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Abstract

In this article we consider Bayesian analysis of Poisson regression models. Es-

timation is carried out within a Bayesian framework using data augmentation

and MCMC methods. We suggest a new MCMC sampler, which possesses a

Gibbs transition kernel, where we draw from full conditional distributions be-

longing to standard distribution families, only. This Gibbs sampler is applied

to a standard Poisson regression model and to a Poisson regression models

dealing with overdispersion.

Key words: Poisson count data, data augmentation, Gibbs sampling, overdis-

persion

1 Introduction

Applied statisticians commonly have to deal with count data, recording for instance
the number of road accidents or disease occurrences. Such data are necessarily non-
negative integers and it is often appropriate to assume that the observed counts
follow a Poisson distribution. The Poisson regression model, discussed for instance
in McCullagh and Nelder (1999) in the framework of generalized linear models, is
an important tool for analyzing the effect of covariates on count data. The basic
Poisson regression model has been modified in a number of ways. To account for
the dependency likely to be present in sequences of counts data, the covariates may
depend on past observations, see for instance Zeger and Qaqish (1988). A couple
of extensions deal with overdispersion due to omitted covariates, we mention in
particular mixtures of Poisson regressions models (Wang et al. 1996; Hurn et al.
2003), Poisson regression models with additive random effects (Aitkin 1996), panel
Poisson regression models with random effects (Chib et al. 1998), and mixtures of
Poisson regression models with random effects (Lenk and DeSarbo 2000).

In this paper we consider Bayesian estimation of Poisson regression models, using
data augmentation as in Tanner and Wong (1987) and Markov chain Monte Carlo
(MCMC) methods, as illustrated first by Zeger and Karim (1991) for generalized
linear models with random effects. Since this seminal paper, a number of authors
have contributed to MCMC estimation of regression models for count data. We
mention here in particular Albert (1992) for Poisson random-effects models, Chib
et al. (1998) for panel count data models with multiple random effects, Lenk and
DeSarbo (2000) for mixtures of Poisson models with random effects, and Hurn et al.
(2003) for mixtures of Poisson regression models.

A major difficulties with any of the existing MCMC approaches is that practical
implementation requires the use of a Metropolis-Hastings algorithm at least for part
of the unknown parameter vector, which in turns make it necessary to define suitable
proposal densities. The present article discusses a new method of data augmenta-
tion, and straightforward Gibbs sampling, put forward by Frühwirth-Schnatter and
Wagner (2004), in the context of Poisson regression models. Our main result is
to show that a Poisson regression model may be regarded as a partially Gaussian
regression model in the sense of Shephard (1994), by conditioning on two sequences
of suitably chosen artificially missing data. The first sequence are the unobserved
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inter-arrival times of a suitably chosen Poisson process. This eliminates the non-
linearity of the Poisson regression model, and leads to a linear regression model with
non-normal errors, that follow a log exponential distribution with mean 1. The log
exponential distribution is then approximated by a mixture of normal distributions
in a similar way as in Kim et al. (1998) and Chib et al. (2002). We introduce the
component indicator of this normal mixture as a second sequence of missing data.
By conditioning on both sequences, a Gaussian regression model results. Based on
this useful result, we will show that straightforward Gibbs sampling of all regres-
sion parameters, and all missing data is possible, requiring only random draws from
standard distributions such as multivariate normals, inverse Gamma, exponential
and discrete distributions with a few categories.

The rest of the paper is organized as follows. After a short review of the Poisson
regression model in Section 2, we discuss in Section 3 in detail data augmentation for
Poisson regression models, and implementation of our new Gibbs sampling scheme.
Applications to standard regression models as well as to regression models dealing
with overdispersion are considered in Section 4, whereas Section 5 concludes.

2 Poisson Regression Models

Let y = (y1, . . . , yN ) be a collection of count data. In what follows, we assume
that yi|λi follows a P (λi) distribution, where λi depends on an unknown model
parameter ϑ in the following way:

yi|λi ∼ P (λi) , λi = exp(ziϑ), (1)

where zi is a row vector of regressors, including 1 for the intercept. In the present
paper we will be interested in two special cases of this model. First, we consider
the standard Poisson regression model, where for each count variable yi, we observe
covariates xi, again including 1 for the intercept. Then in (1), zi = xi, and ϑ = β

is a simple regression parameter. We will show below, that our data augmentation
method leads to a normal regression model, where the whole regression parameter
β could be sampled in one sweep from a normal distribution.

Second, we will consider a Poisson regression model dealing with overdispersion
due to omitted covariates. A common way of dealing with this kind of overdispersion
is the individual effects model introduced by Aitkin (1996), where the regression
intercept varies between the units:

λi = exp(αi + xiβ), (2)

where αi ∼ N (0, σ2
α). Thus overdispersion is modelled on the same level as the

linear predictor. Formally, this model may be written as a special case of (1), where
ϑ = (α1, . . . , αN ,β), and

zi =
(

ei xi
)

,

where ei is a (1×N) row vector, containing only zeros, apart from column i, which is
equal to 1. Marginally, this model is an infinite mixture of Poisson regression models
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with no closed form. Aitkin (1996) suggested to approximate the marginal distri-
bution by a mixture Poisson regression models using Gaussian-Hermite quadrature.
We will show, how data augmentation leads to a normal random-effects regression
model, where the whole sequence ϑ = (α1, . . . , αN ,β) could be sampled simultane-
ously in an efficient manner.

3 A Bayesian Analysis

3.1 Prior and Posterior Distributions

We assume that the prior distribution p(ϑ|δ) of ϑ follows a normal distribution,
which is allowed to be indexed by an unknown hyper parameter δ. For the standard
regression model p(β|δ) typically is normal prior Nd (b0,B0), with known hyper-
parameters b0 and B0. For a regression model with overdispersion, this prior is
extended to:

p(ϑ|δ) = p(β|b0,B0)
N
∏

i=1

p(αi|σ
2
α),

where αi ∼ N (0, σ2
α). The additional hyperparameter σ2

α may be known or un-
known.

For both models, these assumptions are sufficient to derive the conditional pos-
terior density p(ϑ|δ,y) by Bayes’ theorem, given all observations y = (y1, . . . , yN):

p(ϑ|δ,y) ∝ p(y|ϑ)p(ϑ|δ), p(y|ϑ) =
N
∏

i=1

exp(ziϑ)
yi

yi!
exp(− exp(ziϑ)).

The resulting posterior density, however, in general does not belong to a density from
a well-known distribution family. Markov chain Monte Carlo methods to sample
from the posterior distribution of a Poisson regression model were applied by Zeger
and Karim (1991), Albert (1992), Chib et al. (1998), Lenk and DeSarbo (2000) and
Hurn et al. (2003), among many others. As mentioned in the introduction, any of
these methods is based on Metropolis-Hastings sampling.

We are going to demonstrate in the following subsection, that the introduction of
two sequences of artificially missing data within a data augmentation scheme leads
to a conditional posterior distribution for ϑ that, in contrast to p(ϑ|δ,y), is a joint
normal distribution, once we conditioned on the artificially missing data.

3.2 Data Augmentation

For each i, the distribution of yi|λi may be regarded as the distribution of the number
of jumps of an unobserved Poisson process with intensity λi, having occurred in
the time interval [0,1]. The first step of data augmentation introduces for each i,
i = 1, . . . , N , the inter-arrival times τij, j = 1, . . . , (yi+1) of this Poisson process as
missing data. From the basic properties of a Poisson process, the inter-arrival times
τij are known to follow the E (λi)-distribution:

τij|ϑ ∼ E (λi) =
E (1)

λi
.
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Table 1: Normal mixture approximation of the density of the log E (1)-distribution
(5 components)

r 1 2 3 4 5
wr 0.2924 0.2599 0.2480 0.1525 0.0472
mr 0.0982 -1.5320 -0.7433 0.8303 -3.1428
s2
r 0.2401 1.1872 0.3782 0.1920 3.2375

As λi = exp(ziϑ), this may be reformulated as following linear model:

log τij|ϑ = −ziϑ+ εij, εij ∼ log(E (1)). (3)

Let τ = {τij, j = 1, . . . , (yi + 1), i = 1, . . . , N} denote the collection of all inter-
arrival times. Our first data augmentation step introduces the inter-arrival times τ
as missing data, with two effects. First, the full-conditional posterior distribution
p(ϑ|δ, τ ,y) of ϑ, where additionally to δ and y the inter-arrival times τ appear
as conditioning argument, is independent of y, p(ϑ|δ, τ ,y) = p(ϑ|δ, τ ). Second,
conditional on τ , we are dealing with model (3), which is non-normal, but where
the mean of the observation equation is linear in the unknown model parameters
ϑ. Thus, the first augmentation steps eliminates the non-linearity of the Poisson
regression model, the non-normality of the error term, however, remains.

It is important to realize that the error term in (3) follows a log E (1)-distribution
which is independent of any unknown model parameter. To obtain a model that
is conditionally Gaussian, we start by approximating the non-normal density of
εij ∼ log(E (1)) by a normal mixture of 5 components with parameters mr and sr
for the r-th component:

p(εij) = exp{εij − eεij} ≈
5
∑

r=1

wrfN (εij;mr, s
2
r). (4)

This idea is influenced by the related articles of Kim et al. (1998) and Chib
et al. (2002), who used a normal mixture approximation of the density of a logχ2-
distribution in the context of stochastic volatility models. The appropriate pa-
rameters (wr,mr, s

2
r), r = 1, . . . , 5, however, are different for our problem and are

tabulated in Table 1 for 5 components, a number that we found to be sufficiently
large in practice. The parameters of the mixture approximation were determined
by minimizing the Kullback-Leibler distance.

Following Kim et al. (1998) and Chib et al. (2002), the mixture distribution
(4) is regarded as the marginal distribution of a problem where additional to εij the
component indicators rij are observed. The second step of our data augmentation
scheme introduces for each εij the latent component indicator rij as missing data.
LetR = {rij, j = 1, . . . , (yi+1), i = 1, . . . , N} denote the collection of all component
indicators rij. Conditional on τ and R the Poisson regression model (1) reduces to
a Gaussian regression model with heteroscedastic errors with known variance:

log τij|ϑ, rij = −ziϑ+mrij + εij, εij ∼ N
(

0, s2
rij

)

. (5)
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For such a model the conditional posterior p(ϑ|δ, τ ,R,y), is a multivariate normal
density, which is easy to sample from. This result is the basis for our new two-block
Gibbs sampler, that will be described in the next subsection.

3.3 The Basic Two-block Gibbs Sampler

When the hyperparameter δ of the prior p(ϑ|δ) are assumed to be known, a two-
block Gibbs sampler results, if data augmentation as described in the previous sec-
tion is applied. Select a starting value for the component indicators R = {rij, j =
1, . . . , yi + 1, i = 1, . . . , N}, and the inter-arrival times τ = {τij, j = 1, . . . , yi + 1, i =
1, . . . , N} and repeat the following steps:

(a) Multi-move sampling of ϑ conditional on knowing τ , R, and y, based the
normal regression model (5).

(b) Sampling of the inter-arrival times τ and R conditional on knowing ϑ and
y. For i = 1, . . . , N run through the following steps (b1) to (b3) with λi =
exp(ziϑ) and n = yi:

(b1) If yi > 0, sample the order statistics ut,(1), . . . , ut,(n) of n uniformly dis-
tributed random variables, see e.g. Robert and Casella (1999, p.47)
for details, and define the inter-arrival times τij as their increments:
τij = ui,(j) − ui,(j−1), j = 1, . . . , n, where ui,(0) := 0.

(b2) Sample the final arrival time as τi,n+1 = 1−
∑n

j=1 τij+ξi, where ξi ∼ E (λi).

(b3) For each j = 1, . . . , yi+1, sample the component indicators rij conditional
on τij and ϑ from the following discrete density:

Pr(rij = k|τij,ϑ) ∝ p(τij|rij = k,ϑ)wk, (6)

where

ln p(τij|rij = k, δ,ϑ) ∝ − ln sk −
1

2

(

ln τij + ziϑ−mk

sk

)2

.

The quantities (wk,mk, s
2
k), k = 1, . . . , 5 are the parameters of the finite

mixture approximation tabulated in Table 1.

Note that step (b) involves only draws from standard densities. Thus sampling
scheme (a) and (b) is actually a Gibbs sampler without any tuning.

Comments

It is easy to verify the different sampling steps (b1) to (b3). The joint posterior
p(R, τ |y,ϑ) is decomposed as:

p(R, τ |y,ϑ) = p(R|τ ,y,ϑ)p(τ |y,ϑ).

The inter-arrival times {τij, j = 1, . . . , yi + 1} are independent for different time
points i, given y, and ϑ:

p(τ |y,ϑ) =
N
∏

i=1

p(τi1, . . . , τi,yi
, τi,yi+1|yi,ϑ).
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For fixed i, the inter-arrival times τi1, . . . , τi,n+1, where n = yi, are stochastically
dependent, and the joint distribution factorizes as:

p(τi1, . . . , τin, τi,n+1|yi = n,ϑ)

= p(τi,n+1|yi = n,ϑ, τi1, . . . , τin)p(τi1, . . . , τin|yi = n).

The first n inter-arrival times are independent of ϑ and the component indicator
R, and are determined only by the observed number of counts yi. Due to well-
known properties of a Poisson process, the n arrival times occurring in [0,1] are
distributed as the order statistics of n U [0, 1]-distributed random variables, and step
(b1) follows immediately. The final inter-arrival time τi,n+1 depends on the actual
model parameters ϑ through the risk λi, but is also independent of the component
indicator R. Conditionally on yi = n and τi1, . . . , τin, the last arrival time τi,n+1 has
an exponential distribution with mean 1/λi, truncated at 1 −

∑n

j=1 τij, thus step
(b2) follows.

The component indicators rij are mutually independent for different i as well as
for different j, given τ , ϑ and y:

p(R|τ ,y,ϑ) =
N
∏

i=1

yi+1
∏

j=1

p(rij|τij,ϑ).

For i, j fixed, the posterior of each component indicator rij depends on the data
only through τij and on the model parameters ϑ only through the risk λi, thus step
(b3) follows immediately.

Step (b1) could be used to sample starting values for τi1, . . . , τin for each i, given
the observed counts yi. To obtain a starting value for τi,n+1, we use (b2) and sample
ξi from E (λi) with λi = yi. For all i, where yi = 0, λi can be set to a “small”
value for λi, in our examples we used λi = 0.1. Starting values for each component
indicator rij are obtained as random draws from 1 to 5.

4 Applications

4.1 Application to the Standard Poisson Regression Model

For the Poisson regression model yi ∼ P (λi) , log λi = xiβ, data augmentations by
τ and R as described above, leads to a normal regression model with ni = yi + 1
repeated measurements, and heteroscedastic errors with known variance. For each
i, this model reads:

log τij|ϑ, rij = −xiβ +mrij + εij, εij ∼ N
(

0, s2
rij

)

, (7)

where j = 1, . . . , yi + 1.
Under the normal prior β ∼ Nd (b0,B0), the conditional posterior p(β|τ ,R,y) =

p(β|τ ,R) is equal to the multivariate normal density Nd (bN ,BN) with following
posterior moments:

B−1
N = B−1

0 +
N
∑

i=1

x
′

ixiwi, bN = BN(B
−1
0 b0 −

N
∑

i=1

x
′

iỹi), (8)
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Table 2: Parameter estimates for the regression model
Parameter Gibbs Sampling Maximum Likelihood

Mean Std.dev 95%H.P.D. regions Mean Std.dev
β 0.7028 0.0756 [ 0.5501, 0.8466] 0.7177 0.0730
δ -0.3553 0.1080 [-0.5629, -0.1379] -0.3543 0.1077

where

wi =

yi+1
∑

j=1

1

s2
rij

, ỹi =

yi+1
∑

j=1

log τij −mrij

s2
rij

. (9)

This result is derived in a straightforward manner from a Bayesian analysis of the
normal regression model (7), see Zellner (1971), among many other references.

4.1.1 Application to Road Safety Data

In this application we use the Gibbs sampler to analyze a data set provided by the
Austrian Road Safety Board. These data are monthly counts of killed or injured
pedestrians, aged 6-10 in Linz, which is the third largest town in Austria. The time
period covered was 1987 to 2002. A legal intervention intended to increase road
safety took place during the observation period. On October 1, 1994 an amendment
increasing priority for pedestrians became effective: since then pedestrians who want
to use a crosswalk have to be allowed crossing without risk. We model these data
using a regression model with fixed seasonal effects si for the different months and
the intervention effect is modelled as a level shift at the time point t = tint when
legal amendments became effective. Our model parameters are an intercept β, the
seasonal dummies s1, . . . , s11 and the intervention effect δ, the covariate vector is of
dimension 1× 13.

The Gibbs sampler described in Subsection 3.3 was run 12000 times with a burn
in of 2000 runs. Table 2 reports point estimates as well as 95%-H.P.D. regions for the
intercept and the intervention effect and compares them to the maximum likelihood
estimates. The intervention effect is significantly negative. ML estimates and
MCMC estimates are very similar which is also true for the seasonal effects.

Figure 1 shows the observed counts with the exponentiated estimated level in-
cluding the intervention effect and pointwise 95% credible intervals and the seasonal
pattern exp(st). The main feature of the seasonal pattern in the children series is a
significant decrease in holiday months July and August.

Table 3 shows the parameter estimates obtained from a Gibbs sampler based on
a five component mixture approximation in comparison to the maximum likelihood
estimates. In the same table we study the effect of using less than five components
in the mixture approximation to the distribution of εij. Not surprisingly, we find a
large improvement of choosing a mixture approximation with at least two compo-
nents, rather than the one component normal approximation. The small differences
between the different higher component estimates are only due to the Monte Carlo
integration error.

7



1987  1989 1991 1993 1995 1997 1999 2001
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Intervention

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

Figure 1: Counts of killed or injured children with estimated rate(posterior means,
left) and seasonal pattern (posterior means,right) within 95% credible region

Table 3: Comparison of parameter estimates for different methods
β µ

Method Mean Std.dev Mean Std.dev

Maximum Likelihood 0.7177 0.0730 -0.3543 0.1077
Gibbs Sampling 1 component 0.6938 0.0888 -0.4014 0.1307

2 components 0.7096 0.0719 -0.3611 0.1055
3 components 0.6978 0.0735 -0.3535 0.1070
4 components 0.6971 0.0747 -0.3544 0.1087
5 components 0.7028 0.0756 -0.3553 0.1080
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4.2 Poisson Regression Models Dealing With Overdisper-

sion

A common problem in Poisson regression models is the presence of overdispersion
due to omitted covariates which may cause bias and loss of efficiency in estimating
the remaining regression parameters, see for instance Cox (1983). A simple, but
useful way of dealing with this kind of overdispersion is to introduce individual
effects αi ∼ N (0, σ2

α) into the linear predictor:

yi ∼ P (λi) , log λi = αi + xiβ.

The Bayesian estimation methods discussed in Subsection 4.1 are easily extended
to this more general setting. Data augmentations by τ and R as described above
leads to a normal individual effects regression model with ni = yi + 1 repeated
measurements, and heteroscedastic errors with known variance. For each i, this
model reads:

log τij|αi,β, rij = −αi − xiβ +mrij + εij, εij ∼ N
(

0, s2
rij

)

, (10)

where j = 1, . . . , yi + 1. The joint conditional posterior p(ϑ|τ ,R,y) of ϑ =
(α1, . . . , αN ,β) could easily be derived as in Subsection 4.1, however, joint sam-
pling from this extremely high-dimensional normal density through the Cholesky
decomposition of the corresponding variance-covariance matrix is not very efficient.
We discuss an efficient multi move sampler.

4.2.1 Efficient multi move sampling

It is possible to write the joint conditional posterior of ϑ = (α1, . . . , αN ,β) as

p(ϑ|τ ,R,y) = p(ϑ|τ ,R) = p(β|τ ,R)
N
∏

i=1

p(αi|β, τ ,R).

p(β|τ ,R) is derived from a regression model, where the individual effects appearing
in (10) are integrated out.

For each i, i = 1, . . . , N , all inter arrival times τij, generated for a specific count
observation yi, for j = 1, . . . , ni, where ni = (yi+1), share the same individual effect
αi and are independent only conditional on knowing αi. The marginal model for
log τ i = (log τi1 . . . log τi,ni

)′ given only β, with the individual effect being integrated
out, is

log τ i = −1xiβ +mi + εi, εi ∼ N (0,V i) , (11)

where mi = (mri1 · · ·mri,ni
)′ and

V i = 11
′σ2
α +Diag

(

s2
ri1
, . . . , s2

ri,ni

)

.

From the marginal model (11) we obtain that the posterior p(β|τ ,R) is equal to a
multivariate normal density Nd (bN ,BN ) with the posterior moments bN and BN
given by

B−1
N = B−1

0 +
N
∑

i=1

x
′

i1
′V −1

i 1xi, bN = BN(B
−1
0 b0 −

N
∑

i=1

x
′

i1
′V −1

i (log τ i −mi)).(12)
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For each i = 1, . . . , N , the conditional posterior p(αi|β, τ ,R) is derived from regres-
sion model (10), with β considered to be known. From the results of Subsection 4.1,
under the normal prior αi ∼ N (0, σ2

α), the conditional posterior p(αi|β, τ ,R) is
equal to a univariate normal densityN (ai(β), Ai) with following posterior moments:

A−1
i =

1

σ2
α

+

yi+1
∑

j=1

1

s2
rij

, ai(β) = Ai

(

yi+1
∑

j=1

log τij + xiβ −mrij

s2
rij

)

. (13)

Thus step (a) in the Gibbs sampler is implemented by sampling β fromNd (bN ,BN ),
with the moments given by (12), and then sampling αi from N (ai(β), Ai) for i =
1, . . . , N .

4.2.2 Dealing with unknown hyperparameters

If the hyperparameter σ2
α is unknown, then an additional step (c) has to be added, to

sample σ2
α from the inverted Gamma posterior distribution G−1 (cN/2, CN/2) with

cN = c0+N , and CN = C0+
∑N

i=1 α
2
i , under the inverted Gamma prior distribution

σ2
α ∼ G

−1 (c0/2, C0/2).

4.2.3 Application to Simulated Data

For illustration, we consider two simulated data sets of size N = 200, generated
according to the heterogeneity model

yi ∼ P (λi) , log λi = αi + β0 + β1xi,

where xi corresponds to a linear trend and β = (β0, β1) = (0.5, −0.3). The variance
of the random effects is σ2

α = 0.0001 for the first data set, which implies a low degree
of unobserved heterogeneity, whereas σ2

α = 1 for the second data set, causing a high
degree of unobserved heterogeneity.

A two-block Gibbs sampler based on the five component mixture approximation
was used to estimate the unknown parameters. Conditional on knowing σ2

α, we
sample the whole parameter ϑ = (α1, . . . , αN ,β) jointly within one move using the
results of Subsection 4.2.1. Conditional on knowing ϑ, the variance σ2

α is samples as
described in Subsection 4.2.2. The Gibbs sampler was run 12000 times with a burn
in of 2000 runs.

Estimation results are presented in Table 4, autocorrelation functions of the
estimated values of β and σ2

α for both the low and high heterogeneity case are
shown in Figure 2. As for Gaussian random-effects models, see for instance Gelfand
et al. (1995) and van Dyk and Meng (2001), the convergence behavior of Gibbs
sampling if worse in the low heterogeneity case (σ2

α close to 0), than for the high
heterogeneity case (σ2

α = 1).

5 Concluding Remarks

The Gibbs sampler studied in this paper provides an important step toward opera-
tional MCMC estimation for a broad class of regression models for Poisson counts,
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Table 4: Parameter estimates for the heterogeneity model
low heterogeneity high heterogeneity
σ2
α = 0.0001 σ2

α = 1
Parameter Mean Std.dev Mean Std.dev

β0 0.5391 0.1196 0.4450 0.1895
β1 -0.3035 0.1107 -0.3339 0.1659
σ2
α 0.0070 0.0110 1.0020 0.2037
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Figure 2: ACF of β0 (above), β1 (middle) and σ2
α (below); low heterogeneity case

(σ2
α=0.01) left side, high heterogeneity case (σ2

α=1) right side

as our sampler requires only draws from standard densities, without tuning of pro-
posal densities. Gibbs sampling is feasible for most of the Poisson regression models
suggested in the literature so far. The Gibbs sampler discussed in this paper for
a standard regression model and a Poisson regression model with additive random
effects is easily modified to deal with various extensions of the Poisson regression
model, in particular with mixtures of Poisson regressions models (Wang et al. 1996;
Hurn et al. 2003), panel Poisson regression models with random effects (Chib et al.
1998), and mixtures of Poisson regression models with random effects (Lenk and
DeSarbo 2000). Space limits do not allows us to give all the details, which are, how-
ever, pretty straightforward, and are worked out in detail for time-varying Poisson
regression models in Frühwirth-Schnatter and Wagner (2004).

Our new data augmentation scheme seems to be a promising step toward solv-
ing further issue in Bayesian estimation for generalized linear models based on the
Poisson distribution. First, for random effects models some care must be exercised
with respect to parameterization issues, as Gibbs sampling often leads to conver-
gence problems, if σ2

α is close to 0. Such problems are well-known for Gaussian
random-effects model, see for instance Gelfand et al. (1995) and van Dyk and Meng
(2001). For Poisson count data parameterization issues are also addressed in Chib
et al. (1998). Our new data augmentation may be helpful in this regard, as a non-
centered parameterization similar to the one studied in van Dyk and Meng (2001)
for Gaussian models, is easily available.

Finally, we would like to mention that our data augmentation scheme leads
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to straightforward computation of marginal likelihoods based on the candidate’s
formula (Chib 1995).
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