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Abstract

Dynamic survival models are a useful extension of the popular Cox model

as the effects of explanatory variables are allowed to change over time. The

baseline log-hazard as well as covariate effects are assumed to be piecewise

constant with a correlated prior process. These models can be estimated in

a Bayesian framework by Markov chain Monte Carlo methods. We propose

a new auxiliary mixture sampler based on data augmentation, which avoids

Metropolis-Hastings steps and needs no further tuning. The sampler can be

applied to more general models, e.g. models including frailty or spatial effects

and for data observed under censoring schemes different from right censoring.

Some key words: Bayesian survival analysis, data augmentation, Gibbs

sampling, piecewise exponential

1 Introduction

For survival data the predominately used model to assess the effect of explanatory
variables is the Cox model, where the hazard function is modeled as

λ(t | z) = λ(t) exp(z′β).

Here z′ = (z1, . . . , zk) is a vector of covariates, β is the vector of unknown param-
eters, η = z′β and is the linear predictor. The model is semi-parametric insofar
as the baseline hazard function is not specified. The Cox model relies on the as-
sumption that the hazard ratio for two individuals with covariate values z and z∗

respectively is constant over time and only depends on the difference between their
linear predictors

λ(t | z)

λ(t | z∗)
= λ(t) exp

(

(z − z∗)′β
)

.

This is an assumption which is not necessarily true in applied situations where the
effect of covariates may vary over time, e.g. a certain treatment may have a positive
short-term effect which vanishes in the long run. Thus models where the covariate
effects are allowed to change over time are often more appropriate. A common
approach to model time varying effects is by piecewise constant functions, as these
are flexible enough to capture any shape of the baseline hazard or covariate effects,
see Verweij and van Houwelingen (1995) for a frequentist and Gamerman (1991) for
a Bayesian approach. In the last years different non- and semi-parametric Bayesian
survival models have been suggested, for an overview see Ibrahim et al. (2001) and
Sinha and Dey (1997). Most of these models use correlated prior processes for the
coefficients of the piecewise functions, thus defining a stochastic evolution over time,
where coefficients of adjacent intervals are expected to be close.

Models using correlated gamma increments are considered in Arjas and Gasbarra
(1994) who use a first order autoregressive jump process for the hazard rate, not
including covariates and in Nieto-Barajas and Walker (2002) who propose a depen-
dent gamma process defined by two latent processes. Sinha et al. (1999) use an
independent Gamma process for the baseline hazard and a correlated normal prior
for the covariate effects. In the dynamic survival model, introduced by Gamerman
(1991) the baseline log-hazard as well as the effects of covariates are modeled by

1



piecewise constant functions with a correlated gaussian prior process. Closely re-
lated is the model of Fahrmeir and Hennerfeind (2003) and Hennerfeind et al. (2006)
who use penalized splines for modeling baseline hazard and covariate effects, with a
correlated normal prior process for their coefficients. Gamerman’s dynamic survival
model can be seen as a special case of their model with penalized splines of degree
zero.

Bayesian estimation of these models usually is accomplished by MCMC meth-
ods which however require a Metropolis-Hastings-Algorithm, see Gamerman (1991),
Hemming and Shaw (2005) and Hennerfeind et al. (2006). Here we present a new
approach for the dynamic piecewise exponential model of Gamerman (1991), us-
ing data augmentation. We develop an auxiliary mixture sampler which involves
only draws from standard densities and needs no further tuning. Auxiliary mixture
sampling was introduced for Bayesian analysis of stochastic volatility models by
Shephard (1994) and was applied in this context to different models by a couple of
authors (Kim et al., 1998; Chib et al., 2002; Omori et al., 2006). Frühwirth-Schnatter
and Wagner (2005, 2006) introduced auxiliary mixture sampling for Bayesian anal-
ysis of parameter-driven models for count data based on the poisson distribution
and Frühwirth-Schnatter and Frühwirth (2006) apply auxiliary mixture sampling to
binary and multinomial logit models.

To extend auxiliary mixture sampling to dynamic survival models in a first data
augmentation step auxiliary survival times are introduced as missing data. Thus a
representation of the original model as a linear state space model with non-normal
errors is achieved. The error distribution which turns out to be a type one ex-
treme value distribution is then approximated by a mixture of normal components,
as in Frühwirth-Schnatter and Wagner (2005, 2006) and Frühwirth-Schnatter and
Frühwirth (2006). By introducing the component indicators of this normal mixture
as a second sequence of missing data, a Gibbs sampling type algorithm is obtained
which allows multi-move sampling of time varying effects.

The paper is organized as follows. The next section presents the model speci-
fication. Data augmentation steps and the auxiliary mixture sampling scheme for
estimating model parameters are described in Section 3. In Section 4 we illustrate
the method on simulated data and two well-known real data sets. In Section 5 we
outline application of the sampler for models extending the linear predictor to in-
clude frailty effects and describe how the necessary steps to deal with data subject
to interval censoring. The paper concludes with some discussion in Section 6.

2 The Dynamic Survival Model

2.1 Model specification

Survival data usually are subject to right-censoring. We assume that each individual
i, i = 1, . . . , n, has a survival time ti and a censoring time ci which are independent
random variables. Observed data consist of the observation time yi = min(ti, ci),
a failure indicator δi and a vector of K covariates (zi1, . . . , ziK). Extending Cox’s
proportional hazards model, not only the baseline hazard but also covariate effects
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are assumed to be a functions of time, i.e.

λ(t|zi) = exp
(

β0(t) +
K

∑

k=1

zikβk(t)
)

The dynamic survival models, as proposed by Gamerman (1991), is a piecewise
exponential model for lifetimes, with correlated prior processes for the baseline log-
hazard as well as the covariate effects. It is based on a given partition of the time
axis S = {s0, s1, . . . , sJ}, 0 ≤ s0 < s1 < · · · < sJ . These division points form J
intervals (s0, s1], . . . , (sJ−1, sJ ]. The baseline log-hazard β0(t) as well as the covariate
effects βk(t) are defined for k = 0, . . . , K via the piecewise constant functions

βk(t) = βkj, for t ∈ Ij = (sj−1, sj].

To model stochastic evolution each βk is assumed to follow a random walk, i.e.

βkj = βk,j−1 + wkj wkj ∼ Normal (0, θk) . (1)

In this model an evolution variance θ0 = 0 would imply a constant baseline hazard,
and θk = 0 would imply a constant effect of covariate zk. If all evolution variances
θk, k = 0, . . . , K were zero, the model would simply be an exponential regression
model where

λ(t|z) = exp
(

z′β),

with z = (1, z1, . . . , zK) being the vector of covariates and β = (β0, . . . , βK).
In the sense of Hennerfeind et al. (2006) in this dynamic survival model baseline

log-hazard and time varying effects are modeled as a linear combination of J B-spline
basis functions of degree zero with knots {s0, s1, . . . , sJ}.

βk(t) =
J

∑

j=1

βkj1(sj−1,sj ](t)

The random walk priors are smoothness priors penalizing abrupt jumps βk,j−βk,j−1.
In the following we consider a slight modification of Gamerman’s dynamic sur-

vival model
λ(t|zi; t ∈ Ij) = exp(ηij)

by defining the linear predictor through

ηij = (zf
i )

′α + (zv
i )

′βj (2)

βj = βj−1 + ωj ωj ∼ Normal (0, diag(θ0, . . . , θK)) (3)

zf is a vector of covariates with fixed effects α, whereas zv = (1, zv
1 , . . . , z

v
K)′ is the

vector of covariates with time-varying effects β. βj = (β0j , . . . , βKj) denotes these
effects in interval Ij , β0j being the baseline log-hazard in Ij .

The division points {s0, s1, . . . , sJ} should be chosen fine enough to capture the
shape of baseline hazard and time-varying effects. Usually sJ is taken to be the last
observed failure or censoring time. Whereas Hennerfeind et al. (2006) use equally
spaced time points, Gamerman (1991) and Hemming and Shaw (2005) also consider
a data-dependent division where the division points are the observed death times.
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2.2 Priors

For a fully Bayesian specification of the model, priors for the fixed effects α, the start-
ing values of the random walks β00, . . . β0k and the process variances θ = (θ0, . . . , θk)
have to be specified. For the fixed effects either normal priors α ∼ Normal (a0,A0)
or diffuse priors α ∝ const can be assumed.

For the starting points of the random walks βk0, k = 0, . . . , K we assume inde-
pendent normal priors

βk0 ∼ Normal (0, Bk)

and for their variances θk independent inverse Gamma priors

θk ∼ InvGamma (ck0, Ck0) , k = 0, . . . , K.

In the applications we will use proper but uninformative priors for βk0, k = 0, . . . , K
as well as for the evolution variances. Hennerfeind et al. (2006) give conditions
for propriety of posteriors under partially improper priors on the parameter vectors
β0 = (β00, . . . , βK0).

Note that the processes β0, . . . , βK are independent a priori and

p(βk0, . . . , βkJ) = p(βk0)p(βk1, . . . , βkJ |βk0).

Given the starting value βk0, (βk1, . . . , βkJ) has a multivariate normal distribution

p(βk1, . . . , βkJ |βk0, θk) = Normal (βk0 · 1, θkCC′)

where 1 is a column vector of J ones and C is the random walk generating matrix

C =











1 0 · · · · 0
1 1 · · ·
...

...
...

. . .
...

1 1 1 · · · 1











.

3 Auxiliary Mixture Sampling

In this section we develop a Markov Chain Monte Carlo sampling scheme for the dy-
namic survival model which relies on two steps of data augmentation. The goal of the
first data augmentation step is to represent the original model as a state space model
for complete exponentially distributed survival times. For these models, auxiliary
mixture sampling as in Frühwirth-Schnatter and Wagner (2005) and Frühwirth-
Schnatter and Wagner (2006) is feasible. There it is shown how by mixture approx-
imation for the negative of the logarithm of an Exponential (1)-distribution, the
original model can be represented as a partial Gaussian model.

We start with discussing auxiliary mixture sampling for a regression model of
exponentially distributed survival times before we turn to the dynamic survival
model.
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3.1 Auxiliary mixture sampling for the exponential regres-

sion model

A simple model for survival data taking into account effects of covariates is the
exponential regression model

ti ∼ Exponential (λi) , λi = exp(z′iα) (4)

where zi is the row vector of covariates for individual i and α is the vector of
unknown parameters.

Usually survival times are not completely observed but subject to right censoring.
Let (y, δ) = (y1, δ1), . . . , (yn, δn) denote the data, where the observation time yi is a
survival time if δi = 1 and a censoring time if δi = 0. For censored observations the
exact lifetime ti is unobserved. (yi, δi) however contains partial information on the
lifetimes, namely ti > yi. Our first data augmentation step uses this information to
generate complete auxiliary survival times.

If yi is a censored observation, i.e. δi = 0, then yi = ci = min(ti, ci) where
ti ∼ Exponential (λi). Conditionally on the event {ti > ci} the – unobserved –
residual survival time ξi = ti − ci is distributed as

P (ti − ci ≥ t|ti > ci) =
e−λi(t+ci)

e−λici
= e−λit.

Thus in a first data augmentation step the unobserved residual survival time ξi

can be generated as an Exponential (λi) distributed random variable. The (partly
unobserved) auxiliary survival times τi

τi =

{

yi if δi = 1

yi + ξi if δi = 0

are complete observations and follow the exponential regression model defined in
equation (4). By taking logarithms and multiplying by minus one, this nonlinear
and non-normal model is transformed into the linear model

− ln(τi|zi) = z′iα + εi

where the error term εi has a type I extreme value distribution. To obtain a model
that is conditionally Gaussian, this non-normal density can be approximated by a
mixture of ten normal components, as in Frühwirth-Schnatter and Wagner (2006):

pε(ε) = exp(−ε − e−ε) ≈ qR,ε(ε) =
10

∑

r=1

wrfN(ε; mr, s
2
r), (5)

where mr and sr are the mean and the variance of component r and fN(ε; mr, s
2
r)

denotes the Gaussian density, see Table 1. For more details on how this mixture
approximation is obtained see Frühwirth-Schnatter and Frühwirth (2006).

The second step of our data augmentation scheme for each εi introduces the
latent component indicator ri as missing data. Let R = {ri, i = 1, . . . , n}. Then,
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Table 1: Ten component normal mixture approximation for the density of − ln ξ,
where ξ ∼ Exponential (1).

r 1 2 3 4 5 6 7 8 9 10
wr 0.00397 0.0396 0.168 0.147 0.125 0.101 0.104 0.116 0.107 0.088
mr 5.09 3.29 1.82 1.24 0.764 0.391 0.0431 -0.306 -0.673 -1.06
s2

r 4.50 2.02 1.10 0.422 0.198 0.107 0.0778 0.0766 0.0947 0.146

conditional on τ = {τi, i = 1, . . . , n} and R, the non-normal, nonlinear model (4)
reduces to a linear, Gaussian model

− ln τi|α, ri = z′iα + mri
+ εi, εi|ri ∼ Normal

(

0, s2
ri

)

.

Consequently, the conditional posterior p
(

α|τ ,R, (y, δ)
)

is given by

p(α|τ ,R, (y, δ)) ∝ p(α)

n
∏

i=1

Normal
(

− ln τi; z
′

iα + mri
, s2

ri

)

, (6)

which is proportional to a multivariate normal density.
Thus for the exponential regression model containing censored observations the

following two-block Gibbs sampler can be applied. After selecting starting values
for α and R repeat the following steps:

1. Sample auxiliary survival times for censored observations and introduce the
component indicator as a second sequence of missing data.

(a) Sample the auxiliary survival time τi of a censored observation yi as
τi = yi + ξi, where ξi ∼ Exponential (λi).

(b) Sample the component indicators ri.

2. Sample α from a multivariate normal density.

The component indicators are sampled from a discrete distribution with 10 cat-
egories

Pr{ri = k|τi, α} ∝ p(τi|ri = k, α)wk,

where

p(τi|ri = k, α) ∝
1

sk

exp

{

−
1

2

(

− ln τi − ln λi − mk

sk

)2
}

,

for details see Frühwirth-Schnatter and Wagner (2006).
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Figure 1: Hazard in the piecewise exponential model

3.2 Auxiliary mixture sampling for the dynamic survival

model

Also for dynamic survival models the goal of the first data augmentation step is to
represent the original model for the hazard as a linear model for suitably chosen
auxiliary variables. Due to the piecewise constant structure of baseline log-hazard
and time-varying effects each individual experiences not just one, but several hazards
over the observation time – one in each time interval Il. Therefore, for each of these
hazards, a separate auxiliary survival time is introduced. This data augmentation
step can be motivated from a factorization of the complete data likelihood over
individual contributions and time intervals, which is discussed in the next subsection.

3.2.1 Likelihood factorization

In the dynamic survival model defined in Section 2 the hazard λ(t|zi) for each
individual i = 1, . . . , n is constant within the intervals Il but changes at each division
point sl, see Figure 1. Individual observation times yi ∈ Ij therefore can be split
into periods uil, l = 1, . . . , j observed under the regime of hazards λil, l = 1, . . . , j
with

λil = λ(t|zi, t ∈ Il) = exp
(

(zf
i )

′α + (zv
i )

′βl

)

.

Consider e.g. an observation time yi ∈ I2, which is composed of the time ui1 =
∆1 = s1 − s0 spent under the regime of hazard rate λi1 and the time ui2 = yi − s1

spent under the regime of hazard rate λi2, see Figure 1 for illustration. In time
point s1, where the hazard rate changes, subject i is still alive. The survival time
this subject would experience under hazard rate λi1, is not completed, but right
censored at s1.

More generally, for yi ∈ Ij , yi =
∑j

l=1 uil. The observed time under hazard λil

is uil = ∆l = sl − sl−1, for l = 1, . . . , j − 1. For l < j, each uil can be regarded
as a right-censored observation, i.e. uil = min(τil, ∆l) where τil is the unobserved
auxiliary survival time. As the hazard is constant in each interval, this auxiliary
survival time τil is exponentially distributed, τil ∼ Exponential (λil). If yi ∈ Ij,
the time spent in the last interval is uij = yi − sj−1 and for δi = 1, this is an
uncensored, otherwise a censored observation from an Exponential (λij)-distribution.
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Due to the no-memory property of the exponential distribution the random variables
uil, l = 1, . . . , j are independent.

Splitting the observed time yi into periods uil can be motivated more formally
from factorizing the likelihood contribution of an individual observation (yi, δi) ∈ Ij

over contributions of time intervals Il, l = 1 . . . , j.
Generally the likelihood of an observation time y and a censoring indicator δ is

p(y, δ|.) = S(y|.)λ(y|.)δ

where S(y|.) and λ(y|.) denote the appropriate survival and hazard function.
The survival function in the piecewise exponential model can be expressed through

conditional survival functions as

S(yi|zi) =
(

j−1
∏

l=1

S(sl|T > sl−1, zi)
)

S(t|T > sj−1, zi) =
(

j−1
∏

l=1

exp
(

−λil(sl−sl−1)
)

)

exp
(

−λij(yi−sj−1)
)

and hence

p
(

yi, δi|λi1, . . . , λij

)

=
(

j−1
∏

l=1

exp
(

− λil∆l

)

)

exp
(

− λij(yi − sj−1)
)

(λij)
δi.

Obviously contributions of the intervals l = 1, . . . , j are independent. The likelihood
contribution of interval Il, for l = 1, . . . , j−1 is exp

(

−λil∆l

)

, which corresponds to
that of a random variable distributed as Exponential (λil), which is right-censored at
∆l. The likelihood contribution of the last interval Ij , exp

(

−λij(yi−sj−1)
)

(λij)
δi is

equal to that of a right-censored or a complete exponential survival time, depending
on the censoring indicator δi.

3.2.2 Data augmentation for the dynamic survival model

If instead of
(

(yi1, δi1), . . . , (yij, δij)
)

the complete survival times (τi1, . . . τij) were
available, using the auxiliary mixture sampler would be feasible, as then the model
could be represented as a normal state space model.

The basic idea of the first data augmentation step therefore is to introduce
unobserved exponentially distributed auxiliary survival times under the regime of
each hazard rate λil. To achieve this, first note, that conditionally on yi ∈ Ij the
unobserved survival time τil, l = 1, . . . , j − 1 has an exponential distribution with
mean 1/λil, left-truncated at ∆l, i.e. the residual lifetime under hazard rate λil is

ξil = τil − ∆l ∼ Exponential (λil) .

For yi ∈ Ij the observation time in the last interval τij = yi − sj−1 is an observation
from the Exponential (λij) distribution, either complete or right censored.

Thus, for any observation time (yi, δi) ∈ Ij in the first data augmentation step
the complete auxiliary survival times τi1, . . . , τij can be generated as

τil = ∆l + ξil, for l = 1, . . . , j − 1,

τij =

{

yi − sj−1, if δi = 1,

yi − sj−1 + ξij, if δi = 0.
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where ξil ∼ Exponential (λil) with λil = exp((zf
i )

′α + (zv
i )

′βl) for l = 1, . . . , j.
In terms of the auxiliary survival times the dynamic survival model (2) and (3)

is special case of the dynamic generalized linear model considered by West et al.
(1985), for exponentially distributed observations

τil|α, βl ∼ Exponential
(

exp((zf
i )

′α + (zv
i )

′βl)
)

, (7)

βl = Fβl−1 + ωl, ωl ∼ Normal (0,Q) , (8)

where the matrices F and Q ar known or may depend on unknown model parameters
θ. In our model, F is the identity matrix and Q = diag(θ0, . . . , θK). For the negative
of the logarithm of the auxiliary survival times this is a linear state space model

− ln τil = (zf
i )

′α + (zv
i )

′βl + εil

βl = βl−1 + ωl, ωl ∼ Normal (0,Q)

where the error εil has a type I extreme value distribution. Using the mixture ap-
proximation and introducing the component indicator ril for each auxiliary survival
time τil in the second data augmentation step – as described in Section 3.1 – we
arrive at a representation as a partially Gaussian state space model as in Shephard
(1994).

Conditioning on all auxiliary survival times and the component indicators, the
observation equation can be written as

− ln τil|λil, ril = (zf
i )

′α + (zv
i )

′βl + mil + εil, εil ∼ Normal
(

0, s2
ril

)

.

Let nl denote the number of individuals at risk at the beginning of interval Il, and
assume that the observation times are arranged decreasingly, so that y1 is the largest
and yn is the smallest observed time. If we define a multivariate observation vector
ỹl of dimension nl as

ỹl =







− ln τ1l − mr1l

...
− ln τnl,l − mrnl,l






,

the model may be written in the following linear Gaussian state space form:

ỹl = Z̃
f
l α + Z̃v

l βl + εl, εl ∼ Normal (0,Vl) , (9)

βl = βl−1 + ωl, ωl ∼ Normal (0, Q) , (10)

where Vl = Diag
(

s2
r1l

, . . . , s2
rnl,l

)

. Z̃
f
l and Z̃v

l are matrices with nl rows, containing

the design vectors z
f
1 , . . . , z

f
nl

, and zv
1, . . . z

v
nl

for all individuals at risk at sl−1:

Z̃
f
l =







(zf
1)

′

...
(zf

nl
)′






, Z̃v

l =







(zv
1)

′

...
(zv

nl
)′






.

Thus, instead of the original dynamic survival model we have a partially Gaussian
state space model, where the transition equation is the same as for the original model
but the model for the log-hazard is replaced by a Gaussian observation equation with
a multivariate observation vector ỹl, determined from the auxiliary survival times
of the individuals at risk at the beginning of interval Il.
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3.2.3 The sampling scheme

Auxiliary mixture sampling can be carried out by adding a further step to the aux-
iliary mixture sampler described in Section 3.1. Select starting values for θ0, . . . , θK ,
the component indicators R and λil and repeat the following steps:

1. Carry out multi-move sampling for the whole sequence α and β by forward-
filtering backward sampling as in Frühwirth-Schnatter (1994), Carter and
Kohn (1994), de Jong and Shephard (1995), or Durbin and Koopman (2002)
for the conditionally Gaussian state space form (9) and (10).

2. Sample θ conditional on α, β, τ and R from the conditionally Gaussian state
space form (9) and (10).

3. For each observation (yi, δi) ∈ Ij sample the unobserved auxiliary survival
times τi = (τil; l = 1, . . . , j) and the component indicators ril for each
τil, l = 1, . . . , j by sampling independently from a discrete distribution with
10 categories.

In the dynamic survival model Q = diag(θ0, . . . , θk) and thus the process variances
θ0, . . . , θk are sampled independently from inverse Gamma distributions.

We have not yet commented on how to obtain starting values for λil. One choice
would be to draw values for α and β from their respective prior distributions. An
alternative which was used in the applications in the next section, is to use the same
value for all auxiliary survival times in interval Ij, λ0

ij = λ0
j , which implies setting

the starting values for all covariate effects to zero. For λ0
j we used the ML estimator

for the log-hazard λ̂j , which is the number of failures in interval Ij divided by total
observed time in Ij.

4 Applications

4.1 Simulated data

For illustration of the sampler we first consider a set of n = 200 survival times,
generated from a dynamic survival model, without covariates and a baseline log-
hazard β evolving as a random walk. The starting point for the random walk was
β0 = −5 and the process variance θ0 was set to 0.3. The time axes from 0 to 20
was divided into 20 intervals of length 1, and a last interval starting at s = 20 and
ending at the largest survival time was added.

Data were analyzed using the complete survival times and under right-censoring
for two different censoring schemes. Censoring times were generated as ci ∼ U([0, 40])
and ci ∼ Exponential (10) leading to 21.5% respectively 50% censored observation.
The largest observed time was 29.5610 for the uncensored data set and under cen-
soring scheme 2 and 26.1537 for the first censoring scheme.

The auxiliary mixture sampler was run 25000 times with a burnin of 5000. We
used 4 different choices for the prior distribution, which all are rather uninformative:
c0 = C0 = 0, c0 = C0 = 0.00001, c0 = C0 = 0.01, c0 = 0.1, C0 = 0.01. Though
c0 = C0 = 0 is an improper prior, it worked well for this example.
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Figure 2: Kernel density estimates for posterior density of θ for complete survival
times (left) , censored data 1 (middle), censored data 2 (right)

0 5 10 15 20 25 30
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0 5 10 15 20 25
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0 5 10 15 20 25
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Figure 3: Estimated (full) and true (dashed) baseline log-hazard within 95%-credible
regions for complete survival times (left), data under censoring scheme 1 (middle),
and under censoring 2 (right)

Figure 2 shows the kernel density estimates for the posterior distribution of θ
obtained from the sampling output. Obviously there is not much difference in the
posterior distributions for θ for these 4 priors. Results were very similar for these
priors with regard to the estimated baseline log-hazard as well. In Figure 3 the
baseline log-hazard is compared to the true values β0 used for generating the data
for c0 = C0 = 0.01 The true value lies in the 95%-point-wise credible interval for
any time interval except one for the second censoring scheme.

4.2 Gastric cancer data

As a second illustration we applied the auxiliary mixture sampler on a data set of pa-
tients with gastric cancer, analyzed previously by Gamerman (1991) and Hemming
and Shaw (2005).

The data are survival times of 90 patients, randomly allocated to a therapy.
Treatment was chemotherapy in the first group, and in the second group a com-
bination of chemotherapy and radiation. Overall 10 observation times were right
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Table 2: Estimated process variances for gastric cancer data
Parameter Mean Std.dev. 95%H.P.D. regions

θ1 0.0245 0.0220 [ 0.0016 0.0705]
θ2 0.0553 0.0534 [ 0.0033 0.1718]
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Figure 4: Gastric cancer data: Posterior means and 95% credible regions for the
baseline log-hazard (left) and the effect of combined treatment (right)

censored.
In this setting it is of interest whether there is a treatment effect of combined

therapy as compared to chemotherapy alone and whether this effect varies over time.
The covariate vector is zv

i = (1, z1i) where z1i indicates whether patient i underwent
combined therapy or not. The parameter vector β therefore has 2 components.

In their analysis Gamerman (1991) as well as Hemming and Shaw (2005) used
the failure times in the data as division points of the time axis. We applied the
auxiliary mixture sampler with the same intervals with 25000 iterations and a burnin
of 5000. For the process variances we used an inverse Gamma prior with parameters
c0k = C0k = 0.01, k = 0, 1. Prior moments for starting values β0 were chosen to be
b0 = 0 and B0 = 100 I2 .

Table 2 reports point estimates, standard errors as well as 95%-highest posterior
density regions for the process variances θ0 and θ1. Figure 4 shows the estimated
baseline log-hazard and the effect of combined therapy. Both plots are similar to
those of Hemming and Shaw (2005).The baseline log-hazard increases early followed
by a sharp decline, but as the credible intervals include a straight line, a constant
baseline-hazard, as assumed in Gamerman (1991) cannot be ruled out. The esti-
mated treatment effect varies with time declining from a significantly positive to a
negative effect in the long run. Risk of death is thus higher for patients treated with
combined therapy during the first 200 days but lower than for those treated only
with chemotherapy later on. Evidence is clear in favor of a dynamic effect.

4.3 Worcester heart attack data

As a further application we analyzed the data of the Worcester heart attack study
used in Hosmer and Lemeshow (1999). The main goal of the study was to describe
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Table 3: Description of variables from the Worcester Heart Attack Study

Variable Description
age age at hospital admission in years
sex 0=male, 1=female
sho cardiogenic shock complications (0=no, yes=1)
cpk peak cardiac enzyme measured in international units (IU)
chf left heart failure complications(0=no, yes=1)
miorder myocardial infection order (0=first, 1=recurrent)
mitype myocardial infection type (0=Q wave, 1=not Q wave or indeterminate)

trends over time in the incidence and survival rates following hospital admission for
acute myocardial infarction. The data set provided by Hosmer and Lemeshow (1999)
is a sample of the main data set with information on 481 patients. Additionally to
length of follow-up, defined as days from hospital admission and status of last follow-
up (dead or alive), several covariates were available which are described in Table 3.

In a preliminary analysis we estimated a Cox proportional hazards model and
investigated for each of the seven covariates whether the proportional hazards as-
sumption was appropriate. Plots of smoothed Schoenfeld residuals indicate that the
proportional hazards assumption is not violated for covariates age, sex and sho,
whereas for the remaining covariates time varying effects seem to be more appro-
priate. Therefore we finally fitted a dynamic survival model with fixed effects for
three covariates (age, sex and sho) and time-varying effects for the remaining four
covariates (cpk, chf, miorder and mitype). Most events occur early, therefore the
time axis was partitioned into intervals of different length, starting with intervals of
length 30 (corresponding to months) until day 1800, followed by intervals of length
90 (corresponding to quarters) until day 3600 and finally intervals of length 360.

As priors for fixed effects and starting values for the random walks we used
independent standard normal distributions; for the inverse gamma prior for the
process variances we chose c0 = 0.1 and C0 = 0.01. The auxiliary mixture sampler
was run with 25 000 iterations and a burnin of 5000.

Estimation results for fixed effects and process variances are presented in Table
4, Figure 5 shows the estimated time varying effects. Whereas sex has no significant
effect, age and cardiogenic shock complications (sho) increase the risk. The effect of
peak cardiac enzyme (cpk) is significantly positive in the first month and negative
in the long run. Higher values of cpk significantly decrease the risk during the
time period of month 46 to month 70 after acute myocardial infection. Left heart
failure complications (chf) significantly increase risk during the first year, but this
effect vanishes in the long run. Recurrent myocardial infection (miorder) has a
significant positive effect only in the first month, declining to a slightly negative
long run effect. The effect of myocardial infection type is positive early after acute
myocardial infection, but close to significance only in the first month, and decreases
to a negative long run effect.
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Table 4: Estimated parameters for the WHAS data
fixed effects Mean Std.dev. 95%H.P.D. regions
age 0.0173 0.0029 [ 0.0115 0.0226]
sex 0.0031 0.1347 [ -0.2520 0.2433]
sho 1.7858 0.2024 [ 1.3886 2.1781]
process variances Mean Std.dev. 95%H.P.D. regions
θ1 (baseline) 0.4984 0.1545 [ 0.2150 0.7946]
θ2 (cpk) 0.0269 0.0212 [ 0.0037 0.0691]
θ3 (chf) 0.0308 0.0324 [ 0.0020 0.1020]
θ4 (miorder) 0.0149 0.0113 [ 0.0017 0.0371]
θ5 (mitype) 0.0240 0.0287 [ 0.0012 0.0865]
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Figure 5: WHAS data: Posterior means and 95% credible regions for the effect of
cpk (a), chf (b), miorder (c) and mitype (d)
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5 Extensions

5.1 Extending the linear predictor

The auxiliary mixture sampler has a wider application than for the dynamic survival
model described above. Through the mixture approximation it can deal with more
general models, where further components are added to linear predictor, as long as
the corresponding normal model can be estimated by Gibbs sampling.

Consider, for example, a dynamic survival model with random effects, i.e. frail-
ties which are useful either to model correlation of survival times or unobserved het-
erogeneity, see Therneau and Grambsch (2000). To model correlation within groups
of individuals group-specific frailties are used, whereas unobserved heterogeneity is
captured by individual frailties. As frailties are supposed to act multiplicatively on
the hazard, for an individual i with frailty ui the hazard is

λ(t|zi, ui, t ∈ Ij) = ui exp((zf
i )

′α + (zv
i )

′βj)

A common choice for the frailty distribution is the Gamma distribution, in
particular for exponential or Weibull survival data. With the auxiliary mixture
sampler however it is more convening to assume a log-normal distribution, i. e.
ln ui ∼ Normal (0, D0). The partial Gaussian representation of the model for the
auxiliary survival times conditioning on the component indicators ril is

− ln τil|λil = (zf
i )

′α + (zv
i )

′βl + ln ui + mil + εil, εil ∼ Normal
(

0, s2
ril

)

,

which is a linear mixed model with random effect ln ui. Just one additional step has
to be added to the auxiliary mixture sampler to draw the random effects ln ui, i =
1, . . . , n from their joint posterior which is a multivariate normal distribution.

Adding multidimensional random effects or unstructured spatial effects with nor-
mal priors is straightforward. If spatially structured effects with Markov random
field smoothing priors are included in the model, the efficient sampling algorithms
for normal response models, presented Rue and Held (2005) can be used.

5.2 Different censoring schemes

As the model is parametric, data augmentation to generate auxiliary survival times
is feasible also for missing information different from right-censoring. Consider for
example an interval censored observation, where the survival time is known to lie in
the interval (tL, tR]. Conditional on the available information, that ti ∈ (tL, tR], the
survival function is

S∗(t) = P (ti > t|ti ∈ (tL, tR]) =
S(t)

S(tL) − S(tR)
for t ∈ (tL, tR].

Complete auxiliary survival times can easily be obtained by first sampling the num-
ber vi of the interval where failure for individual i occurs and then generating aux-
iliary survival times for each interval, l = 1, . . . , vi.
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Let jL and jR be the number of intervals containing tL and tR respectively. Then
vi has a discrete distribution, given as

p(vi = j) =



















S(tL)−S(sj)

S(tL)−S(tR)
j = jL

S(sj−1)−S(sj)

S(tL)−S(tR)
jL < j < jR

S(sj−1)−S(tR)

S(tL)−S(tR)
j = jR

.

Conditional on knowing vi = j, all auxiliary survival times except the last, i.e.
τil, l < j are known to be right censored. Auxiliary residual survival times ξil and
hence auxiliary survival times τil, can be generated as described in Section 3.2. The
last auxiliary survival time τij is known not to exceed ξmax = sj − sj−1 = ∆ij for
j < jR, respectively ξmax = tR−sj−1 for j = jR and corresponds to an observation ξij

from the right truncated Exponential (λij)-Distribution. ξij thus can be generated
by sampling a uniform U [0, 1] random variable and inverting the survival function

S∗(x) =
exp(−λijx)

1 − exp(−λijξmax)
.

The auxiliary survival times then are defined as

τil =

{

∆il + ξil for l < j

ξij for l = j

6 Discussion

Dynamic survival models are a useful alternative to the Cox model for analyzing
survival data by allowing time-varying effects of covariates. We proposed a new
auxiliary mixture sampler for these models. The convenience of this sampler results
from the representation of the model for the log-hazard as a partial Gaussian model
for auxiliary survival times. This allows to deal with any form of the linear predictor
where Gibbs sampling for the equivalent model with Gaussian errors is feasible. In
particular sampling algorithms for Gaussian models are easily adapted to survival
models with the same linear predictor by adding the two steps of data augmentation
described above. Thus inclusion of unstructured or structured spatial effects or
nonlinear effects of covariates modelled by P-splines as in Hennerfeind et al. (2006)
is straightforward. The key property that has to be maintained for application of
the auxiliary mixture sampler is the piecewise constant structure of the log-hazard
as a function of time. Models where the evolution of log-hazard in time is described
by B-Splines of a higher degree, as in Hennerfeind et al. (2006) cannot be dealt with.

However the sampler can be easily adapted for models including time-dependent
covariates, if these change their values only at some distinct time points. Let tC ∈ Ij

denote the change-point of a covariate, then the interval Ij is split into two periods
(sj−1, tC ] and (tC , sj], which are observed under different hazards λ and λ∗. By
introducing complete auxiliary survival times and component indicators for both of
these observation times as described in Section 3.2 the representation as a partial
gaussian state space model is maintained.

16



A further advantage of the dynamic survival model is, as it is a parametric model,
that – by data augmentation – allows to deal with missing information different from
right-censoring, details have been given for interval censoring.

Many useful generalizations of the model, as e.g. modeling the linear predictor
by mixtures of linear models with random effects as in Lenk and DeSarbo (2000),
or models allowing process variances to depend on the length of the time interval or
varying over time are potential topics for further research.
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Frühwirth-Schnatter, S. and Wagner, H. (2006). Auxiliary mixture sampling for
parameter-driven models of time series of small counts with applications to state
space modelling. To appear in Biometrika.

Gamerman, D. (1991). Dynamic Bayesian models for survival data. Applied Statis-

tics, 40:63–79.

Hemming, K. and Shaw, J. E. H. (2005). A class of parametric dynamic survival
models. Lifetime Data Analysis, 11:81–98.

Hennerfeind, A., Brezger, A., and Fahrmeir, L. (2006). Geoadditive survival models.
To appear in Journal of the American Statistical Association.

17



Hosmer, D. W. and Lemeshow, S. (1999). Applied Survival Analysis. John Wiley &
Sons.

Ibrahim, J., Chen, M., and Sinha, D. (2001). Bayesian Survival Analysis. Springer
Verlag.

Kim, S., Shephard, N., and Chib, S. (1998). Stochastic volatility:likelihood inference
and comparison with ARCH models. Review of Economic Studies, 65:361–393.

Lenk, P. J. and DeSarbo, W. S. (2000). Bayesian inference for finite mixtures of
generalized linear models with random effects. Psychometrika, 65:93–119.

Nieto-Barajas, L. E. and Walker, S. G. (2002). Markov beta and gamma processes
for modelling hazard rates. Scandinavian Journal of Statistics, 29:413–424.

Omori, Y., Chib, S., Shephard, N., and Nakajima, J. (2006). Stochastic volatility
with leverage: fast likelihood inference. Journal of Econometrics, pages xx–xx.

Rue, H. and Held, L. (2005). Gaussian Markov Random Fields. Taylor & Francis.

Shephard, N. (1994). Partial non-Gaussian state space. Biometrika, 81:115–131.

Sinha, D., Chen, M. H., and Ghosh, S. K. (1999). Bayesian analysis and model
selection for interval censored data. Biometrics, 55:585–590.

Sinha, D. and Dey, D. K. (1997). Semiparametric Bayesian analysis of survival data.
Journal of the American Statistical Association, 92:1195–1212.

Therneau, T. M. and Grambsch, P. M. (2000). Modelling Survival data. Springer
Verlag.

Verweij, P. J. M. and van Houwelingen, H. C. (1995). Time-dependent effects of
fixed covariates in cox regression. Biometrics, 51:1550–1556.

West, M., Harrison, P. J., and Migon, H. S. (1985). Dynamic generalized linear mod-
els and Bayesian forecasting (C/R: p84-97). Journal of the American Statistical

Association, 80:73–83.

18


