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Sylvia Frühwirth-Schnatter and Helmut Waldl

December 2004



Abstract

In this article we consider logit-type models, like the standard binary logistic
regression, multinomial models with random effects, and state space models
for binary data. Estimation of these models is carried out within a Bayesian
framework using data augmentation and MCMC methods. We suggest a new
MCMC sampler, which possesses a Gibbs transition kernel, where we draw
from full conditional distributions belonging to standard distribution families,
only.

Key words: binary data, data augmentation, generalized linear models, Gibbs
sampling, multinomial data, utilities

1 Introduction

Applied statisticians commonly have to deal with the problem of modelling binary
or categorical data in terms of covariates. Examples are modelling the probability
of disease occurrences in terms of risk factors, or modelling choice probabilities in
marketing in terms of product attributes. The logistic regression model, discussed
for instance in McCullagh and Nelder (1999) in the framework of generalized linear
models, is an important and extensively used tool for analyzing the effect of covari-
ates on the occurrence probabilities of a certain event. The basic logistic regression
model has been modified in a number of ways. To account for the dependency likely
to be present in sequences of binary data, past observations yi−1, yi−2, . . . have been
introduced as covariates, see for instance Zeger and Qaqish (1988). A couple of ex-
tensions deal with overdispersion due to omitted covariates, like mixtures of binary
regressions models (Wang et al. 1996; Hurn et al. 2003), binary regression mod-
els with additive random effects (Aitkin 1996), and mixtures of binary regression
models with random effects (Lenk and DeSarbo 2000).

In this paper we consider Bayesian estimation of binary and multinomial logit
models, using data augmentation as in Tanner and Wong (1987) and Markov chain
Monte Carlo methods, as illustrated first by Zeger and Karim (1991) for general-
ized linear models with random effects. Since this seminal paper, numerous authors
have contributed to MCMC estimation of logit-type models. We mention here in
particular Lenk and DeSarbo (2000) for mixtures of logit-models with random ef-
fects, and Hurn et al. (2003) for mixtures of binary regression. A major difficulty
with any of the existing MCMC approaches, however, is that practical implemen-
tation requires the use of a Metropolis-Hastings algorithm at least for part of the
unknown parameter vector, which in turns makes it necessary to define suitable
proposal densities.

The main contribution of the present article is to show that straightforward Gibbs
sampling of all parameters, requiring only random draws from standard distributions
such as multivariate normals, inverse Gamma, exponential and discrete distributions
with a few categories is feasible for logit models. This rather unexpected result is
achieved by introducing two sequences of latent variables through data augmenta-
tion. The first data augmentation step is based on Scott (2004), who introduced
the latent utilities as missing variables. As shown by Scott (2004), the introduc-
tion of this first sequence eliminates the non-linearity of the observation equation,
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whereas the non-normality of the error term, which follows a type I extreme value
distribution, remains. Whereas Scott (2004) uses a Metropolis-Hastings algorithm
to sample the parameters, we eliminate the non-normality of the error term by a
second sequence of latent variables. To this aim, the log of the extreme value dis-
tribution is approximated by a mixture of normal distributions in a similar way as
in Kim, Shephard, and Chib (1998) and Chib, Nardari, and Shephard (2002) who
used a normal mixture approximation to the density of a logχ2-distribution in the
context of stochastic volatility models. By introducing the component indicator of
this normal mixture as a second sequence of missing data, a logistic regression model
may be thought of as a partially Gaussian model as in Shephard (1994), and Gibbs
sampling becomes feasible. This will be shown to be particularly useful for random
effects models and for state space models for binary and categorical time series, as
multi-move-sampling of the whole state process through forward-filtering backward
sampling as in Frühwirth-Schnatter (1994), Carter and Kohn (1994), De Jong and
Shephard (1995) and Durbin and Koopman (2002) becomes feasible.

The rest of the paper is organized as follows. In Section 2, we discuss in detail
data augmentation and Gibbs sampling for binary logit regression models, which
will be extended to more complex binary models, like time series models and panel
data models in Section 3. In Section 4 we extend data augmentation and Gibbs
sampling to multinomial logit models. Section 5 concludes.

2 Data Augmentation and Gibbs Sampling for

the Binary Logit Regression Models

2.1 Background

For a sequence y1, . . . , yN of binary data, the binary logit regression model reads:

Pr(yi = 1|β) =
exp(xiβ)

1 + exp(xiβ)
, (1)

where xi is a row vector of regressors, including 1 for the intercept, and β is an
unknown regression parameter.

We pursue a Bayesian approach and assume that the prior distribution p(β) of
β follows a normal distribution, Nd (b0,B0), with known hyperparameters b0 and
B0. It is then possible to derive the posterior density p(β|y) by Bayes’ theorem,
given all observations y = (y1, . . . , yN ):

p(β|y) ∝ p(y|β)p(β), p(y|β) =
N∏

i=1

(exp(xiβ))
yi

1 + exp(xiβ)
.

The resulting posterior density, however, in general does not belong to a density from
a well-known distribution family. Markov chain Monte Carlo methods to sample
from the posterior distribution of a logit model were applied by Zeger and Karim
(1991), Albert (1992), Chib et al. (1998), Lenk and DeSarbo (2000), Hurn et al.
(2003), and Scott (2004), among many others. As mentioned in the introduction,
any of these methods is based on Metropolis-Hastings sampling. We are going to
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demonstrate in the following subsection, that the introduction of two sequences of
artificially missing data within a data augmentation scheme leads to a conditional
posterior distribution for β that, in contrast to p(β|y), is a joint normal distribution,
once we conditioned on the artificially missing data. Thus the whole regression
parameter β could be sampled in one sweep from a normal distribution.

2.2 Data Augmentation for the Binary Logit Regression

Model

The first data augmentation step was suggested by Scott (2004) in the context
of multinomial logit models and involves the well-known interpretation of a logit-
model in terms of utilities as introduced by McFadden (1974). Let yu

0i be the utility
of choosing category 0, which is assumed to be independent of any covariates for
identifiability reasons. Let yui be the utility of choosing category 1, which is modelled
as depending on covariates xi through:

yui = xiβ + εi. (2)

Then category 1 is observed, i.e. yi = 1, iff yui > yu
0i, otherwise yi = 0. If yu

0i and
εi follow a type I extreme value distribution, then the binary logit regression model
(1) results as the marginal distribution of yi.

The first step of data augmentation introduces for each i, i = 1, . . . , N , the latent
utility yui of choosing category 1 as missing data, with two desirable effects. First, the
full-conditional posterior distribution p(β|yu,y) of β, where additionally to y the
latent utilities yu = (yu

1
, . . . , yuN) appear as conditioning argument, is independent

of y, p(β|yu,y) = p(β|yu). Second, conditional on yu, the posterior of β could be
derived from regression model (2), which is non-normal, but linear in the unknown
model parameters β. Thus, the first augmentation step eliminates the non-linearity
of the logit model, the non-normality of the error term εi, however, remains. Scott
(2004) uses a Metropolis-Hastings algorithm based on various approximations to
this regression model, to sample the regression parameters β.

In the present paper, we go a step further, and eliminate also the non-normality
of the error term through a second step of data augmentation. Note that the error
term εi in (2) follows a type I extreme value distribution, which is independent of
any unknown model parameters:

p(εi) = exp{−εi − e−εi}. (3)

To obtain a model that is conditionally Gaussian, we approximate the non-normal
density p(εi) by a normal mixture of 5 components with parameters mr and sr for
the r-th component:

p(εi) = exp{−εi − e−εi} ≈
5∑

r=1

wrfN (εi;mr, s
2

r). (4)

This idea is influenced by the related articles of Kim et al. (1998) and Chib
et al. (2002), who used a normal mixture approximation of the density of a logχ2-
distribution in the context of stochastic volatility models. The appropriate pa-
rameters (wr,mr, s

2

r), r = 1, . . . , 5, however, are different for our problem and are
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Table 1: Normal mixture approximation of the density of the type I extreme value
distribution (5 components)

r 1 2 3 4 5
wr 0.2924 0.2599 0.2480 0.1525 0.0472
mr -0.0982 1.5320 0.7433 -0.8303 3.1428
s2

r 0.2401 1.1872 0.3782 0.1920 3.2375

tabulated in Table 1 for 5 components, a number that we found to be sufficiently
large in practice.1

Following Kim et al. (1998) and Chib et al. (2002), the mixture distribution
(4) is regarded as the marginal distribution of a problem where additional to εi the
component indicators ri are observed. The second step of our data augmentation
scheme introduces for each εi the latent component indicator ri as missing data.
Conditional on knowing the latent utility yui and the latent indicator ri, the binary
logit regression model (1) reduces to a Gaussian regression model with heteroscedas-
tic errors with known variance:

yui = xiβ +mri + εi, εi ∼ N
(
0, s2

ri

)
. (5)

For such a model it is well known, that the conditional posterior of β is a multivariate
normal density, see for instance Zellner (1971). This result is the basis for our new
two-block Gibbs sampler, that will be described in the next subsection.

2.3 A Two-Block Gibbs Sampler

A two-block Gibbs sampler results, if data augmentation as described in the pre-
vious section is applied for all observations. This leads to two sequences of la-
tent variables, the component indicators R = {r1, . . . , rN}, and the latent utilities
yu = {yu

1
, . . . , yuN}. Within our Gibbs sampling scheme, we select a starting value

for R = and yu, and repeat the following steps:

(a) Sample the whole regression parameter β conditional on knowing yu and R

based the normal regression model (5).

(b) Sample the latent utilities yu and the latent indicators R conditional on β

and y by running the following steps (b1) and (b2) for i = 1, . . . , N with
λi = exp(xiβ):

(b1) Sample the latent utility yui conditional on β and y as

yui = − log

(
−
log(Ui)

1 + λi
−

log(Vi)

λi
I{yi=0}

)
, (6)

where Ui and Vi are two independent uniform random numbers.

1This table is derived from a related table appearing in Frühwirth-Schnatter and Wagner (2004),
by observing that −εi has the same density as the log of an exponentially distributed random
variable.
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(b2) Sample the component indicators ri conditional on yui and β from the
following discrete density:

log Pr(ri = j|yui ,β) ∝ − log sj −
1

2

(
yui − xiβ −mj

sj

)2

+ logwj. (7)

The quantities (wj,mj, s
2

j), j = 1, . . . , 5 are the parameters of the finite
mixture approximation tabulated in Table 1.

Note that step (b) involves only draws from standard densities. Thus sampling
scheme (a) and (b) is actually a Gibbs sampler without any tuning. Step (b1) could
be used to sample starting values for yui for each i, given the observed binary data yi,
by choosing a starting values for λi = exp(xiβ). Starting values for each component
indicator ri are obtained as random draws from 1 to 5.

2.3.1 Details on the Sampling Steps

Conditionally on knowing yu = (yu
1
, . . . , yuN ) and R = (r1, . . . , rN ), the binary logit

model (1) reduces to the linear normal regression model (5). Therefore, in step (a),
the conditional posterior of β is given by the Nd (bN ,BN )-distribution, where

bN = BN

(
N∑

i=1

x
′

i(y
u
i −mri)/s

2

ri
+ B−1

0
b0

)
, (8)

B−1

N = B−1

0
+

N∑

i=1

x
′

ixi/s
2

ri
.

To verify the sampling steps (b1) and (b2), the posterior p(R,yu|y,β) is decomposed
as:

p(R,yu|y,β) = p(R|yu,y,β)p(yu|y,β).

The component indicators ri are mutually independent, given yu, β and y:

p(R|yu,y,β) =
N∏

i=1

p(ri|y
u
i ,β).

The posterior of each component indicator ri depends on the data only through yui ,
thus step (b2) follows immediately.

The latent utilities yui are independent, given y and β:

p(yu|y,β) =
N∏

i=1

p(yui |yi,β).

To sample yui form the conditional distribution p(yui |yi,β), we use some well-known
properties of the exponential distribution. First, from the relation between the type
I extreme value distribution and the exponential distribution, we obtain

exp(−yu
0i) ∼ E (1) , exp(−yui ) ∼ E (λi) , (9)
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where λi = exp(xiβ). Second, as the minimum of exponential random variables
follows again an exponential distribution, we obtain:

min(exp(−yu
0i), exp(−y

u
i )) ∼ E (1 + λi) . (10)

Third, knowing the minimum, the other random variable has a translated exponen-
tial distribution. In particular, if exp(−yu

0i) < exp(−yui ), then

exp(−yui ) = exp(−yu
0i) + ξi, ξi ∼ E (λi) . (11)

These results enable sampling of the latent utility yui , knowing yi. If yi = 1, then
yui > yu

0i, or equivalently, exp(−y
u
i ) < exp(−yu

0i). Therefore we obtain from (10):

exp(−yui ) ∼ E (1 + λi) . (12)

On the other hand, if yi = 0, then yui < yu
0i, or equivalently, exp(−y

u
0i) < exp(−yui ).

Therefore we obtain from (10) and (11):

exp(−yu
0i) ∼ E (1 + λi) , exp(−yui ) = exp(−yu

0i) + ξi, ξi ∼ E (λi) . (13)

By the help of two uniform random numbers Ui and Vi, (12) and (13) could be
written immediately as in formula (6) in step (b1).

3 Extension to Complex Binary Logit Models

To illustrate the great flexibility of our Gibbs sampling scheme, we consider in detail
more complex binary logit models, like binary state space models and binary logit
models with random effects.

3.1 Binary Regression Models with Time-Varying Parame-

ters

3.1.1 Background

Let {yt} be a time series of binary observations, observed for t = 1, . . . , T . Each yt is
assumed to take one of two possible values, labelled by {0, 1}. The probability that
yt takes the value 1 depends on covariates xt = (x1

t x2

t ) through fixed parameters α
and a time-varying parameters βst in the following way:

Pr(yt = 1|βs
1
, . . . ,βsT ,α) =

exp(x1

tα+ x2

tβ
s
t)

1 + exp(x1
tα+ x2

tβ
s
t )
. (14)

We assume that conditional on knowing βs
1
, . . . ,βsT ,α, the observations are mutually

independent. A commonly used model for describing the time-variation of βst reads:

βst = βst−1
+ wt, wt ∼ Nd (0,Q) , (15)

with βs
0
∼ N (β,B0). β and α are unknown location parameters, Q is an unknown

covariance matrix. Note that this model may be regarded as a special case of a more
general state space model for binary data.
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Markov chain Monte Carlo estimation of logit-type state space models has been
considered by various authors, in particular by Shephard and Pitt (1997). A char-
acteristic feature of any existing MCMC approach, however, is that practical imple-
mentation requires the use of a Metropolis-Hastings algorithm at least for part of
the unknown parameter vector, which in turn makes it necessary to define suitable
proposal densities, often in rather high-dimensional parameter spaces. Single-move
sampling for this type of models is known to be potentially very inefficient, see e.g.
Shephard and Pitt (1997). We are now going to illustrate in the following sub-
section how to implement a Gibbs sampling scheme for a binary regression models
with time-varying parameters, which is easily extended to more general state space
models.

3.1.2 Data Augmentation and Gibbs Sampling

The data augmentation scheme introduced in Section 2 for the standard regression
model is actually identical when we are dealing with a time series. A latent utility
yut of choosing category 1 is introduced for each yt, to eliminate the non-linearity of
the model:

yut = x1

tα+ x2

tβ
s
t + εt, (16)

where εt follows a type I extreme value distribution. To eliminate non-normality,
this distribution is approximated by a mixture of normals as in Subsection 2.2, and
a latent indicator rt is introduced for each yt. Let yu = {yu

1
, . . . , yuT} denote the

collection of all latent utilities, and let R = {r1, . . . , rT} denote the collection of all
latent component indicators. If we condition on the latent variables yu and R, we
obtain a linear Gaussian state space model with heteroscedastic errors with known
error variance:

βst = βst−1
+ wt, wt ∼ Nd (0,Q) , (17)

yut = x1

tα+ x2

tβ
s
t +mrt + srtεt, εt ∼ N (0, 1) , (18)

for t = 1, . . . , T , and βs
0
∼ N (β,B0). Thus it is easy to implement a three block

Gibbs sampler, which consists of the following steps:

(a) Multi-move sampling of βs
0
, . . . ,βsT ,β,α conditional on knowing yu, R, and

Q, based on the conditional linear Gaussian state space model (17) and (18).

(b) Sampling of Q conditional on knowing βs
0
, . . . ,βsT , based on the transition

equation (17) of the conditionally linear Gaussian state space model.

(c) Sampling of the utilities yu and the indicators R conditional on knowing
βs

1
, . . . ,βsT ,α, and y.

The most important aspect of our data augmentation scheme is that conditional on
yut and the indicators rt, we are dealing with a linear Gaussian state space model,
when sampling α,β and βsi in step (a) and sampling Q in step (b), where the binary
observation yt is substituted by the conditionally normal random variable yut , and
the error term follows a N (mrt , srt)-distribution. Thus for any state space model
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for binary data based on a logit link, step (a) and (b) in the Gibbs sampling scheme
introduced above are as simple as for the corresponding linear Gaussian state space
model. Step (a) and (b) involve standard Gibbs sampling for a linear Gaussian
state space model, which is particularly well-studied. In step (a), for instance, joint
multi-move sampling of all location parameters βs

1
, . . . ,βsT ,β,α is possible along the

lines indicated by Frühwirth-Schnatter (1994), Carter and Kohn (1994), De Jong
and Shephard (1995) and Durbin and Koopman (2002).

Step (c) is implemented by writing the posterior p(R,yu|y,βs
1
, . . . ,βsT ,α) as:

p(R,yu|y,βs
1
, . . . ,βsT ,α) =

T∏

t=1

p(rt|y
u
t ,β

s
t ,α)p(y

u
t |yt,β

s
t ,α).

Sampling of the latent utility yut and the component indicator rt is carried out exactly
as in Subsection 2.3:

yut = − log

(
−
log(Ut)

1 + λt
−

log(Vt)

λt
I{yt=0}

)
,

log Pr(rt = j|yut ,α,β
s
t ) ∝ − log sj −

1

2

(
yut − log λt −mj

sj

)2

+ logwj,

where Ut and Vt are two independent uniform random numbers, and λt = exp(x1

tα+
x2

tβ
s
t ).

3.2 The Binary Logit Random Effects Model

3.2.1 Background

Let {yit} , t = 1, . . . , Ti be repeated binary measurements, observed for N subjects
i = 1, . . . , N . Each yit is assumed to take one of two possible values labelled by
{0, 1}. The probability that yit takes the value 1 depends on covariates xit = (x1

it x
2

it)
through fixed parameters α and subject-specific parameters βsi in the following way:

Pr(yit = 1|βs
1
, . . . ,βsN ,α) =

exp(x1

itα+ x2

itβ
s
i )

1 + exp(x1

itα+ x2

itβ
s
i )
. (19)

We assume that conditional on knowing βs
1
, . . . ,βsN ,α, the observations are mutu-

ally independent. A commonly used prior for βsi reads βsi ∼ Nd (β,Q). α and β
are unknown location parameters, whereas Q is an unknown covariance matrix.

3.2.2 Data Augmentation and Gibbs Sampling

The data augmentation scheme introduced in Section 2 for the standard regression
model is easily extended to deal with repeated measurements. A latent utility yuit is
introduced for each yit, to eliminate the non-linearity of the model:

yuit = x1

itα+ x2

itβ
s
i + εit, (20)

where εit follows a type I extreme value distribution. To eliminate non-normality,
this distribution is approximated by a mixture of normals as in Subsection 2.2, and
an latent indicator rit is introduced for each yit.
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Let yu = {(yui1, . . . , y
u
i,Ti

), i = 1, . . . , N} denote the collection of all latent util-
ities, and let R = {(ri1, . . . , ri,Ti

), i = 1, . . . , N} denote the collection of all latent
component indicators. If we condition on the latent variables yu and R, we obtain a
Gaussian linear random-effects model with heteroscedastic errors with known error
variance:

βsi ∼ Nd (β,Q) , (21)

yuit = x1

itα+ x2

itβ
s
i +mrit + sritεit, εit ∼ N (0, 1) , (22)

for t = 1, . . . , Ti, i = 1, . . . , N . Thus it is easy to implement a three block Gibbs
sampler, which consists of the following steps:

(a) Multi-move sampling of βs
1
, . . . ,βsN ,β,α conditional on knowing yu, R, and

Q, based on the conditionally linear Gaussian random-effects model (22).

(b) Sampling of Q conditional on knowing βs
1
, . . . ,βsN ,β, based on (21).

(c) Sampling of the utilities yu and the indicators R conditional on knowing
βs

1
, . . . ,βsN ,α, and y.

An important aspect of our data augmentation scheme is that conditional on yu

and R, we are dealing with a linear Gaussian random effects model, when sampling
α,β and βsi in step (a) and Q in step (b), where the binary observation yit is
substituted by a conditionally normal random variable yuit, and the error term follows
a N (mrit , srit)-distribution. Thus for a binary logit model with random effects, step
(a) and (b) in the Gibbs sampling scheme introduced above are as simple as for
the corresponding linear Gaussian random-effects model. In step (a), joint multi-
move sampling of all location parameters βs

1
, . . . ,βsN ,β,α is possible along the lines

indicated by Frühwirth-Schnatter et al. (2004), see also Frühwirth-Schnatter and
Otter (1999) and Sahu and Roberts (1999), by sampling (β,α) from the marginal
model, where the random effects are integrated out. We provide details in the next
subsection.

Step (c) is implemented by writing the joint posterior p(R,yu|y,βs
1
, . . . ,βsN ,α)

as:

p(R,yu|y,βs
1
, . . . ,βsN ,α) =

N∏

i=1

Ti∏

t=1

p(yuit|yit,β
s
i ,α)p(rit|y

u
it,β

s
i ,α).

Sampling of yuit is possible in terms of two uniform random variables Uit and Vit:

yuit = − log

(
− log(Uit)

1 + λit
−

log(Vit)

λit
I{yit=0}

)
,

with λit = exp(x1

itα+x2

itβ
s
i ), whereas each component indicator rit is sampled from

following discrete distribution:

log Pr(rit = j|yuit,α,β
s
i ) ∝ − log sj −

1

2

(
yuit − log λit −mj

sj

)2

+ logwj.
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3.2.3 Multi-move Sampling of all Regression Parameters

In this subsection we provide details on multi-move sampling of βs
1
, . . . ,βsN ,β,α

from the posterior

p(βs
1
, . . . ,βsN ,β,α|y

u,R,Q) =
N∏

i=1

p(βsi |α,β,y
u,R)p(α,β|yu,R,Q). (23)

First we sample α and β from the marginal posterior p(α,β|yu,R,Q), where the
random effects are integrated out, whereas we sample the random effects conditional
on α and β.

For a fixed unit i, the marginal model is equal to a multivariate regression model,

yui = X1

iα+ X2

iβ +mi + εi, εi ∼ NTi
(0,Vi) , (24)

using the matrix notation

yui =




yui1
...

yui,Ti


 , X1

i =




x1

i1
...

x1

i,Ti


 , X2

i =




x2

i1
...

x2

i,Ti


 , mi =




mri1
...

mri,Ti


 , εi =




εi1
...

εi,Ti




with regression parameter (α,β), and error variance-covariance matrix Vi given by:

Vi = X2

iQ(X2

i )
′

+Di, Di = Diag
(
s2

ri1
, . . . , s2

ri,Ti

)
.

Assume a joint normal priorNd (b0,B0) for (α,β). Then the posterior p(α,β|yu,R,Q)
of (α,β) is a joint normal distribution Nd (bN ,BN), where

B−1

N = B−1

0
+

N∑

i=1

(Xi)
′

V−1

i Xi, bN = BN

(
B−1

0
b0 +

N∑

i=1

(Xi)
′

V−1

i (yui −mi)

)
,

Xi =
(

X1

i X2

i

)
.

For each i = 1, . . . , N , the conditional posteriors p(βsi |α,β,y
u,R) are easily derived

to be equal to normal density N (ai(α,β),Ai) with following posterior moments:

A−1

i = Q−1 + (X2

i )
′

D−1

i X2

i , ai(α,β) = Ai

(
Q−1β + (X2

i )
′

D−1

i (yui −X1

iα−mi)
)
.

3.3 Application to Austrian Wage Data

3.3.1 The Data

We consider a panel of Austrian employees who are observed between 1986 and 1998
on May 31st of each year. The data were obtained from the social security records
in Austria (Weber 2001). The social security authority collects detailed data for all
worker, but we use here only a random sample of N = 4376 individuals. We consider
the variable yit, which observes if individual i has zero-income in year t (yit = 0) or
not (yit = 1), as dependent variable. Thus in this subsection we will consider only
two states, namely wether an individual i has any income in year t or not, a wage
variable yit with more categories will be considered in Section 4.3.
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The number of available individual characteristics is rather small and incomplete.
In particular there is no information on education, working time or family affiliation.
The covariates that are available are x1

it = (byearstdi femi changeitwhcollarit yi,t−1)
were:

byearstdi . . . year of birth of the person (standardized over all observations)
femi . . . binary, 1 if the person is female, 0 otherwise

changeit . . . binary, 1 if the persons employers in year t and t− 1
are different, 0 otherwise

whcollarit . . . binary, 1 if the person is white-collar employee, 0 otherwise
yi,t−1 . . . binary, 1 if person i had nonzero income in year t− 1

3.3.2 A Binary Logistic Model with Overdispersion

To analyze these data, we will consider a binary logit regression model which cap-
tures overdispersion due to omitted covariates. A common way of dealing with this
kind of overdispersion is the individual effects model, see Aitkin (1996), where the
regression intercept varies between the units:

logitPr(yi = 1) = βsi + x1

itα, (25)

where βsi ∼ N (β, σ2

α). Thus overdispersion is modelled on the same level as the
linear predictor. Note that x2

it = 1. Marginally, this model is an infinite mixture
of logistic regression models with no closed form. Aitkin (1996) suggested to ap-
proximate the marginal distribution by a mixture of logit regression models using
Gaussian-Hermite quadrature. Our data augmentation scheme leads to a normal
random-effects regression model, where the whole sequence (βs

1
, . . . , βsN , β,α) could

be sampled simultaneously in an efficient manner.

3.3.3 Bayesian Posterior Inference

To show that multi-move sampling has considerable effect on the efficiency of the
MCMC sampler, we compare the multi-move Gibbs sampler introduced in Subsec-
tion 3.2.2 with an alternative Gibbs sampler, where α and β are sampled conditional
on knowing βs

1
, . . . , βsN , rather than from the marginal density. In our example both

Gibbs-samplers, i.e. the 2-step sampler as described in Subsection 3.2.2 and the
marginal sampler, where the random effects are integrated out, perform quite well.
Anyway the marginal Gibbs-sampler has better mixing properties and a shorter
burn-in phase (see Figure 1). Furthermore the autocorrelation of the marginal
Gibbs-sampler is clearly less than the autocorrelation of the 2-step Gibbs-sampler
(see Figure 2).

The parameter-estimates, standard deviations and 95% credible regions have
been computed for both samplers after cutting off the first 1000 simulations. The
results for the fixed parametersα are given in Table 2. The estimates are very similar
both for the 2-step- and the marginal Gibbs-sampler. Apart from age, all other
covariates have a significant influence on the probability of having a non-zero income.
The strongest influence on the probability of having a non-zero income is given by a
person’s immediate income history. For two persons with different income history,
which otherwise share identical values of (byearstdi femi changeitwhcollarit), the

11
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Table 2: Parameter estimates of the 2-step- and marginal Gibbs-sampler

2-step sampler marginal sampler
mean std.dev. 95% credible region mean std.dev. 95% credible region

α1 -.01829 0.01162 [-0.04107; 0.003517] -.01742 0.01384 [-0.04472; 0.009462]
α2 -0.5208 0.02119 [-0.5617; -0.4797] -0.5165 0.02391 [-0.5638; -0.4698]
α3 -0.3494 0.02756 [-0.4016; -0.2913] -0.3416 0.02612 [-0.3934; -0.2918]
α4 -0.3427 0.02312 [-0.3886; -0.2962] -0.3358 0.02587 [-0.3868; -0.2864]
α5 3.416 0.02106 [3.379; 3.461] 3.364 0.0327 [3.301; 3.43]

odd ratio of having income versus having no income in year t is e3.364 ≈ 29 times
larger for a person with non-zero income in year t − 1 than for a person with no
income in year t− 1. For two persons with different gender, which otherwise share
identical values of (byearstdi changeitwhcollarit yi,t−1), being a women rather than
a man reduces the odd ratio of having income versus having no income by the factor
e−0.5165 ≈ 0.6.

Figure 3 shows the empirical distribution of β̂si , which for each person is estimated
as the mean over all MCMC draws, after cutting off the first 1000 simulations.
Interestingly the posterior distribution of the subject-specific parameter-estimates
over the population is a mixture distribution, which two groups of employee. Given
identical covariates x1

it, for one group the expected value of βsi lies significantly above
zero, whereas for a second group the expected value of βsi lies significantly below
zero.

13



4 Multinomial Logit Models

4.1 The Multinomial Logit Regression Model

4.1.1 Background

Let {yi} be a sequence of categorical data, i = 1, . . . , N , where each yi is assumed to
take a value in one of m+1 categories, labelled by {0, . . . ,m}. For each category k,
with 1 ≤ k ≤ m, the probability that yi takes the category k depends on covariates
xi in the following way:

Pr(yi = k|β
1
, . . . ,βm) =

exp(xiβk)

1 +
∑m

l=1
exp(xiβl)

, (26)

where β
1
, . . . ,βm are category specific, unknown parameters. To make the model

identifiable, the parameter β
0
of the baseline category k = 0 is set equal to 0: β

0
= 0.

Finally, we assume that conditional on knowing β
1
, . . . ,βm, the observations are

mutually independent.

4.1.2 Data Augmentation for Multinomial Logit Models

As for binary models, we consider two data augmentation steps. The first data
augmentation step was suggested by Scott (2004) and involves the well-known in-
terpretation of a logit-model in terms of utilities as introduced by McFadden (1974).
The latent utility yuki of observing the category k for observation yi is modelled as
being dependent on covariates:

yu
1i = xiβ1

+ ε1i, (27)

· · ·

yumi = xiβm + εmi,

whereas the latent utility yu
0i of observing the category 0 for observation yi is in-

dependent of any covariates for reasons of identifiability. The observed category is
equal to the category with maximal utility:

yi = k ⇔ yuki = max
l
yuli

It was shown by McFadden (1974), that if εki, k = 1, . . . ,m, and yu
0i follow a type I

extreme value distribution, the multinomial logit model (26) results as the marginal
distribution of yi.

The first data augmentation step introduces for each categorical observation yi
the latent utilities yui = (yu

1i, . . . , y
u
mi) as missing data as in Scott (2004). Conditional

on yui , we are dealing with the linear model (27), rather than with the non-linear
model (26). Scott (2004) uses this result to define multivariate proposal densities
with a Metropolis-Hastings algorithm. In this paper, we obtain a model that is
conditionally Gaussian by approximating the non-normal density of εki, for k =
1, . . . ,m, by a normal mixture as above. The second step of our data augmentation
scheme introduces for each εki the latent component indicator rki as missing data.

14



4.1.3 Gibbs Sampling

Let yu = {yu
1i, . . . , y

u
mi, i = 1, . . . , N, } denote the collection of all latent utilities, and

let R = {r1i, . . . , rmi, i = 1, . . . , N} denote the collection of all latent component
indicators. Then conditional on yu and R we are dealing for each k = 1, . . . ,m with
following linear regression model:

yuki = xiβk +mrki
+ srki

εki, εki ∼ N (0, 1) . (28)

Again it is easy to implement a two-block Gibbs sampler, which consists of the
following steps:

(a) Independent sampling of β
1
, . . . ,βm conditional on knowing yu and R, based

on the Gaussian regression model (28).

(b) Sampling of the utilities yu and the indicators R conditional on knowing
β

1
, . . . ,βm and y.

Step (a) is carried out in an obvious manner. Step (b) extends the results of Sub-
section 2.3 to more than two categories. The joint posterior p(R,yu|y,β

1
, . . . ,βm)

is decomposed as:

p(R,yu|y,β
1
, . . . ,βm) =

N∏

i=1

m∏

k=1

p(rki|y
u
ki,βk)p(y

u
1i, . . . , y

u
mi|yi,β1

, . . . ,βm).

The component indicator rki is sampled from:

log Pr(rki = j|yuki,βk) ∝ − log sj −
1

2

(
yuki − xiβk −mj

sj

)2

+ logwj.

To sample from p(yu
1i, . . . , y

u
mi|yi,β1

, . . . ,βm), we sample from the augmented pos-
terior p(yu

0i, . . . , y
u
mi|yi,β1

, . . . ,βm). For fixed i, the latent utilities yu
0i, . . . , y

u
mi, are

stochastically dependent, and the joint distribution factorizes as, see Scott (2004):

p(yu
0i, . . . , y

u
mi|yi = k,β

1
, . . . ,βm)

= p(yuki|yi = k,β
1
, . . . ,βm)

∏

l=0,...,m,l 6=k

p(yuli|yi = k,β
1
, . . . ,βm).

As εki, k = 1, . . . ,m, and yu
0i follow a Type I extreme value distribution, we obtain:

exp(−yu
0i) ∼ E (λ0i) , (29)

exp(−yu
1i) ∼ E (λ1i) ,

· · ·

exp(−yumi) ∼ E (λmi) ,

where λ0i = 1, and λki = exp(xiβk), for 1 ≤ k ≤ m. Given yi = k, yuki is known to
the maximal utility. Thus exp(−yuki) is the minimum among all random variables
appearing in (29), and therefore:

exp(−yuki) ∼ E

(
1 +

m∑

l=1

λli

)
. (30)
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Given the minimum, all other utilities are conditionally independent:

exp(−yuli) = exp(−yuki) + ξli, ξli ∼ E (λli) , (31)

where l = 1, . . . ,m, l 6= k. Therefore to sample yuli, we simply need two independent
uniform random numbers Uli and Vli:

yuli = − log

(
−

log(Uli)

1 +
∑m

k=1
λki

−
log(Vli)

λli
I{yi 6=l}

)
, (32)

where l = 1, . . . ,m, and i = 1, . . . , N .

4.2 Multinomial Logit Models with Random-Effects

4.2.1 Background

Let {yit} , t = 1, . . . , T, be repeated categorical data observed for N subjects i,
i = 1, . . . , N . Each yit is assumed to take a value in one of m+1 categories, labelled
by {0, . . . ,m}.

For category k, with 1 ≤ k ≤ m, the probability that yit takes the category k
depends on covariates xit = (x1

it x
2

it) through fixed category specific parameters αk

and subject-specific random category parameters βski in the following way:

Pr(yit = k|α1, . . . ,αm,β
s
1i, . . . ,β

s
mi) =

exp(x1

itαk + x2

itβ
s
ki)

1 +
∑m

l=1
exp(x1

itαl + x2

itβ
s
li)
. (33)

To make the model identifiable, the parameters of the baseline category k = 0 are
set equal to 0: α0 = 0, βs

0i = 0, i = 1, . . . , N . Finally, we assume that conditional on
knowing all βski and αk, the observations are mutually independent. A commonly
used prior for βski reads:

βski ∼ Nd (βk,Q) . (34)

4.2.2 Data Augmentation and Gibbs Sampling

The first data augmentation step introduces for each subject i the latent utilities
yukit, k = 1, . . . ,m, of choosing category k at time t. Then

yu
1it = x1

itα1 + x2

itβ
s
1i + ε1it, (35)

· · ·

yumit = x1

itαm + x2

itβ
s
mi + εmit,

where εkit, k = 1, . . . ,m follows a type I extreme value distribution. The second
step of our data augmentation scheme, approximates the type I extreme value dis-
tribution by a mixture of univariate normal distributions, and introduces for each
εkit the latent component indicator rkit as missing data.

Let R = {rkit, i = 1, . . . , N, t = 1, . . . , T, k = 1, . . . ,m} denote the collection of
all component indicators and the yu = {yu

1it, . . . , y
u
mit, i = 1, . . . , N, t = 1, . . . , T} de-

note the collection of all latent propensities. Select a starting value for the unknown
model parameter Q, the component indicators R and the latent propensities yu. A
three block Gibbs sampler can easily implemented, which consists of the following
steps:
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(a) Multi-move sampling of (βsk1, . . . ,β
s
kN ,βk,αk), k = 1, . . . ,m, conditional on

knowing yu, R, and Q, based on the conditional Gaussian linear random-
effects model (35).

(b) Sampling of Q conditional on knowing (βsk1, . . . ,β
s
kN ,βk), k = 1, . . . ,m, based

on (34).

(c) Sampling of the utilities yu and the indicators R conditional on knowing
(βsk1, . . . ,β

s
kN ,βk,αk), k = 1, . . . ,m, and y.

Step (c) is implemented as above, by observing that:

p(R,yu|y,βs
11
, . . . ,βs

1N , . . . ,β
s
m1
, . . . ,βsmN ,β1

, . . . ,βm,α1, . . . ,αm,Q) =
N∏

i=1

T∏

t=1

p(yu
1it, . . . , y

u
mit|yit,β

s
1i, . . . ,β

s
mi,α1, . . . ,αm)

m∏

k=1

p(rkit|y
u
kit,β

s
ki,αk).

To sample yukit, we simply need two independent uniform random numbers Ukit and
Vkit:

yukit = − log

(
−

log(Ukit)

1 +
∑m

l=1
λlit

−
log(Vkit)

λkit
I{yit 6=k}

)
, (36)

where λkit = exp(x1

itαk + x2

itβ
s
ki), whereas each component indicator rkit is sampled

from a discrete distribution with j = 1, . . . ,M categories:

log Pr(rkit = j|yukit,β
s
ki,αk) ∝ − log sj −

1

2

(
yukit + log λkit −mj

sj

)2

+ logwj.

4.3 Application to the Austrian Labor Market

4.3.1 The Data

We reanalyze the data of Subsection 3.3, with the same wage categories as in Weber
(2001). The wage of individual i in year t is modelled as a categorical variable yit
with states k ∈ {0, 1, . . . , 5}, where category 0 corresponds to the no-income class.
Non-zero wage data were categorized according to the quintiles of the yearly wage
distribution into 5 income classes, coded as 1 to 5. For t = 0, . . . , T , yit takes the
value k, if person i belonged to wage category k at time t. The covariates are x1

it =
(byearstdi, femi, changeit, whcollarit, I{yi,t−1=1}, . . . , I{yi,t−1=5}) where the first four
covariates have the same meaning as in Subsection 3.3, whereas I{yi,t−1=l} captures
the immediate income history of each person and takes 1 iif yi,t−1 = l. To account
for unobserved heterogeneity, we fit the multinomial logit model with random effects
defined in (33), where x2

it = 1. Thus a random intercept βski is introduced for each
employee for each wage category k = 1, . . . , 5.

4.3.2 Bayesian Posterior Inference

As in the binary example both Gibbs-samplers, i.e. the 2-step sampler as described
in Subsection 4.2.2 and the marginal sampler, where the random effects are inte-
grated out, were applied. Again the marginal Gibbs-sampler has better mixing prop-
erties and a shorter burn-in phase. Furthermore the autocorrelation of the marginal
Gibbs-sampler is clearly less than the autocorrelation of the 2-step Gibbs-sampler.
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The parameter-estimates, standard deviations and 95% credible regions have
been computed for both samplers after cutting off the first 1000 simulations. The
results for the fixed parameters α obtained from the marginal sampler are given in
Table 3. The k-th column of this table corresponds to the effect of the different
covariates on the probability to be in wage category k. Again we find a strong
influence of a person’s wage history on the odds of being in wage category k as
opposed to be in any other wage category. For two persons, which share identical
values of (byearstdi femi changeitwhcollarit), the odds of being in wage category k
as opposed to be in any other wage category in year t, is between e1.26 ≈ 3.5(k = 1)
and e1.66 ≈ 5.3(k = 5) times larger for a person with the same wage category in year
t− 1 than for a person with a different wage category in year t− 1. This indicates
considerable wage immobility in the Austrian labor market. Again gender has a con-
siderable effect. For each non-zero wage category, being a women rather than being
a man reduces the chance of belonging to this wage category. This negative effect of
gender increase with increasing wage category. For two persons with different gen-
der, which otherwise share identical values of (byearstdi changeitwhcollarit yi,t−1),
being a women rather than a man reduces the odd ratio of belonging to the highest
income class versus belonging to any other income class by the factor e−0.665 ≈ 0.51.

Also in this example it is worth while to take a closer look at the distributions
of the estimates β̂ski. First, we show the mean β̂sk of all β̂ski for k = 1, . . . , 5 in

Table 3. Next, Figure 4 estimates the empirical distributions of β̂ski, k = 1 . . . 5,
over the individuals, by a histogram, whereas the scatter plots in Figure 4 show
all 10 2-dimensional empirical distributions of (β̂ski, β̂

s
mi), 1 ≤ k < m ≤ 5 over

the individuals. Apparently these distributions not are very different across the
categories, which suggest that a simplified models, where βski ≡ βsi for all wage
categories, might be a sensible simplification of this model.

5 Concluding Remarks

In this paper we introduced a new data augmentation algorithm for sampling the
parameters of a binary or multinomial logit model from their posterior distribution
within a Bayesian framework. The algorithm leads to a convenient Gibbs sampler
that draws from standard distributions like normal or exponential distributions and
does not require any tuning. This Gibbs sampler can be easily implemented for any
binary or multinomial logit model, where the predictor is linear in the unknown
parameters, with covariates being categorical as well as continuous. We gave details
for standard regression models as well as for random effect and time-varying param-
eter models. Extension to more complex models including logistic components are
straightforward.

Whereas to our knowledge, so far Gibbs sampling has been unfeasible for logit
models, it has been known for a long while how to implement Gibbs sampling for the
alternative probit model, see in particular Albert and Chib (1993) and McCulloch
and Rossi (1994). This technical advantage of the probit over the logit model partly
explain why most of the Bayesian analysis of binary and categorical data is based
on the probit model. With the new Gibbs sampler for logit model discussed in this
paper, the technical superiority of the probit model is no longer prevalent, and we
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Table 3: Parameter estimates of the marginal Gibbs-sampler
mean

(std.dev.) k = 1 k = 2 k = 3 k = 4 k = 5
αk1 0.04695 0.07234 0.03718 0.01291 -0.0427

(byearstd) (0.01422) (0.01413) (0.01421) (0.01432) (0.01414)

αk2 -0.1367 -0.383 -0.54 -0.5854 -0.6654
(fem) (0.02703) (0.02811) (0.02615) (0.027) (0.02717)

αk3 0.5949 0.3623 0.1006 -0.01627 -0.04776
(change) (0.02779) (0.0268) (0.02858) (0.02897) (0.02887)

αk4 -0.4846 -0.495 -0.4236 -0.3033 -0.1319
(whcollar) (0.02769) (0.0283) (0.02807) (0.027) (0.02913)

αk5 1.26 0.3586 0.1782 0.1134 0.08114
(I{yi,t−1=1}) (0.02974) (0.03447) (0.03686) (0.03838) (0.03864)

αk6 0.0148 1.439 0.5886 0.1404 0.07939
(I{yi,t−1=2}) (0.03584) (0.03176) (0.0338) (0.03705) (0.03622)

αk7 -0.1052 0.2683 1.511 0.5532 0.07822
(I{yi,t−1=3}) (0.03688) (0.03751) (0.03097) (0.03609) (0.03913)

αk8 -0.08991 0.0838 0.385 1.601 0.3921
(I{yi,t−1=4}) (0.042) (0.03887) (0.03608) (0.03209) (0.03593)

αk9 -0.04503 0.125 0.2105 0.3465 1.661
(I{yi,t−1=5}) (0.04369) (0.04206) (0.03997) (0.04118) (0.03612)

β̂sk -0.2755 -0.2293 -0.2372 -0.2566 -0.3149
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hope that more principled approaches of comparing logit and probit models, like
Bayes factors, will lead to more data orienting decision concerning the choice of the
appropriate link function.

References

Aitkin, M. (1996). A general maximum likelihood analysis of overdispersion in
generalized linear models. Statistics and Computing 6, 251–262.

Albert, J. H. (1992). A Bayesian analysis of a Poisson random-effects model.
American Statistician 46, 246–253.

Albert, J. H. and S. Chib (1993). Bayes inference via Gibbs sampling of autore-
gressive time series subject to Markov mean and variance shifts. Journal of

Business & Economic Statistics 11, 1–15.

Carter, C. K. and R. Kohn (1994). On Gibbs sampling for state space models.
Biometrika 81, 541–553.

Chib, S., E. Greenberg, and R. Winkelmann (1998). Posterior simulation and
Bayes factors in panel count data models. Journal of Econometrics 86, 33–54.

Chib, S., F. Nardari, and N. Shephard (2002). Markov chain Monte Carlo methods
for stochastic volatility models. Journal of Econometrics 108, 281–316.

De Jong, P. and N. Shephard (1995). The simulation smoother for time series
models. Biometrika 82, 339–350.

Durbin, J. and S. J. Koopman (2002). A simple and efficient simulation smoother
for state space time series analysis. Biometrika 89, 603–615.
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