inference

3 MCMC Estimation

We introduce an MCMC scheme which simultaneously carries out model selection
and estimation of all unknown parameters. MCMC estimation of random effects
model without variable selection was considered by numerous authors. The param-
eterization of the random-effects model turns out to be of enormous importance for
the convergence behavior of the MCMC chains. The influence of the parameteriza-
tion of the mean on the convergence behavior of the straightforward Gibbs sampler
was analyzed by (Gelfand, Sahu, and Carlin 1995) and (Papaspiliopoulos, Roberts,
and Skold 2003) for normal hierarchical linear models. Non-centering both of the
mean and the variance-covariance matrix is investigated in (Meng and van Dyk
1998) and (van Dyk and Meng 2001) for random-effects models and in (Frühwirth-
Schnatter 2004) for more general state space models. In these articles, a criterion
depending on the amount of heterogeneity captured by the random effects in com-
parison to the model error was established to choose the optimal parameterization
when applying a full conditional Gibbs sampler. An algorithm that is insensitive
towards the parameterization of the mean was introduced for mixtures of random
effects models in (Frühwirth-Schnatter, Tüchler, and Otter 2004). In the present
article, we make use of the findings of (Frühwirth-Schnatter, Tüchler, and Otter
2004), and samples the fixed effects and the mean parameters efficiently without
conditioning on the random effects.

The non-centered parameterization based on the Cholesky decomposition, to-
gether with the priors defined in Section 2, give way to the following convenient
Gibbs sampling scheme involving standard densities, only:

(i) Sample γlm|γ\lm, α, βG, σ2
ε , y, where γ\lm denotes the indicator vector γ without

the element γlm, from a discrete density with two realizations.

(ii) Sample Cγ |α, βG, z̃N , σ2
ε , y from a normal distribution.
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(iii) Sample α, βG|Cγ, σ2
ε , y from a normal distribution.

(iv) Sample z̃N |α, βG, Cγ, σ2
ε , y from a normal distribution.

(v) Sample σ2
ε |α, βG, z̃N , y from an inverted Gamma distribution.

Subsequently, we will discuss each step in more detail.

3.1 Sampling the Indicators and the Cholesky Factors

The most crucial part of our algorithm is sampling the parsimonious variance-
covariance matrix of the random effects. Based on the non-centered parameteri-
zation, we sample the Cholesky factor C of the variance-covariance matrix Q rather
than the matrix itself in two steps. First, we sample the indicator for each of the
d(d + 1)/2 free elements of the Cholesky factor from the marginal conditional den-
sity p(γlm|γ\lm, α, βG, σ2

ε , y), where γ\lm denotes the indicator vector γ without the
element γlm. Then conditional on knowing γ, all non-zero elements Cγ of C are
sampled from the appropriate distribution.

Note that the density p(γlm|γ\lm, α, βG, σ2
ε , y) is marginalized over the Cholesky

factors in order to avoid the computational problems discussed e.g. in (George and
McCulloch 1997). To implement this step, the marginal likelihood p(y|γ, α, βG, z̃N , σ2

ε)
where Cγ is integrated out is required. As will be shown below, this quantity is
readily available in closed form under an informative prior on Cγ, whereas further
considerations are necessary under non-informative priors.

3.1.1 The marginal likelihood function under informative priors

The marginal likelihood p(y|γ, α, βG, z̃N , σ2
ε) where Cγ is integrated out, is given by:

p(y|γ, α, βG, z̃N , σ2
ε) =

∫

p(y|γ, α, βG, z̃N , σ2
ε , C

γ)p(Cγ|σ2
ε)dCγ, (11)

where p(y|γ, α, βG, z̃N , σ2
ε , C

γ) is obtained as the following quadratic form:

p(y|γ, α, βG, z̃N , σ2
ε , C

γ) = (12)
(

1

2πσ2
ε

)NT/2

exp

(

−
1

2σ2
ε

N
∑

i=1

||yi −W γ
i Cγ − Z1

i α− Z2
i β

G||2

)

.

||x||2 =
∑

j x2
j is the L2-norm of a vector x = (x1 · · ·xp)

′.
For a proper normal prior p(Cγ|σ2

ε), where in (9) |A0| > 0, the marginal likelihood
(11) is a well-defined quantity:

p(y|γ, α, βG, z̃N , σ2
ε) = (13)

|AN |
−1/2

|A0|−1/2

(

1

2πσ2
ε

)NT/2

exp

(

−
1

2σ2
ε

(Sγ + (aN − a0)
′A−1

0 (aN − a0))

)

,

where

Sγ =
N
∑

i=1

||yi −W γ
i aN − Z1

i α− Z2
i β

G||2. (14)

aN and AN are the moments of the posterior p(Cγ|z̃N , σ2
ε , α, βG, y) given in (10).
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3.1.2 The marginal likelihood function under improper priors

Like in variable selection problems for the standard regression model, the specific
choice of the prior moments a0 and A0 is likely to be rather influential on the pos-
terior of the model indicator γ, see (O’Hagan 1995) and (George and McCulloch
1997). Furthermore, the marginal likelihood (13) is not well-defined under the im-
proper prior p(Cγ|σ2

ε) ∝ c, which corresponds to choosing a0 = 0, A−1
0 = 0 in (9).

To obtain a meaningful marginal likelihood also under the improper prior p(Cγ|σ2
ε) ∝

c, we extend the fractional prior approach introduced by (O’Hagan 1995) to the
present context of selecting the prior for the variance-covariance matrix of the ran-
dom effects in hierarchical linear models. Fractional priors were first introduced
to Bayesian estimation of variance-covariance matrices by (Smith and Kohn 2002),
who use a fractional prior for the non-zero elements of the off-diagonal elements of
L in the Cholesky decomposition Q−1 = LSL′.

The basic idea of the fractional prior is to use part of the likelihood to construct
a proper prior for model selection under the improper prior p(Cγ |σ2

ε) ∝ c:

p(y|γ, z̃N , σ2
ε , α, βG, Cγ)1−bp(y|γ, z̃N , σ2

ε , α, βG, Cγ)b (15)

∝ p(y|γ, z̃N , σ2
ε , α, βG, Cγ)1−bp(Cγ|z̃N , σ2

ε , α, βG, yTN×b),

where b lies between 0 and 1. p(Cγ|z̃N , σ2
ε , α, βG, yTN×b) is the fractional prior

obtained from normalizing p(y|γ, z̃N , σ2
ε , α, βG, Cγ)b:

p(Cγ|z̃N , σ2
ε , α, βG, yTN×b) = p(y|γ, z̃N , σ2

ε , α, βG, Cγ)b/p(yTN×b),

p(yTN×b) =
∫

p(y|γ, z̃N , σ2
ε , α, βG, Cγ)bdCγ.

The fractional prior is easily shown to be the density of a multivariate normal
distribution,

p(Cγ|z̃N , σ2
ε , α, βG, yTN×b) ∼ Normal

(

aI
N , σ2

εA
I
N/b

)

, (16)

where aI
N and AI

N are equivalent the moments of the conditional posterior
p(Cγ|z̃N , σ2

ε , α, βG, y), based on the improper prior a0 = 0, A−1
0 = 0. Thus the

fractional prior is centered in the posterior mean, obtained under an improper prior,
however with the posterior variance-covariance matrix being multiplied by the factor
1/b.

To combine the fractional prior with the information in the data in a variable
selection context there are basically two routes to follow. The first approach, pursued
by (Smith and Kohn 2002), is to combine the fractional prior with the complete
likelihood p(y|γ, α, βG, z̃N , σ2

ε , C
γ). This means, however, using a fraction of the

data, namely 100b percent, twice (both in the prior and in the likelihood).
Following (O’Hagan 1995), we purse the alternative approach, where informa-

tion used for constructing the prior does not reappear in the likelihood. We de-
fine what could be called a fractional marginal likelihood for model selection in
random-effects models, by combining the fractional prior with the remaining likeli-
hood p(y|γ, α, βG, z̃N , σ2

ε , C
γ)1−b:

p(y|γ, α, βG, z̃N , σ2
ε) =

∫

p(y|γ, α, βG, z̃N , σ2
ε , C

γ)(1−b)p(Cγ|z̃N , σ2
ε , α, βG, yTN×b)dCγ, (17)
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where p(Cγ|z̃N , σ2
ε , α, βG, yTN×b) is equal to the fractional prior (16). As only

quadratic forms in Cγ are involved both in the fractional prior as well as in the
conditional likelihood, it is possible to carry out integration with respect to Cγ

explicitly in (17):

p(y|γ, α, βG, z̃N , σ2
ε) = bpγ/2

(

1

2πσ2
ε

)NT (1−b)/2

exp

(

−
(1− b)

2σ2
ε

Sγ

)

, (18)

where pγ = dim(Cγ) and Sγ is given by (14).
Following (Berger and Pericchi 1996) we choose the fraction b for the fractional

prior equal to m
N ·T

, where m is the dimension of Cγ for the larger of the two compared
models plus 1.

3.1.3 Sampling the indicators

To sample the indicators γlm, we use exactly the same algorithm as in (Smith and
Kohn 2002). Generate u from a uniform distribution on [0, 1]. Let γold

lj denote the
current value of γlm. Then,

(i-1) if γold
lm = 1 and u > p(γlm = 0), set γnew

lm = 1;

(i-2) if γold
lm = 0 and u > p(γlm = 1), set γnew

lm = 0.

(i-3) if γold
lm = 1 and u ≤ p(γlm = 0), generate v ∼ U [0, 1] and set γnew

lm = 0,
if v ≤ l(γlm = 0)/(l(γlm = 0) + l(γlm = 1));

(i-4) if γold
lm = 0 and u ≤ p(γlm = 1), generate v ∼ U [0, 1] and set γnew

lm = 1,
if v ≤ l(γlm = 1)/(l(γlm = 0) + l(γlm = 1)).

Here p(γlm = i) = Pr{γlm = i|γ\lm}, i = 0, 1 is the conditional prior of γlm. l(γlm = i)
is equal the marginal likelihood p(y|γ, α, βG, z̃N , σ2

ε) defined in (18) where γlm either
takes the value i = 0 or i = 1. As p(γlm = 0) ≈ τ̂γ , the fraction of positive
elements of C, we find the following: step (i-1) will occur most often, if this fraction
is small; step (i-2) will occur most often, if this fraction is large; the other step
occur frequently, if this fraction is about 0.5. Note that in cases (i-1) and (i-2)
only the prior has to be calculated, which is computationally cheap compared to the
likelihood appearing in the other two steps.

3.1.4 The conditional prior of the indicators

To generate from γlm|γ\lm, α, βG, C, σ2
ε , y, we need the conditional prior of γlm given

the remaining elements. Let qγ be the number of elements of C that are non-zero
(before sampling γnew

lm ). If γold
lm = 1, then

p(γlm = 0) = h1/(h1 + 1), p(γlm = 1) = 1/(h1 + 1),

where

h1 =
ds − qγ + 1

qγ

.

11



Note that 1/(h1 + 1) ≈ τ̂ , where τ̂ = qγ/(ds) is the estimated fraction of positive
elements in C. If γold

lm = 0, then

p(γlm = 0) = h0/(h0 + 1), p(γlm = 1) = 1/(h0 + 1),

where

h0 =
ds − qγ

qγ + 1
.

3.1.5 Sampling Cγ

We generate Cγ |γ, δ, z̃N , σ2
ε , y from the following normal posterior distribution:

Cγ |γ, z̃N , α, βG, σ2
ε , y ∼ Normal

(

aN , σ2
εAN

)

,

where aN and AN are given by the moments of the posterior p(Cγ|z̃N , σ2
ε , α, βG, y)

given in (10).

3.2 Sampling the remaining parameters

Conditional on knowing γ and Cγ we are dealing with a random-effects model with
known variance-covariance matrix Q = CC ′, where C is the Cholesky factor corre-
sponding to γ and Cγ. Consequently, one could use any of the MCMC schemes in
order to sample α, βG, σ2

ε , and the non-centered random effects z̃N . Here we use the
partially marginalized sampler of (Frühwirth-Schnatter, Tüchler, and Otter 2004)
which is slightly modified in order to deal with the non-centered parameterization.

3.2.1 Sampling α, βG

From model (3) and (4) we derive the marginal heteroscedastic model:

yi ∼ Normal
(

Z1
i α + Z2

i β
G, Z2

i QZ2
i + σ2

εI
)

(19)

for i = 1, . . . , N .
We sample the fixed effects α and the mean parameter βG together in one block

from model (19) with the random effects being integrated out. This yields the
following posterior distribution:

p(α, βG|γ, Cγ, σ2
ε , y) ∼ Normal (BNbN , BN) ,

where

B−1
N =

N
∑

i=1

[Z1
i Z2

i ]′(Z2
i QZ2

i + σ2
εI)−1[Z1

i Z2
i ] + B−1

0 ,

bN = BN(
N
∑

i=1

[Z1
i Z2

i ]
′(Z2

i QZ2
i + σ2

εI)−1yi + B−1
0 b0).
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3.2.2 Sampling z̃N

To generate from z̃N |γ, α, βG, Cγ, σ2
ε , y we first observe, that the various components

z̃1, . . . , z̃N of z̃N are conditionally independent. The conditional distribution of
z̃i|γ, α, βG, Cγ, σ2

ε , y is a normal distribution obtained by combining the prior z̃i ∼
Normal (0, I) with the likelihood p(yi|z̃i, γ, α, βG, Cγ, σ2

ε) through Bayes’ theorem:

z̃i|γ, α, βG, Cγ, σ2
ε , y ∼ Normal (Pipi, Pi) , (20)

where

pi = Pi(σ
−2
ε (Z2

i C)′(yi − Z1
i α− Z2

i β
G)),

P−1
i = (σ−2

ε (Z2
i C)′ · (Z2

i C) + I).

3.2.3 Sampling σ2
ε

We sample σ2
ε |γ, α, βG, z̃N , y from the inverted Gamma posterior density:

σ2
ε |γ, α, βG, z̃N , y ∼ InvGamma (sN/2, SN/2) ,

with sN = TN + s0 and

SN = S0 + Sγ + (aN − a0)
′A−1

0 (aN − a0),

with Sγ being the sum of squared errors defined in (14).

3.3 Sampling Under Alternative Priors on the Variance-

Covariance Matrix

The conditionally conjugate normal prior on the non-zero elements Cγ in the Cholesky
factor C was chosen primarily for computational convenience, because it allows run-
ning a MCMC scheme involving standard densities, only. The MCMC scheme intro-
duced above, however, is easily extended to deal with non-conjugate priors on the
Cholesky factors. In this case the likelihood p(y|γ, z̃N , σ2

ε , α, βG, Cγ) can be used to
construct a Gaussian proposal for Cγ . The Metropolis-Hastings algorithm can then
be applied to correct for the non-conjugate prior.

4 Simulation Study

The traditional Gibbs sampling algorithm that is based on the centered parameteri-
zation samples the variance-covariance matrix from an inverted Wishart distribution
and is known to bias the estimated variance-covariance matrix ((Natarajan and Kass
2000)). In the first simulation study we are going to examine whether the new algo-
rithm that is based on the non-centered parameterization leads to an improvement in
this respect. We simulate data with full variance-covariance matrices Q and dimen-
sions: d = 5, Ti = 10, N = 50. The detailed parameter values used for simulation
are given the Appendix.

We compare the results of five algorithms, two of which are based on the standard
centered parameterization, whereas three of them use the methods introduced in
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this article. The two algorithms based on the centered parameterization use the
conditional conjugate inverted Wishart distribution prior on the variance-covariance
matrix Q, and are applied with two different prior scale matrices. The first prior
scale matrix is chosen such that the prior expected variance-covariance matrix equals
the identity matrix: E(Q) = I. This is the usual default choice if no additional prior
information is available. In the second run we select the prior expected variance-
covariance matrix to equal the true values E(Q) = Q, which typically will not be
known in real applications and may be used as a benchmark for these kind of centered
algorithms. In both cases the degrees of freedom are set to the minimal value.1 The
three algorithms based on the non-centered parameterization use the conditional
conjugate normal prior on the Cholesky factors of the Cholesky decompostion Q =
CC ′ with different priors. In a first run, estimation based on the non-centered
parameterization is carried out for a non-informative normal prior distribution for
the free elements in the Cholesky factor C, and for the second run we choose a
flat normal prior, with the mean being equal to the lower triangular of the identity
matrix. For these two runs we do not include the variable selection step (i), but
fix the indicators as γlm = 1 in order to obtain an arbitrary variance-covariance
matrices. Finally we examine the performance of the new algorithm and carry out
all steps (i)-(v), including variable selection.

We base our analysis on 100 data sets. Each algorithm was carried out for 25000
iterations and the first 15000 iterations were skipped for burn-in. We estimate the
variance-covariance matrix for two different loss functions: The first Bayes estimate
equals the posterior mean and corresponds to the squared error loss function:

L =
1

d2

√

√

√

√

d
∑

l=1

d
∑

m=1

(Q̂lm −Qlm)2.

We give the sample median of the squared error loss (L), the biggest (eigmax
L ) and

the smallest (eigmin
L ) eigenvalue, and the condition number (Lcond) of the posterior

mean estimator of the variance-covariance matrix Q in the first four columns of
Table 1. In Figure 1, 2, and 3 we make boxplots of these measures for the five
algorithms.

Alternatively we choose the following estimate of the variance-covariance matrix

(E(Q−1|y))−1,

which is the Bayes estimator with respect to the loss function

L1(Q, Q̂) = tr(Q̂Q−1)− log|Q̂Q−1| − d,

see Yang and Berger (1994) for details. In column 5-8 of Table 1 we give again the
same measures for this estimator (L1, eigmax

L1
, eigmin

L1
, Lcond

1 ) and in Figure 4, 5, and
6 we draw again the corresponding boxplots.

From the figures and from Table 1 we see that the non-centered algorithms yield
better results for nearly all values. This is especially true for the L1 metric, where

1The degrees of freedom have to fulfill αQ
0

> 1

2
(d+1). The prior scale matrix S0 is derived from

SQ
0

= E(Q)(αQ
0
− (d + 1)/2).
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Table 1: First simulation study: sample medians for the loss functions L and L1 for
algorithms based on the centered and non-centered parameterization

L eigmax
L eigmin

L Lcond L1 eigmax
L1

eigmin
L1

Lcond
1

d = 5, Ti = 10, N = 50

true values - 22.11 2.74 8.06 - 22.11 2.74 8.06

centered, prior E(Q) = I 0.32 21.24 1.55 13.75 0.94 18.29 1.18 15.49
centered, prior E(Q) = Q 0.28 22.22 2.05 11.49 0.44 19.48 1.74 11.96
non-cent., noninf. prior 0.37 26.69 2.50 10.70 0.41 22.89 2.02 10.97
non-cent., prior E(C) = I 0.38 27.10 2.67 10.79 0.36 23.15 2.14 11.06
non-cent., step (i) incl. 0.39 26.60 2.53 10.51 - - - -

the performance of the centered algorithm is worse for all measures. Interestingly the
centered algorithm is outperformed by the non-centered algorithms even if we assume
the true variance-covariance matrix as the prior scale matrix. For the squared error
loss metric the results are not unique. The maximum eigenvalue is overestimated
by the non-centered algorithms and the squared error loss is a little bit smaller
for the centered parameterization. On the other hand the minimal eigenvalue as
well as the condition number is estimated more accurately by the non-centered
parameterization. The results for the new algorithm that additionally includes the
variance-covariance selection step do not diverge from the results of the other two
non-centered algorithms that do not include step (i). So in practice this variance-
covariance selection step may be included into the non-centered algorithm without
loss of quality of the estimated variance-covariance matrix, even when estimating a
full variance-covariance matrix.

So far we demonstrated that the algorithms based on the non-centered parame-
terization yield improved estimates of the variance-covariance matrices in compar-
ison to traditional algorithms which are based on the centered parameterization.
In our second simulation study we are going to examine the ability of the new
algorithm to find the true structure of the variance-covariance matrix. We use a
variance-covariance matrix Q of dimension 15 times 15 so that we have 120 free
elements in the matrix for which we have to carry out variance-covariance selection.
The rank of Q is 12 and 52 off-diagonal elements are zero. We simulate data for
Ti = 20 and N = 150. Details are given in the Appendix. We simulated 64 data sets
and give the medians of percentage rates of correctly identified zero and non-zero
values of Q in Table 2. The identification of the diagonal elements of the variance-
covariance matrix is crucial for selecting fixed and random effects and in Table 2 we
find that our algorithm identifies these effects perfectly. Concerning the off-diagonal
elements, 99.04% of the zero off-diagonal elements are selected correctly and 77.36%
of the non-zero off-diagonal elements are included into the model. Therefore the al-
gorithm estimates a model that is more parsimonious than the model our simulated
data were based on.
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Table 2: Second simulation study: Median of the percentage rates of correctly
identified zero and non-zero elements in the lower triangular variance-covariance
matrix

non-zero zero non-zero zero
diagonal elements diagonal elements off-diagonal elements off-diagonal elements

100 100 77.36 99.04

5 Application to Real Data

Our application comes from a brand-price trade off study in the Austrian mineral
water market. These data are challenging due to the high dimension of the variance-
covariance matrix and the power of the new method may be demonstrated here. 213
consumers stated their likelihood to buy mineral water products on a 20 point rating
scale. Five different brands were offered at three different prices levels. Therefore
our data consist of 15 observations per consumer. The design matrices were defined
in a way that effects of brands, prices, quadratic prices as well as interaction effects
between brands and prices could be investigated. Details on this brand-price trade
off study from the marketing point of view may be found in (Otter, Tüchler, and
Frühwirth-Schnatter 2004). The design matrix Z2

i consists of 15 rows for the 15
observations per consumer and of 15 columns: 5 brand columns (one brand as the
baseline), one price and one quadratic price column, four brand by linear price and
four brand by quadratic price columns.

We reanalyzed these data, starting with a general model structure where all
effects were specified as random effects and ran 15000 iterations of our new proce-
dure. The first 5000 iterations were discarded for burn-in. The probability for each
element of the variance-covariance matrix Q to be non-zero may easily be derived
from the simulations of the indicators γ and equation (5). In Table 3 we give these
posterior probabilities for the elements of the variance-covariance matrix to be non-
zero. Only the variance for the interaction of the third brand with the quadratic
price effect (14th diagonal element in Table 3) has a low probability of 0.04 for
being significantly different from zero and is estimated as a fixed effect here. All
the other variances have posterior probabilities between 0.87 and 1 to be different
from zero and are therefore determined as random effects. For the first nine design
parameters, also all covariances are non-zero, as we can see from the corresponding
posterior probabilities taking the value one in Table 3. For some of the other random
effects the variance-covariance matrix is more sparse.

The power of the new variance-covariance selection method becomes obvious
when comparing these results to results obtained by traditional methods. In the
centered parameterization these data have been analyzed in (Tüchler 2003) by means
of a Gibbs sampling algorithm where the variance-covariance matrix was sampled
from an inverted Wishart distribution. This work compares a model where all effects
are included as random effects with a model where the interaction effects of the
brands with the quadratic price parameter are fixed by means of model likelihoods.
Among these two random-effects models, the model likelihoods clearly favored the
second one (logarithm of the model likelihood is −9222.36 for the model with fixed
interaction effects and −9291.99 for the model with all effects specified as random).
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Table 3: Posterior probability for the elements of the variance-covariance matrix Q
to be significantly different from zero (rounded).

1 1 1 1 1 1 1 1 1.00 0.01 0.44 0 0.00 0.00 0.00
- 1 1 1 1 1 1 1 1.00 0.01 0.44 1.00 0.98 0.02 0.00
- - 1 1 1 1 1 1 1.00 0.01 0.44 1.00 0.98 0.02 0.00
- - - 1 1 1 1 1 1.00 1 1 0.05 0.03 0.00 0.01
- - - - 1 1 1 1 1.00 0.01 1 0.04 0.01 0.00 0.01
- - - - - 1 1 1 1.00 0.63 0.46 0.91 0.90 0.02 0.01
- - - - - - 1 1 1.00 0.07 1 0.31 0.25 0.00 0.02
- - - - - - - 1 1 1 0.46 1 0.05 0.00 0.87
- - - - - - - - 1 1 0.44 0.20 0.05 0.00 0.01
- - - - - - - - - 1 0.01 0.17 0.02 0.00 0.01
- - - - - - - - - - 1 0.07 0.00 0.00 0.02
- - - - - - - - - - - 1 0.98 0.02 0.87
- - - - - - - - - - - - 0.98 0.02 0.04
- - - - - - - - - - - - - 0.04 0.00
- - - - - - - - - - - - - - 0.87

In contrast to that our new procedure selects just one single brand by quadratic price
effect as fixed. The three others are selected as random effects although most of the
corresponding covariance elements are set to zero. In (Tüchler 2003) there are 54
additional unknown variance-covariance parameters in the full model in comparison
to the model where interactions are fixed. In addition to that the new variable
selection procedure suggests that most covariances of these interaction effects are
not significantly different from zero (Table 3). Therefore the model likelihoods
rather prefer the model with fixed interaction effects and fewer parameters. Our
new procedure is more flexible and adds only 13 significant elements for the brand
by quadratic price effects and enables us to make better use of the information in
the data.

Our procedure is clearly more flexible than the alternative variable selection
method for random effects models of (Chen and Dunson 2003). For their method
it is not possible to select non-zero covariances for effects with non-zero variances.
All covariances are automatically included for those effects which are specified as
random effects by the procedure.

In Table 4 we give the posterior probabilities for the elements of C to be different
from zero. From comparison with Table 3 we find that the number of zero elements
is much smaller in C than in Q. Interestingly estimation on the basis of the Cholesky
decomposition proceeds with fewer parameters in C than in the resulting variance-
covariance matrix and therefore offers a very parsimonious estimation tool.

6 Concluding Remarks

In this paper, we considered a non-centered parameterization of the standard random-
effects model, which is based on the Cholesky decomposition of the variance-covariance
matrix. The choice of this parameterization offers several advantages. First, pos-
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Table 4: Posterior probability for the elements of the Cholesky factor matrix C to
be significantly different from zero (rounded).

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0.01 1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0.04 0 0 0 0 0 0 0 0 0 0
1 0.91 0.58 0.01 0.93 1 0 0 0 0 0 0 0 0 0
1 0.27 0.06 1 1 0.07 0.01 0 0 0 0 0 0 0 0
1 0 0.01 0 0 0.01 1 1 0 0 0 0 0 0 0
1 0.04 0 0 0 0 0.01 1 0.01 0 0 0 0 0 0

0.01 0 1 0 0 0.05 0 1 0.04 0.02 0 0 0 0 0
0.44 0 0 1 0.01 0.02 0.04 0 0.01 0.01 0.03 0 0 0 0
0 1 0 0.04 0.01 0 1 0.16 0 0 0 0 0 0 0
0 0.98 0.01 0 0 0 0.04 0 0.04 0.01 0.01 0.05 0.01 0 0
0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.01 0 0 0.87 0 0 0 0 0 0 0 0

terior simulations using MCMC schemes are efficient and automatically deliver
variance-covariance matrices without the need to introduce any constraints, as the
Cholesky factors of a variance-covariance matrix are unconstrained. This feature is
rather desirable from a computational point of view.

Second, the regression type structure of the non-centered parameterization, where
the elements of the Cholesky factors appear as a regression coefficient, allows to
choose a simple, conditionally conjugate normal prior on the Cholesky factor. The
first simulation study in Section 4 demonstrated that this prior is less influential on
the estimated variance-covariance matrix than the inverted Wishart prior, which is
the corresponding conditionally conjugate prior for the centered parameterization.

Finally, based on the non-centered parameterization, we were able to search
for a parsimonious variance-covariance matrix by identifying the non-zero elements
of the Cholesky factors using well-known Bayesian variable selection methods. In
particular, with this method we are able to learn from the data for each effect,
whether it is random or not. This result is potentially of great interest in many
areas of applied statistics.
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A Design of the simulation studies

For the first simulation study we simulated data from the random-effects model
(3),(4) with design matrix Z2

i equal to

Z2
i =









































1 1 0 0 z1

1 1 0 0 z2

1 1 0 0 z3

1 0 1 0 z1

1 0 1 0 z2

1 0 1 0 z3

1 0 0 1 z3

1 0 0 1 z4

1 0 0 0 z3

1 0 0 0 z4









































,

where the values of z1 vary between 0 and 0.2, those of z3 vary between 4 and
4.2, those of z4 vary between 6.4 and 7.2, and z2 takes the value 2.1. We include
no fixed effects (α = 0), and the random effects have the mean parameter βG =
[15 5 5 4.5 − 2] and variance-covariance matrix

Q =

















12.4 0.6 2.9 3.9 4.4
0.6 14.5 4.0 2.9 2.2
2.9 4.0 10.0 3.3 2.6
3.9 2.9 3.3 7.3 2.7
4.4 2.2 2.6 2.7 5.2

















.

The model error variance σ2
ε equals 1.

For the second simulation study the design matrices Z2
i consist of 20 observations

and 15 parameters and have a similar structure like the design matrices of the first
simulation study. The mean parameter equals βG = [15 5 5 4.5 − 2 − 1.8 −
2.5 1 2 .5 − 1 1 0.5 − 2 − 1] and the upper triangular part of the variance-
covariance matrix Q writes
































































99.6 3.3 0 0 0 0 0 94.8 23.1 60.6 48.5 −8.6 −33.2 2.5 5.7
130.5 0 0 0 0 0 27.8 71.5 55.2 1.8 −0.3 −1.1 0.1 0.2

84.8 0 0 0 0 0 0 4.1 3.6 37.8 20.5 28.3 36.5
63.5 0 0 0 0 0 0 3.4 2.9 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
130 35.4 70.4 48.5 −6.3 −31.7 2.4 5.5

77.2 43.6 15.4 7.4 −7.6 0.6 1.3
82.3 30.2 −0.4 −16.8 6 9.3

47 6.2 −10.2 6.3 9.1
134.1 100 78.7 96.5

111.3 70.7 85.5
68.3 71.1

98.5

































































.

The model error variance σ2
ε equals 1.
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Figure 4: First simulation study: boxplots for squared error loss
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Figure 5: First simulation study: boxplots for the smallest (left hand side) and the
biggest (left hand side) eigenvalue of the Bayes estimator with resp. to squared error
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