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Abstract

In this article we consider parameter-driven models of time series of counts,

where the observations are assumed to arise from a Poisson distribution with

a mean changing over time according to a latent process. Estimation of these

models is carried out within a Bayesian framework using data augmentation

and Markov chain Monte Carlo methods. We suggest a new auxiliary mix-

ture sampler, which possesses a Gibbsian transition kernel, where we draw

from full conditional distributions belonging to standard distribution families

only. Emphasis lies on application to state space modelling of time series of

counts. Nevertheless we show that auxiliary mixture sampling is more general

than that and may be applied to a wide range of parameter-driven models,

including random-effects models and panel data models based on the Poisson

distribution.

Key words: count data, data augmentation, finite mixture approximation,

Gibbs sampling, partially Gaussian state space models

1 Introduction

Applied statisticians commonly have to deal with time series of counts, modelling the
number of events occurring in a given interval. Typical examples are the number of
road accidents recorded during a given period or data on disease occurrences. Such
data are necessarily non-negative integers and it is often appropriate to assume
that the observed process yt follows a Poisson distribution. To capture the effect of
exogenous variables, summarized in the row vector Zt, a log-linear model could be
applied, where

yt|λt ∼ Poisson (λt) , λt = exp(Z
′

tβ),

with λt being the mean of the time series observation yt given β, and β being a vector
of unknown coefficients to be estimated from the data. In the standard log-linear
model it is assumed that the count observations are independent. To account for the
dependence likely to be present in time series data of counts, various extensions of the
log-linear model have been suggested which, following Cox (1981), may be broadly
characterized as parameter-driven and observation-driven models. For observation
driven models, the mean structure of the conditional distribution of yt given past
observations yt−1, yt−2, . . ., is directly specified as a function of these observations, see
for instance Zeger and Qaqish (1988). In this article we consider parameter-driven
models, where dependence among observations is introduced indirectly through a
latent process, for instance a hidden Markov chain as in Leroux and Puterman
(1992), or a latent stationary autoregressive process as in Zeger (1988) and Chan
and Ledolter (1995). More general state-space models based on a first order hidden
Markov process have been considered by, among others, West et al. (1985), and
Harvey and Fernandes (1989). A key property of parameter-driven models is that
the distribution of yt is allowed to depend on this latent process, and although the
observations are correlated marginally, conditional upon knowing the latent process
typically they are independent.

Estimation of parameter-driven Poisson time series models often turns out to be
a challenging problem. In some cases, like hidden Markov chain models, maximum
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likelihood estimation is straightforward, for other models maximum likelihood is
hampered by the fact that the marginal likelihood, where the latent process is inte-
grated out, is not available in closed form. Each evaluation of the likelihood function
requires to use some numerical method for solving the necessary high-dimensional
integration. One particular useful method in this respect is importance sampling
which was applied in Durbin and Koopman (2000) to state space modelling of count
data, see also Durbin and Koopman (2001).

Alternatively, estimation of these models is feasible within a Bayesian framework
using data augmentation as in Tanner and Wong (1987) and Markov chain Monte
Carlo methods, as illustrated first by Zeger and Karim (1991) for generalized linear
models with random effects. Since this seminal paper, a number of authors have
contributed to Markov chain Monte Carlo estimation of parameter-driven models for
count data. We mention here in particular Albert (1992) for Poisson random-effects
models, Wakefield et al. (1994) for more general random effect models, Shephard
and Pitt (1997) for non-Gaussian time series models based on distributions from
the exponential family, Gamerman (1998) for dynamic generalized linear models,
Chib et al. (1998) for panel count data models with multiple random effects, Lenk
and DeSarbo (2000) for mixtures of generalized linear models with random effects,
and Chib and Winkelmann (2001) for correlated multivariate count data. A major
difficulties with any of the existing Markov chain Monte Carlo approaches, however,
is that practical implementation requires the use of a Metropolis-Hastings algorithm
at least for part of the unknown parameter vector, which in turn makes it necessary
to define suitable proposal densities in rather high-dimensional parameter spaces.
Single-move sampling for this type of models is likely to be very inefficient, see e.g.
Shephard and Pitt (1997).

The main contribution of the present article is to show how to design an approx-
imate, yet very accurate, straightforward Gibbs sampling scheme for all unknown
quantities, requiring only random draws from standard distributions such as mul-
tivariate normals, inverse Gamma, exponential and discrete distributions with a
few categories. Although we focus on state space models for Poisson counts, any
other model with Poisson counts and some linear structure in the log intensity may
estimated in a similar way.

This rather unexpected result is achieved by introducing two sequences of latent
variables through data augmentation. The first of these sequences are the unob-
served inter-arrival times of suitably chosen Poisson processes. The introduction of
this first sequence eliminates the non-linearity of the observation equation, whereas
the non-normality of the error term, which is minus the logarithm of a random vari-
able from the standard exponential distribution, remains. The distribution of the
error term is then approximated by a mixture of normal distributions in a similar
way as in Kim et al. (1998) and Chib et al. (2002) who used a normal mixture
approximation for the distribution of the logarithm of a random variable following
a χ2-distribution in the context of stochastic volatility models. By introducing the
component indicator of the normal mixture approximation as a second sequence of
missing data, the resulting model may be thought of as a partially Gaussian model
as in Shephard (1994), and Gibbs sampling becomes feasible. This will be shown to
be particularly useful for state space models for Poisson time series, as multi-move-
sampling of the whole state process through forward-filtering backward sampling as
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in Frühwirth-Schnatter (1994b), Carter and Kohn (1994), de Jong and Shephard
(1995) and Durbin and Koopman (2002) is feasible.

The rest of the paper is organized as follows. In Section 2, we introduce in
detail our new method of data augmentation for parameter-driven models based on
the Poisson distribution, that will be exploited in Section 3 to implement a Gibbs
sampling scheme for these models. Applications to state space modelling of Austrian
road safety data are considered in Section 4, whereas Section 5 concludes.

2 Data Augmentation for Parameter-Driven Mod-

els based on the Poisson Distribution

2.1 Model Specification

Let y1, . . . , yT be a sequence of count data, observed at discrete, evenly spaced time
points. In what follows, we assume that yt|λt follows a Poisson (λt) distribution,
where the risk λt is allowed to depend on exogenous information Zt = (Z1

t Z
2
t )

through fixed model parameters α and time-varying model parameters βt in the
following way:

yt|λt ∼ Poisson (λt) , (1)

λt = exp(Z1
t α + Z2

t βt). (2)

The precise model for βt will be left unspecified at this stage, we only assume that the
joint distribution p(α, β1, . . . , βT |θ) follows a normal distribution, which is allowed
to be indexed by an unknown model parameter θ. Furthermore we assume that
conditional on knowing α, β1, . . . , βT , the observations yt|λt and ys|λs are mutually
independent.

These model assumptions are sufficient to derive the conditional posterior density
p(α, β1, . . . , βT |θ, y) formally by Bayes’ theorem, given the whole time series y =
(y1, . . . , yT ), the resulting posterior density, however, in general does not belong to a
density from a well-known distribution family. Although log λt in (2) is linear in the
unknown model parameters α, β1, . . . , βT , the presence of the Poisson distribution
in the observation equation (1) causes non-normality as well as non-linearity of
the mean λt in α, β1, . . . , βT . We are going to demonstrate in this section, how the
introduction of two sequences of artificially missing data within a data augmentation
scheme eliminates both non-normality and non-linearity and leads to a conditional
posterior distribution for α, β1, . . . , βT that is a multivariate normal distribution,
once we conditioned on the artificially missing data.

2.2 Step 1: Data augmentation through hidden inter-arrival

times

For each t, the distribution of yt|λt may be regarded as the distribution of the number
of jumps of an unobserved Poisson process with intensity λt, having occurred in the
time interval [0,1]. The first step of data augmentation creates such a Poisson
process for each observation yt, t = 1, . . . , T , and introduces the inter-arrival times
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τtj, j = 1, . . . , (yt + 1) of this Poisson process as missing data. From the basic
properties of a Poisson process, the inter-arrival times τtj are known to follow the
Exponential (λt)-distribution, therefore:

τtj|α, βt =
ξtj
λt

, ξtj ∼ Exponential (1) .

This may be reformulated as following linear model:

− log τtj|α, βt = Z1
t α + Z2

t βt + εtj, (3)

where εtj = − log ξtj with ξtj ∼ Exponential (1).
Let τ = {τtj, j = 1, . . . , (yt + 1), t = 1, . . . , T} denote the collection of all

inter-arrival times. Our first data augmentation step introduces the inter-arrival
times τ as missing data, with two effects. First, the full-conditional posterior
distribution p(α, β1, . . . , βT |θ, τ, y) of α, β1, . . . , βT , where additionally to θ and y
the inter-arrival times τ appear as conditioning argument, is independent of y:
p(α, β1, . . . , βT |θ, τ, y) = p(α, β1, . . . , βT |θ, τ). Second, conditional on τ , we are deal-
ing with model (3), which is non-normal, but where the mean of the observation
equation is linear in the unknown model parameters α, β1, . . . , βT :

E(− log τtj|α, βt) = Z1
t α + Z2

t βt + 0.57722.

2.3 Step 2: Data augmentation through a Mixture Approx-

imation

Whereas the first augmentation steps eliminates the non-linearity of the observation
equation, the non-normality of the error term, however, remains. It is important
to realize that the error term in (3) may be represented as minus log of a random
variable from the standard exponential distribution. The density pε(ε) of such a
random variable is independent of any unknown model parameter and reads:

pε(ε) = exp{−ε− e−ε}.

To obtain a model that is conditionally Gaussian, we approximate this non-normal
density by a normal mixture of R components with parameters mr and sr for the
r-th component:

pε(ε) = exp{−ε− e−ε} ≈ qR,ε(ε) =
R
∑

r=1

wrfN(ε;mr, s
2
r). (4)

This idea is influenced by the related articles of Kim et al. (1998) and Chib et al.
(2002), who used a normal mixture approximation of the density of a logχ2-distribution
in the context of stochastic volatility models. The appropriate parameters (wr,mr, s

2
r), r =

1, . . . , R, however, are different for our problem. They were determined for R =
2, . . . , 10 numerically by minimizing the Kullback-Leibler distance between the true
density and the mixture approximation, see Frühwirth-Schnatter and Frühwirth
(2005) for further details. The parameters (wr,mr, s

2
r) are tabulated in Table 1

for R = 10, whereas Figure 1 compares the true density with a normal mixture
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Table 1: Normal mixture approximation with 10 components of the density of
− log ξ, where ξ ∼ Exponential (1)

r 1 2 3 4 5 6 7 8 9 10
wr 0.00397 0.0396 0.168 0.147 0.125 0.101 0.104 0.116 0.107 0.088
mr 5.09 3.29 1.82 1.24 0.764 0.391 0.0431 -0.306 -0.673 -1.06
s2

r 4.5 2.02 1.1 0.422 0.198 0.107 0.0778 0.0766 0.0947 0.146

−4 −2 0 2 4 6 8 10 12
−4

−2

0

2

4
x 10

−4 Normal mixture with 10 components − absolute difference

Figure 1: Difference between the ten component normal mixture approximation
given by Table 1 and the density of − log ξ, where ξ ∼ Exponential (1)

approximation based on 10 components, by plotting the difference between these
densities.

Following Kim et al. (1998) and Chib et al. (2002), the density pε(εtj) in (3) is
approximated for each t and j by the mixture approximation qR,ε(εtj). The second
step of our data augmentation scheme introduces for each εtj the latent component
indicator rtj as missing data. Let S = {rtj, j = 1, . . . , (yt + 1), t = 1, . . . , T} denote
the collection of all component indicators rtj. The introduction of S as additional
missing data has the desirable effect, that conditional on τ and S the non-normal,
non-linear model (1) and (2) reduces to a linear, Gaussian model where the mean
of the observation equation is linear in the unknown model parameters α, β1, . . . , βT

and the error term follows a normal distribution:

− log τtj|α, βt, rtj = Z1
t α + Z2

t βt +mrtj
+ εtj, εtj|rtj ∼ Normal

(

0, s2
rtj

)

.

Consequently, the conditional posterior p(α, β1, . . . , βT |θ, τ, S, y) is given by

p(α, β1, . . . , βT |θ, τ, S, y) ∝ (5)

p(α, β1, . . . , βT |θ)
T
∏

t=1

yt+1
∏

j=1

fN(εtj;− log τtj −mrtj
− Z1

t α− Z2
t βt, s

2
rtj
),

which is proportional to a multivariate normal density. This result motivated the
sampling scheme that will be described in Section 3.
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3 Auxiliary Mixture Sampling for Parameter-driven

Models for Time Series of Counts

As mentioned in the introduction, Markov chain Monte Carlo estimation of parameter-
driven models for time series of counts which are based on the Metropolis-Hastings
algorithm have been considered by many authors, in particular by Zeger and Karim
(1991), Albert (1992), Shephard and Pitt (1997), Chib et al. (1998) and Chib and
Winkelmann (2001). In Section 2, we were able to show that any parameter-driven
model based on the Poisson distribution may be closely approximated by a partially
Gaussian model in the sense of Shephard (1994). This very useful result will be
exploited in this section to implement auxiliary mixture sampling for rather general
parameter-driven models for time series of counts.

3.1 The Basic Three-block Auxiliary Mixture Sampler

A three-block Gibbsian sampler results, if data augmentation as described in the
previous section is applied for all observations, by introducing the inter-arrival times
τ = {τtj, j = 1, . . . , yt + 1, t = 1, . . . , T} and the component indicators S = {rtj, j =
1, . . . , yt + 1, t = 1, . . . , T} as missing data. Select a starting value for τ , S, and the
unknown model parameter θ, and repeat the following steps:

(a) Multi-move sampling of α and the whole sequence β = {β1, . . . , βT} from the
multivariate normal distribution (5), conditional on τ , S, θ and y;

(b) sample θ conditional on α, β, τ , S, and y;

(c) sample the inter-arrival times τ and the component indicators S conditional
on y, θ, α and β by running the following steps for t = 1, . . . , T :

(c1) sample the inter-arrival times {τtj, j = 1, . . . , yt + 1}. If yt > 0, sample
the order statistics ut,(1), . . . , ut,(n) of n = yt uniformly distributed random
variables, see e.g. Robert and Casella (1999, p.47) for details, and define
the inter-arrival times τtj as their increments: τtj = ut,(j) − ut,(j−1), j =
1, . . . , n, where ui,(0) := 0. Sample the final arrival time as τt,n+1 =
1−∑n

j=1 τtj + ξt, where ξt ∼ Exponential (λt);

(c2) sample the component indicators rtj for j = 1, . . . , yt + 1.

The first two steps are model dependent, but for many models involve only standard
draws, as we are dealing with a Gaussian model, once we conditioned on τ and S.
Step (c), however, deserves detailed investigation. This step is based on decomposing
the joint posterior p(τ, S|θ, α, β, y) as:

p(τ, S|y, θ, α, β) = p(S|τ, y, θ, α, β)p(τ |y, θ, α, β)
We first sample the inter-arrival times τ from p(τ |y, θ, α, β). The inter-arrival times
{τtj, j = 1, . . . , yt + 1} are independent for different time points t, given β, θ, α and
y:

p(τ |y, θ, α, β) =
T
∏

t=1

p(τt1, . . . , τt,yt+1|yt, θ, α, β).
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For fixed t, the inter-arrival times τt1, . . . , τt,n+1, where n = yt, are stochastically
dependent, and the joint distribution factorizes as:

p(τt1, . . . , τtn, τt,n+1|yt = n, θ, α, β)

= p(τt,n+1|yt = n, θ, α, β, τt1, . . . , τtn)p(τt1, . . . , τtn|yt = n).

The first n inter-arrival times are independent of all model parameters, and are
determined only by the observed number of counts yt. Due to well-known properties
of a Poisson process, the first n arrival times are distributed as the order statistics
of n Uniform [0, 1]-distributed random variables. Only the final inter-arrival time
τt,n+1 depends on the actual model parameters α, β and θ through the risk λt.
Conditionally on yt, only n = yt arrivals occur in [0, 1], thus the n + 1-th arrival is
known to occur after 1. Due to the memorylessness of the exponential distribution,
the waiting time after having reached one has an exponential distribution with mean
1/λt, and τt,n+1 = 1−∑n

j=1 τtj + ξt, where ξt ∼ Exponential (λt). This leads to step
(c1) to sample τt1, . . . , τt,n+1.

To sample the indicators S from p(S|τ, y, θ, α, β), we use the fact that all indi-
cators are conditionally independent given y, θ, α, β and τ :

p(S|τ, y, θ, α, β) =
T
∏

t=1

yt+1
∏

j=1

p(rtj|τtj, θ, βt, α).

Thus for each t = 1, . . . , T , and each j = 1, . . . , yt + 1, the indicator rtj is sampled
independently from p(rtj|τtj, θ, βt, α). This density depends on the data only through
τtj and depends on the model parameters θ, α and βt only through the risk λt:

pr{rtj = k|τtj, θ, βt, α} ∝ p(τtj|rtj = k, βt, α, θ)wk,

where

p(τtj|rtj = k, θ, βt, α) ∝
1

sk

exp

(

−1

2

(− log τtj − log λt −mk

sk

)2
)

.

The quantities (wk,mk, s
2
k), k = 1, . . . , R are the parameters of the finite mixture

approximation (4), which are determined in advance and are held fixed throughout
sampling. Step (c) for sampling the artificially missing sequences τ and S is easily
implemented and involves draws from standard densities, only; namely sampling
from uniform distributions, sampling from an exponential distribution and sampling
from a discrete distribution.

Starting values for τ and S are obtained in the following way. Each component
indicator rtj is drawn uniformly from 1 to R. Steps (c1) to (c3) are used to sample
starting values for τt1, . . . , τtn for each t, given the observed counts yt. To obtain a
starting value for τt,n+1, we sample ξt from Exponential (λt) with λt = yt, if yt > 0.
For all t, where yt = 0, λt is set to a “small” value, in our examples we used λt = 0.1.

3.2 Adding a Rejection Step

Mixture auxiliary sampling could be seen as running a Metropolis-Hastings algo-
rithm, based on proposing the unknown model parameters α, β1, . . . , βT and θ from
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Table 2: Expected acceptance rate (in percent) for a Metropolis-Hastings algorithm
based on a mixture approximation with R components

λ T (λ+ 1)T 1 2 3 4 5 6 7 8 9 10
1 1 2 77.3 91.4 95.7 97.4 98.9 99.4 99.6 99.7 99.8 99.9
3 1 4 71.7 87.9 93.5 96.1 98.4 99.1 99.4 99.6 99.7 99.8
10 1 11 70.7 85.9 92.9 96.2 98.2 99.0 99.4 99.5 99.7 99.7
1 10 20 67.9 84.8 92.0 95.1 97.6 98.5 99.0 99.4 99.5 99.6
3 10 40 68.4 85.8 92.4 95.5 97.6 98.6 99.0 99.3 99.4 99.6
0.1 100 110 21.3 83.1 84.7 92.8 96.9 98.1 98.5 99.2 99.3 99.5
10 10 110 66.6 83.9 91.9 94.7 97.5 98.6 99.1 99.2 99.3 99.4
1 100 200 42.0 75.2 91.4 94.0 97.1 97.9 98.7 99.1 99.3 99.3
3 100 400 62.8 80.7 89.5 94.1 97.2 98.2 98.8 99.1 99.2 99.4
1 1000 2000 5.2 35.7 88.5 90.1 95.4 97.2 97.8 98.8 99.1 99.1

an approximate model, where in equation (3) the density pε(εtj) is substituted by
the mixture approximation qε,R(εtj), however, without implementing the rejection
step. A rejection step could be added, as suggested by several referees, however,
developing another Metropolis Hastings algorithm is not our aim. First of all, the
rejection step would deprive auxiliary mixture sampling of its simplicity. Second,
introducing a mixture approximation to pε(εtj) is not necessary, when we implement
a rejection step, because in this case we could use a single normal distribution as an
approximation for pε(εtj), and avoid introducing the mixture indicators at all. The
acceptance rate of this independence Metropolis sampler is quite high, as will be
shown in the example below. Introducing a mixture approximation to pε(εtj) and a
second level of data augmentation makes sense only, when this additional effort is
compensated by avoiding the rejection step at all. Note that by increasing the num-
ber of components, the mixture approximation could be made arbitrarily accurate,
as least theoretically, and we claim that such a rejection step is not essential, since
the acceptance rate is close to 100 percent, if the number of components is large
enough.

We evaluated this acceptance rate for a simple example, namely Bayesian in-
ference for T independent observations y1, . . . , yT from the Poisson distribution
Poisson (λ) under the prior λ ∼ Gamma (a0, b0), in which case the posterior of λ
is known to arise from the Gamma (a0 + Ty, b0 + T )-distribution, which y being the
sample mean. The augmented model, obtained after the first step of data augmen-
tation reads:

− log τtj = β + εtj, (6)

with β = log λ. To evaluate, how the approximation error introduced in the second
data augmentation step influences the acceptance rate, we consider a marginal two-
step sampler without introducing the indicators, where we sample in a first step
the inter-arrival times as in step (c1) and propose β(new) from the proposal density
qR(β|τ) ∝ qR(τ |β)p(β), with qR(τ |β) being the likelihood of an approximation to
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model (6), obtained by substituting pε(εtj) by the mixture approximation qε,R(εtj):

qR(τ |β) =
T
∏

t=1

yt+1
∏

j=1

qε,R(− log τtj − β).

The acceptance rate depends on the ratio

r(β, τ) =
p(τ |β)
qR(τ |β)

,

where p(τ |β) is the likelihood of the exact augmented model (6):

p(τ |β) =
T
∏

t=1

yt+1
∏

j=1

pε(− log τtj − β).

The acceptance rate is random, depending both on the new draw β(new) as well as
on draws β(old) and τ from the stationary distribution p(β, τ |y), which is known
explicitly for this example. We determine the expected acceptance rate, where the
expectation is taken with respect to the joint distribution of β (new), β(old) and τ :

∫ [∫

min

(

1,
r(β(new), τ)

r(β(old), τ)

)

qR(β
(new)|τ)dβ(new)

]

p(τ |β(old), y)p(β(old)|y)dτdβ(old).

Table 2 reports this expected acceptance rate for various values of λ and T for in-
creasing number of components for simulated data. First of all we find, that running
a Metropolis-Hastings algorithm with R = 1, in which case pε(εtj) is approximated
by a single Normal (0.5772, 1.6625)-distribution, and only the first augmentations
step has to be implemented, is a reasonable alternative to auxiliary mixture sam-
pling. By increasing the number of components, the acceptance rate evidently ap-
proaches 100%.

Note that the mixture approximation is applied to equation (6) not only once,
but

∑T

t=1 yt +T times, thus on average (λ+1)T approximations take place. Table 2
demonstrates, how the approximation error accumulates, when T as well as λ in-
crease. For smaller number of components the acceptance rate rapidly decreases, as
the number of expected approximations increases. For the 10 component mixture
approximation, however, it remains above 99 percent, even for λ = 1 and T = 1000,
where the expected number of approximations is equal to 2000.

3.3 Auxiliary Mixture Sampling for State Space Modelling

of Time Series of Counts

To illustrate the practical application of auxiliary mixture sampling, we consider in
detail state space modelling of time series of small counts as introduced by West
et al. (1985) and Harvey and Fernandes (1989). In its most general form, the model
reads:

yt|α, βt ∼ Poisson
(

exp(Z1
t α+ Z2

t βt)
)

,

βt = Fβt−1 + c+ wt, wt ∼ Normal (0, Q) ,
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where βt is a latent Markov process. The expectation E(βt|βt−1) = Fβt−1 + c is
linear in βt−1, whereas the variance-covariance matrix is Var (βt|βt−1) = Q. The
matrices F , Q and the vector c may be known, or may depend on unknown model
parameters θ. A simple example is the local level model which reads:

yt|µt ∼ Poisson (exp(µt)) ,

µt = µt−1 + wt, wt ∼ Normal (0, θ) ,

with θ being the only unknown model parameter.
Prior to the advent of Markov chain Monte Carlo methods, various approxi-

mation methods have been suggested in the literature to cope with the estimation
problem for state space model for time series of counts. An approach that is re-
lated to, but different from MCMC methods is Monte Carlo EM estimation as
implemented by Chan and Ledolter (1995). Another rather popular approximation
method is based on assuming natural conjugate priors for βt, based on discount-
ing information from the past. Such methods have been studied in Harvey and
Fernandes (1989) for state space models for time series of counts and qualitative
observations, and in West et al. (1985) for the general dynamic linear model. Al-
ternative approximate approaches which also allow for smoothing are based on the
posterior mode filter of Fahrmeir (1992) and the integration-based Kalman-filter
of Frühwirth-Schnatter (1994a). Each of these approximation methods is likely to
introduce an approximation error of unknown magnitude, that is not reducible by in-
creasing the computational effort of the investigator. A first attempt to compute the
exact likelihood function for the Poisson local level model is reported in Kashiwagi
and Yanagimoto (1992), which is basically an application of the numerical integra-
tion filter of Kitagawa (1987), and therefore limited to one- or two-dimensional state
vectors. An advantage of Markov chain Monte Carlo methods in comparison to any
of these methods, first of all lies in general in the fact that increasing the computa-
tional effort leads to increased accuracy of the algorithm. Second, the Markov chain
Monte Carlo approach suggested in this paper allows for rather high-dimensional
state vectors.

Application of the first data augmentations steps described above introduces a
total of nt = yt + 1 inter-arrival times τtj, j = 1, . . . , nt for each of the T count
observations yt, t = 1, . . . , T . The second data augmentation step introduces a
component indicator rtj for each of the T +

∑T

t=1 yt inter-arrival times τtj. After
conditioning on all inter-arrival times as well as the component indicators, we end
up with the following observation equation which is linear in the state vector βt and
has a normal observation error with known variance:

− log τtj|µt, rtj = Z1
t α + Z2

t βt +mrtj
+ εtj, εtj ∼ Normal

(

0, s2
rtj

)

.

If we define a multivariate observation vector ỹt of dimension nt = yt + 1 as:

ỹt =







− log τt1 −mrt1

...
− log τt,nt

−mrt,nt






,
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the augmented model may be written in the following linear Gaussian state space
form:

ỹt = Z̃1
t α+ Z̃2

t βt + εt, εt ∼ Normal (0, Rt) , (7)

βt = Fβt−1 + ut + wt, wt ∼ Normal (0, Q) . (8)

Rt is a diagonal matrix containing the variances of the mixture components, Rt =

Diag
(

s2
rt1
, . . . , s2

rt,nt

)

. Z̃1
t and Z̃2

t are matrices with nt rows, containing nt copies of

the design matrices Z1
t and Z2

t :

Z̃1
t =







Z1
t
...
Z1

t






, Z̃2

t =







Z2
t
...
Z2

t






.

Thus for a state space model for count data, application of the two data augmen-
tation steps described above leads to a partially Gaussian state space model for
repeated measurements, where the transition equation is the same as for the orig-
inal Poisson state space model. The Poisson observation equation for the single
count observation yt, however, is substituted by a Gaussian observation equation
with the multivariate observation vector ỹt appearing as repeated measurements.

The three-block auxiliary mixture sampler described in Subsection 3.1 works as
follows:

(a) Multi-move sampling for the whole sequence α, β0, . . . , βT by forward-filtering-
backward sampling as in Frühwirth-Schnatter (1994b), Carter and Kohn (1994),
de Jong and Shephard (1995), or Durbin and Koopman (2002) for the condi-
tionally Gaussian state space form (7) and (8).

(b) Sample θ conditional on knowing α, β, τ and S from the conditionally Gaussian
state space form (7) and (8).

(c) For each t = 1, . . . , T , compute log λt = Z1
t α + Z2

t βt, and sample the inter-
arrival times {τtj, j = 1, . . . , yt + 1} and the component indicators rtj, j =
1, . . . , yt + 1 as described in step (c).

The precise details in step (b) depend on the specific state space form. If Q is
an unrestricted variance-covariance matrix, than Q is sampled from an inverted
Wishart distribution. If only some diagonal elements of Q are unknown as for the
basic structural model to be considered in Section 4, these parameters are sampled
independently from inverted Gamma distributions.

3.4 Auxiliary Mixture Sampling for other Parameter-driven

Models of Count Data

The auxiliary mixture sampler is useful also for other parameter-driven models of
Poisson counts. The introduction of the two latent sequences τ and S eliminates
non-normality and non-linearity, whenever the log intensity is linear in the unknown
model parameters. To implement step (a) and (b) of auxiliary mixture sampling for
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a particular model, we may exploit any result that is available for Markov chain
Monte Carlo estimation of this particular model class within the Gaussian family.
We only need to implement step (c), to sample the two latent sequences τ and S,
where we condition on α, β and θ. To sample the inter-arrival times τtj we only
need to know the observed counts and the conditional mean λt, whereas to sample
the component indicator rtj we need to know τtj and λt. Although λt depends on
α, β and θ in a specific way described by the model, step (c) is independent of the
specific structure of the model, once we determined λt.

Assume for further illustration, that we are fitting a random-effects model to
panel count data yit, i = 1, . . . , N, t = 1, . . . , T , as in Chib et al. (1998), who
considered a model with multiple random effects based on the Poisson distribution
yit ∼ Poisson (exp(λit)). At each sweep of the auxiliary mixture sampler, each
count observation yit is augmented by inter-arrival times τit,j and indicators rit,j

for j = 1, . . . , yit + 1. Through our data augmentation scheme, the random-effect
model for count data reduces to the same random-effects model, however with yit+1
repeated Gaussian measurements− log τit,j−mrit,j

, j = 1, . . . , yit+1 with observation
variance s2

rit,j
. Implementation of step (a) and (b) are now standard. To sample τ

and S in step (c), we only need to determine λit.

4 Application to Road Safety Data

We illustrate the usefulness of the proposed auxiliary mixture sampler on time series
provided by the Austrian Road Safety Board. These time series are monthly counts
of killed or injured pedestrians from 1987-2002 in Linz, which is the third largest
town in Austria. We use series for two different age groups, children aged 6-10 and
senior persons above 60. We are dealing with series of small counts not exceeding
5 respectively 15. A legal intervention intended to increase road safety took place
during the observation period. More precisely, an amendment increasing priority for
pedestrians became effective in Austria on October 1, 1994. Since then pedestrians
who want to use a crosswalk have to be granted crossing. We are going to analyze
separately for both age groups, the effect of this law on the risk λt in month t of
being killed or seriously injured as a pedestrian living in Linz.

State space modelling as in Harvey and Durbin (1986) seems quite natural for
these time series but the smallness of the counts makes an analysis using normal state
space models clearly inappropriate. The number yt of persons killed or seriously
injured in time period t, follows the binomial distribution Bino (et, λt), with the
exposures et being equal the number of children or senior people living in Linz at time
point t. As the risk λt is typically small, the binomial distribution is approximated
by the Poisson distribution:

yt ∼ Poisson (etλt) .

Both time series are modelled using a basic structural model for Poisson counts as in
Durbin and Koopman (2001), where the risk λt is assumed to have a multiplicative
trend as well as a multiplicative seasonal component:

log(λt) = µt + st. (9)
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In (9), it is assumed that µt is a stochastic trend, following a random walk with drift
at:

µt = µt−1 + at−1 + w1t, w1t ∼ Normal (0, θ1) , (10)

where µ0 ∼ Normal (y1/e1, 1). To capture the legal intervention effect, equation (10)
is slightly modified, by including a level shift δ at the time point t = tint, when legal
amendments became effective:

µt = µt−1 + at−1 + δ + w1t. (11)

In its most general form, the basic structural model assumes, that the drift at changes
over time and follows a random walk itself:

at = at−1 + w2t, w2t ∼ Normal (0, θ2) , (12)

where a0 ∼ Normal (0, 1). In the context of state space models, at is usually called
the slope, as it determines the expected increase in the level of µt+1 compared to µt.

Finally, exp(st) is a monthly multiplicative seasonal component generated by

st = −st−1 − · · · − st−11 + w3t, w3t ∼ Normal (0, θ3) , (13)

where
∑11

j=0 st−j = 0, and (s
−1, . . . , s−11) is an unknown initial pattern.

In equation (10) to (13), the parameters θ1, θ2 and θ3 are unknown variances,
which are either estimated from the data or assumed to be 0. Note that the stochas-
tic trend reduces to a linear deterministic trend function with intercept µ0 and slope
a0, if the variances θ1 and θ2 are zero. Choosing θ3 = 0 leads to a fixed seasonal
pattern over the whole observation period, whereas choosing θ3 > 0 allows a smooth
change in this pattern.

To estimate the model defined above, we rewrite it as a state space model, see
for instance Harvey (1989) and Durbin and Koopman (2001). For a model with
non-zero variances, for instance, the state vector βt has 14 dimensions, namely
βt = (µt, at, st, . . . , st−11, δ), where only the first three components are actually dy-
namic. We now turn to the application of auxiliary mixture sampling scheme to
estimate these models. Data augmentation through the mixture approximation
leads to a partly dynamic model in the sense of Frühwirth-Schnatter (1994b) with
θ = (θ1, θ2, θ3). In this model the variances can be sampled independently from
inverse Gamma distributions, assuming inverted prior Gamma distributions on each
variance. We choose θi ∼ InvGamma (0.1, 0.001) , i = 1, . . . , 3.

The Gibbs sampler described in Subsection 3.3 was run 12000 times with a burn
in of 2000 runs. As the chain did not converge for the original formulation of the
model we used a reparameterization where the seasonal component was non-centered
as in Frühwirth-Schnatter (2004). The non-centered seasonal component s̃t is the
standardized deviation of st from the initial seasonal pattern α = (s

−1, . . . , s−11):

s̃t =
st − Z1

t α

θ4

, (14)

log(λt) = µt + Z1
t α + θ4s̃t, (15)
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Figure 2: Above: Counts of killed or injured children (left hand side) and number
of exposures (right hand side); below: estimated mean µt|y characterized by the
posterior mean and 95% credible regions (left hand side) and estimated risk λt

(right hand side)

where θ4 =
√
θ3. Z

1
t is a row vector selecting the appropriate seasonal components

for each time point t. For t being a multiple of 12, Z1
t is a row vector of -1s,

otherwise all elements of Z1
t are 0, apart from the element in the column corre-

sponding to the actual season, which takes the value 1. Introducing the state vector
βt = (µt, at, s̃t, . . . , s̃t−11, δ) and choosing θ = (θ1, θ2, θ4) led to a Gibbs sampler with
quick convergence to the stationary distribution.

Figure 2 shows the observed counts, the number of exposures et, the smoothed
level µt with point wise 95% credibility intervals and the risk λt for the children,
Figure 3 shows the same for the senior series. The trend component at and the
seasonal pattern st in the last year are shown in Figure 4 for both age groups.

The estimated risk is much larger for the children than for the senior people,
and there is a pronounced decrease in risk for the children time series after the
intervention. There are marked differences for the two series in the seasonal pattern:
for the children series rates are significantly lower than the annual average in the
holiday months July and August and higher June and October, for senior people
there is solely a significant decrease in August.

Figure 5 shows the posterior density of θ4 for both time series. Recall that θ4

is defined as ±
√
θ3, thus θ4 has negative and positive sign with equal probability.

Therefore, the posterior density of θ4 is symmetric around 0. If the unknown variance
θ3 is systematically different from 0, then the posterior density of θ4 is likely to be
bimodal, otherwise, if θ3 is close to 0, the posterior density of θ4 will be centered
around 0. The posterior density of θ4 in Figure 5 shows for both time series that θ4

is centered around zero, and we may conclude that for these time series the seasonal
pattern is stable over time.

The drift term at is not significantly different from 0 in neither of the series, thus
we are going to consider the simpler local level model with fixed seasonal pattern.

Tables 3 and 4 report point estimates as well as 95%-H.P.D. regions for the
variance θ1 and the intervention effect δ in the local level model with fixed seasonal
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Figure 3: Above: Counts of killed or injured senior persons (left hand side) and num-
ber of exposures (right hand side); below: estimated mean µt|y with 95% credible
regions (left hand side) and estimated risk λt|y (right hand side)
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Figure 4: Posterior means of the drift at (above) and the seasonal component st in
year 2002 (below) within 95% credible regions for the number of killed and injured
children (left hand side) respectively senior people (right hand side)
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Figure 5: Kernel density estimate of the posterior distribution of θ4 for children (left
hand side) and senior people (right hand side)

Table 3: Parameter estimates for killed and injured children
Parameter Mean Std.dev 95%H.P.D. regions

θ1 0.0022 0.0017 [ 0.0002, 0.0055]
δ -0.4029 0.2453 [-0.9018, 0.0772]

pattern for both series. 95% HPD-regions are obtained as the shortest interval
containing 95 percent of the simulations, see Chen et al. (2000) for more details.
Whereas the process variances are nearly equal in both series, the intervention effect
is negative for the children, but there is no intervention effect for the counts of killed
or injured senior people.

5 Discussion and Concluding Remarks

The auxiliary mixture sampler suggested in this paper provides an important step to-
ward operational Markov chain Monte Carlo estimation for a broad class of parameter-
driven models of time series of counts. Some care, however, must be exercised with
respect to parameterization issues, as straightforward Gibbs sampling often leads
to convergence problems. Such problems are well-known for Gaussian random-
effects model (Gelfand et al., 1995; van Dyk and Meng, 2001) and Gaussian state
space models (Papaspiliopoulos et al., 2004; Frühwirth-Schnatter, 2004). For Pois-
son count data parameterization issues are also addressed in Chib et al. (1998). Our
application demonstrates, that the mixing properties of auxiliary mixture sampling
dramatically improves in cases, where the original parameterization leads to a slowly

Table 4: Parameter estimates for killed and injured senior people
Parameter Mean Std.dev 95%H.P.D. regions

θ1 0.0020 0.0016 [ 0.0002, 0.0052]
δ 0.0417 0.1992 [-0.3401, 0.4512]
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Figure 6: Simulated Poisson series with an exponential trend

mixing sampler, by using a non-centered parameterization similar to the one studied
in Frühwirth-Schnatter (2004).

The auxiliary mixture sampler is mainly designed for, but not restricted to small
counts, as larger counts can be safely treated with a normal approximation. It is,
however, useful for time series including both small and large counts. To give an
example, we generated a series yt of length T=101 from a Poisson (λt)-distribution
with exponential trend λt = exp(Ztα), and Zt being evenly spaced from 0 to 5 and
α = 0.9. Figure 6 shows the simulated series. The Gibbs sampler was run without
difficulties 12000 times with a burn-in of 2000, using the improper normal prior
p(α) ∝ 1. It gave a posterior mean for α of 0.8967 with a standard error of 0.0058;
the 95% credible interval was [0.8852; 0.9073].

The auxiliary mixture sampler introduced in this paper is easily modified to deal
with various extensions of the model structure, as any model with Poisson counts and
some linear structure in the log intensity of the counts may be treated in the same
way. If the latent process follows a t-distribution as in Chib and Winkelmann (2001),
rather than a normal distribution, our estimation approach needs to be adapted only
slightly along the lines of Shephard (1994), by expressing the t-distribution as a scale
mixture of normals.

The results of the present paper are to some extent also useful outside the frame-
work of data from a Poisson distribution. MacDonald and Zucchini (1997, p.68) note
that a particularly useful model to capture overdispersion is a negative binomial dis-
tribution based on a hidden Markov process St, because such a model introduces
overdispersion via the conditional distribution p(yt|St) as well as via the hidden
Markov chain St. By writing the negative binomial distribution as an infinite mix-
ture of Poisson distributions, an auxiliary mixture sampler is easily designed along
the lines indicated in this paper for any model with a linear structure in the log of
the mean.

Finally, as shown in Frühwirth-Schnatter and Frühwirth (2005), a similar aux-
iliary mixture sampler is feasible for parameter-driven models for other discrete-
valued observations such as binary and multinomial data. Whereas the first data
augmentation step for these type of observations is different and relies on the la-
tent utility approach introduced by McFadden (1974), the second augmentation
step interestingly involves a normal mixture approximation to the type I extreme
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value distribution, which is equal to the density of minus log of an exponentially
distributed variables, and is essentially the same as used in the present paper.
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Frühwirth-Schnatter, S. (1994b). Data augmentation and dynamic linear models.
Journal of Time Series Analysis, 15:183–202.
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