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Abstract

We describe a new method of data augmentation for binary and multinomial
logit models. First, the latent utilities (McFadden, 1974) are introduced as
auxiliary latent variables, leading to a latent model which is linear in the
unknown parameters, but involves errors from the type I extreme value distri-
bution. Second, for each error term the density of this distribution is approxi-
mated by a mixture of normal distributions, and the component indicators in
these mixtures are introduced as further latent variables. This leads to Markov
chain Monte Carlo estimation based on a convenient auxiliary mixture sampler
that draws from standard distributions like normal or exponential distribu-
tions and, in contrast to more common Metropolis-Hastings approaches, does
not require any tuning.

We show how the auxiliary mixture sampler is implemented for binary
or multinomial logit models, and demonstrate how to extend the sampler
to mixed effect models and time-varying parameter models for binary and
categorical data. Finally, we discuss an application to Austrian labor market
data.

Key words: binary data, categorical data, Markov chain Monte Carlo, random
effect models, state space models, utilities

1 Introduction

Applied statisticians and econometricians commonly have to deal with modelling a
binary or multinomial response variable in terms of covariates. Examples include
modelling the probability of unemployment in terms of risk factors and modelling
choice probabilities in marketing in terms of product attributes. A widely used tool
for analyzing such data are binary or multinomial regression techniques using gen-
eralized linear models (McCullagh and Nelder, 1999), either based on the logit or
the probit link function. In this paper we focus on computationally simple Markov
chain Monte Carlo (MCMC) techniques for practical Bayesian inference of the stan-
dard binary and multinomial logit regression model and some of its extensions, like
time-varying parameter models and regression models including random effects.

Seminal papers on the Bayesian estimation of logistic regression models are Zell-
ner and Rossi (1984) who performed importance sampling based on a multivariate
Student-t distribution, with mean and covariance matrix being equal to the posterior
mode and the asymptotic covariance matrix, and Zeger and Karim (1991) who where
the first to use Markov chain Monte Carlo (MCMC) methods. Several other authors
have contributed to MCMC estimation of logistic models (Gamerman, 1997; Chib
et al., 1998; Lenk and DeSarbo, 2000; Hurn et al., 2003; Scott, 2004); see also Dey
et al. (2000) for a review. These techniques usually involve a Metropolis-Hastings
algorithm for at least part of the unknown parameters, which in turn makes it neces-
sary to define suitable proposal densities. For a routine application of logistic model
is seems preferable to apply MCMC methods which run without any tuning. One
such technique is single-move adaptive rejection sampling applied by Dellaportas
and Smith (1993) which may lead to a poorly mixing sampler, since the posterior
correlation in the coefficients of a logistic regression model may be extremely high;
see Zellner and Rossi (1984).
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Whereas it has been known for quite a while how to implement Gibbs sampling
for the probit model (Albert and Chib, 1993; McCulloch and Rossi, 1994), Gibbs
sampling seemed unfeasible under the logit link until very recently. Holmes and
Held (2006) realized that Gibbs sampling is feasible also for logistic models through
data augmentation using two sequences of auxiliary latent variables of the same
size as the data. The first augmentation step is exactly the same as for the probit
link and leads to a linear model with an error term that is non-normal but may be
expressed as a scale mixture of normal distributions, where one-half of the square
root of the scaling factor follows the Kolmogoroff-Smirnov distribution (Andrews
and Mallows, 1974). Holmes and Held (2006) introduced for each error term the
scaling factor as a second auxiliary latent variable, which conditionally leads to a
linear normal regression model. The conditional posterior distribution of the scaling
factors, however, does not have a closed form, and rejection sampling has to be used.

The main goal of the present article is to develop another Gibbs type sampling
scheme for the Bayesian estimation of logistic models. It is similar to the approach
of Holmes and Held (2006) but offers the advantage that the conditional poste-
rior distribution of all auxiliary latent variables has closed form. This Gibbs type
sampling scheme results from applying auxiliary mixture sampling, which has been
introduced for a Bayesian analysis of stochastic volatility models by Shephard (1994)
and has been applied in this context by a couple of authors (Kim et al., 1998; Chib
et al., 2002; Omori et al., 2004). Frühwirth-Schnatter and Wagner (2006, 2005)
introduced auxiliary mixture sampling for a Bayesian analysis of parameter-driven
models for count data based on the Poisson distribution.

To extend the auxiliary mixture sampling approach to logistic models we first
recall the interpretation of a logit-model in terms of utilities (McFadden, 1974) and
introduce as in Scott (2004) the latent utilities as missing variables in a first data
augmentation step. The introduction of this first set of latent variables eliminates
non-linearity from the regression analysis and conditionally leads to a linear regres-
sion model. The non-normality of the error term which follows a type I extreme value
distribution, however, remains. Whereas Scott (2004) uses a Metropolis-Hastings al-
gorithm to sample the parameters, we eliminate the non-normality of the error term
by a second sequence of latent variables. To this aim, the extreme value distribution
is approximated by a mixture of normal distributions in a similar way as in Kim
et al. (1998) and Chib et al. (2002) who used a normal mixture approximation to
the density of a logχ2

1-distribution in the context of stochastic volatility models. By
introducing the component indicator of this normal mixture as a second sequence
of missing data, a Gibbs sampling type algorithm is developed. This will be shown
to be particularly useful for random effects models and for state space models for
binary and categorical time series, as multi-move-sampling of all effects becomes
feasible.

The rest of the paper is organized as follows. In Section 2, we discuss data aug-
mentation and auxiliary mixture sampling for a binary logit regression model, which
will be extended to multinomial logit models in Section 3. More complex models like
state space modelling of binary time series and random effect models for binary and
multinomial panel data are discussed in Section 4, where we also consider data from
the binomial distribution. An application to capturing unobserved heterogeneity in
the Austrian labor market is described in Subsection 4.4. Finally, Section 5 contains
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the concluding remarks.

2 Data Augmentation and Auxiliary Mixture Sam-

pling for the Binary Logit Regression Model

Given a sequence y1, . . . , yN of binary data, the binary logit regression model reads:

Pr(yi = 1|β) =
exp(xiβ)

1 + exp(xiβ)
, (1)

where xi is a row vector of regressors, including 1 for the intercept, and β is an
unknown regression parameter. Furthermore we assume that conditional on knowing
β, the observations are mutually independent.

To pursue a Bayesian approach, we assume that the prior distribution p(β) of β
follows a normal distribution, Nd (b0,B0) with known hyperparameters b0 and B0.
It is then possible to derive the posterior density p(β|y) by Bayes’ theorem, given
all observations y = (y1, . . . , yN):

p(β|y) ∝ p(β)
N
∏

i=1

(exp(xiβ))
yi

1 + exp(xiβ)
.

Zellner and Rossi (1984) showed that improper priors like p(β) ∝ constant do not
necessarily lead to a proper posterior density p(β|y). Sufficient conditions on the
likelihood involve conditions on the number of observed zeros and ones (both need
to be positive), as well as conditions on the regressor; see Zellner and Rossi (1984,
p.389) for details.

2.1 Data Augmentation for the Binary Logit Regression

Model

The first data augmentation step was suggested by Scott (2004) in the context
of multinomial logit models and involves the well-known interpretation of a logit-
model in terms of utilities as introduced by McFadden (1974). Let yu

0i be the utility
of choosing category 0, which is assumed to be independent of any covariates for
identifiability reasons. Let yu

i be the utility of choosing category 1, which is modelled
as depending on covariates xi:

yu
i = xiβ + εi. (2)

Then category 1 is observed, i.e. yi = 1, iff yu
i > yu

0i, otherwise yi = 0. If yu
0i and

εi follow a type I extreme value distribution, the binary logit regression model (1)
results as the marginal distribution of yi.

The first step of data augmentation introduces for each i, i = 1, . . . , N , the latent
utility yu

i of choosing category 1 as missing data, with two desirable effects. First,
the conditional posterior distribution p(β|yu,y) of β, where in addition to y the
latent utilities yu = (yu

1 , . . . , y
u
N) appear as a conditioning argument, is independent

of y: p(β|yu,y) = p(β|yu). Second, conditional on yu, the posterior of β can be
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derived from regression model (2), which is non-normal, but linear in the unknown
model parameters β. Thus, the first augmentation step eliminates the non-linearity
of the logit model; the non-normality of the error term εi, however, remains. Scott
(2004) uses a Metropolis-Hastings algorithm based on various approximations to
this regression model, to sample the regression parameters β.

In the present paper we go a step further and eliminate also the non-normality
of the error term through a second step of data augmentation. Note that the error
term εi in (2) follows a type I extreme value distribution and that the density of
this distribution is independent of any unknown model parameters:

pε(ε) = exp{−ε− e−ε}. (3)

To obtain a model that is conditionally Gaussian, we approximate the non-normal
density pε(ε) by a normal mixture of M components with parameters mr and s2

r for
the r-th component:

pε(ε) = exp{−ε− e−ε} ≈ qM,ε(ε), qM,ε(ε) =
M
∑

r=1

wrfN (ε;mr, s
2
r). (4)

This idea is influenced by the related articles of Shephard (1994), Kim et al. (1998),
Chib et al. (2002) and Omori et al. (2004) who used a normal mixture approximation
of the density of a logχ2

1-distribution in the context of stochastic volatility models.
The appropriate parameters (wr,mr, s

2
r), r = 1, . . . ,M , however, are different for

our problem and are given in Table 1 for M = 10. The choice of these parameters
will be discussed in Subsection 2.3.

The generation of ε from the mixture distribution (4) may be viewed as first
drawing one of the M normal distributions, by drawing the components indicator r
from the discrete probability distribution w1, . . . , wM , and then drawing ε from the
normal distribution N (mr, s

2
r); see Frühwirth-Schnatter (2006) for more detail.

The second step of our data augmentation scheme approximates the density
pε(εi) in the regression model (2) by the normal mixture qM,ε(εi) and introduces
for each εi the latent component indicator ri as missing data. Conditionally on
knowing ri, the regression model (2) reduces to a Gaussian regression model with
heteroscedastic errors with known variance:

yu
i = xiβ +mri

+ εi, εi ∼ N
(

0, s2
ri

)

. (5)

For such a model it is well known that the conditional posterior of β is a multivariate
normal density (Zellner, 1971). This result is the basis for the two-block auxiliary
mixture sampler that will be described in Subsection 2.2.

2.2 A Two-Block Auxiliary Mixture Sampler

Assume that data augmentation as described in Subsection 2.1 has been applied for
all observations by introducing two sequences of latent auxiliary variables, namely
the latent utilities yu = {yu

1 , . . . , y
u
N} and the latent component indicators R =

{r1, . . . , rN}.
To implement a two-block auxiliary mixture sampler select starting values for R

and yu and repeat the following steps:

4



Table 1: Normal mixture approximation to the density of the type I extreme value
distribution (10 components) obtained by minimizing the Kullback-Leibler distance

r 1 2 3 4 5 6 7 8 9 10
wr 0.00397 0.0396 0.168 0.147 0.125 0.101 0.104 0.116 0.107 0.088
mr 5.09 3.29 1.82 1.24 0.764 0.391 0.0431 -0.306 -0.673 -1.06
s2

r 4.5 2.02 1.1 0.422 0.198 0.107 0.0778 0.0766 0.0947 0.146

(a) Sample the regression coefficient β conditional on knowing yu and R based
on the normal regression model (5).

(b) Sample the latent utilities yu and the latent indicators R conditional on β

and y by running steps (b1) and (b2) independently for i = 1, . . . , N with
λi = exp(xiβ):

(b1) Sample the latent utility yu
i conditional on λi and yi as

yu
i = − log

(

−
log(Ui)

1 + λi

−
log(Vi)

λi

I{yi=0}

)

, (6)

where Ui and Vi are two independent uniform random numbers.

(b2) Sample the component indicators ri conditional on yu
i and λi from the

following discrete density:

Pr(ri = j|yu
i ,β) ∝

wj

sj

exp

{

−
1

2

(

yu
i − log λi −mj

sj

)2
}

. (7)

The quantities (wj,mj, s
2
j), j = 1, . . . ,M are the parameters of the M

component finite mixture approximation tabulated in Table 1.

Note that step (b) involves only draws from standard densities. Step (b) can be
used to sample starting values for yu

i and ri for each i, given the observed binary
data yi, by choosing starting values for λi = exp(xiβ).

Details on the Sampling Steps

Conditionally on knowing yu and R, the binary logit model (1) reduces to the linear
normal regression model (5). Therefore, in step (a), the conditional posterior of β
is given by the Nd (bN ,BN)-distribution, where

bN = BN

(

N
∑

i=1

x
′

i(y
u
i −mri

)/s2
ri
+ B−1

0 b0

)

, (8)

B−1
N = B−1

0 +
N
∑

i=1

x
′

ixi/s
2
ri
.
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To verify the sampling steps (b1) and (b2), the posterior p(R,yu|y,β) is decomposed
as:

p(R,yu|y,β) = p(R|yu,y,β)p(yu|y,β).

The latent utilities yu
i are independent, given y and β:

p(yu|y,β) =
N
∏

i=1

p(yu
i |yi,β).

To sample yu
i from the conditional distribution p(yu

i |yi,β), we use some well-known
properties of the exponential distribution. First, from the relation between the type
I extreme value distribution and the exponential distribution, we obtain

exp(−yu
0i) ∼ E (1) , exp(−yu

i ) ∼ E (λi) , (9)

where yu
0i is the utility of choosing category 0 and λi = exp(xiβ). Second, as the

minimum of exponential random variables follows again an exponential distribution,
we obtain:

min(exp(−yu
0i), exp(−y

u
i )) ∼ E (1 + λi) . (10)

Third, knowing the minimum, the other random variable has a translated exponen-
tial distribution. If yi = 1, then yu

i > yu
0i, or equivalently, exp(−yu

i ) < exp(−yu
0i).

Therefore we obtain from (10):

exp(−yu
i ) ∼ E (1 + λi) . (11)

On the other hand, if yi = 0, then yu
i < yu

0i, or equivalently, exp(−y
u
0i) < exp(−yu

i ),
and:

exp(−yu
0i) ∼ E (1 + λi) , exp(−yu

i ) = exp(−yu
0i) + ξi, ξi ∼ E (λi) . (12)

By the help of two uniform random numbers Ui and Vi, (11) and (12) can be written
immediately as in formula (6) in step (b1).

The component indicators ri are mutually independent, given yu, β and y:

p(R|yu,y,β) =
N
∏

i=1

p(ri|y
u
i ,β).

The posterior of each component indicator ri depends on the data only through yu
i ,

thus step (b2) follows immediately.

2.3 Finding the Mixture Approximation

Auxiliary mixture sampling is based on approximating the type I extreme value dis-
tribution in (4) by a normal mixture distribution. To find an appropriate mixture
distribution we have considered a whole set of normal mixture approximations with
different number M of components, which were fitted to the type I extreme value
distribution using different distance measures. The use of distance-based methods
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to fit mixtures of normals to a given density is discussed in great detail in Titter-
ington et al. (1985, Section 4.5). Among the distance measures suggested there, we
considered the L2 distance δLB(pε, q) defined by:

δLB(pε, qε,M ) =

∫

<

(pε(ε)− qε,M(ε))2 dε (13)

=

∫

<

(

exp{−ε− e−ε} −
M
∑

r=1

wrfN (ε;mr, s
2
r)

)2

dε,

and the Kullback-Leibler distance δKL(pε, qε,M ) defined by:

δKL(pε, qε,M ) =

∫

<

pε(ε) log
pε(ε)

qε,M (ε)
dε (14)

=

∫

<

exp{−ε− e−ε}

{

−ε− e−ε − log

(

M
∑

r=1

wrfN (ε;mr, s
2
r)

)}

dε.

As the component weights wr are constrained to the interval (0, 1) and the variances
s2

r have to be positive, the mixture was rewritten in terms of the unconstrained
transformed parameters

w′r = ln(wr)− ln(1− wr), s2
r

′
= ln s2

r. (15)

ForM fixed, the unknown parameters were determined by minimizing either δLB(pε, qε,M )
or δKL(pε, qε,M ), using the function fminsearch in the optimization toolbox of MAT-
LAB (Version 7.0.1). The function fminsearch uses a direct search method, the
Nelder-Mead simplex algorithm (Nelder and Mead, 1965). It evaluates the objective
function at the vertices of a simplex, then rejects the worst vertex and looks for
a better one. It iteratively shrinks the simplex until the improvement falls below
some bound or the maximum number of iterations is exceeded. As the Nelder-Mead
method finds the nearest local optimum and convergence tends to be slow, good
initial values of the mixture parameters are important. The initial values of the
M -component mixture were determined by splitting the largest component of the
(M − 1)-component mixture into two new components with slightly shifted means
and leaving the remaining components unchanged. Integration in (13) and (14) was
carried out numerically by a simple trapezoidal rule on a grid of 45000 points in
the interval [−3, 15] which was considered to be the effective range of the type I ex-
treme value distribution. Figure 1 shows two quality indicators of the approximating
mixtures obtained by minimizing δKL, namely the Kullback-Leibler distance of the
estimated mixture from the exact distribution and the maximum absolute deviation
of the estimated mixture density from the exact density, both as a function of the
number M of components.

The minimization procedure with fminsearch is quite lengthy. For instance, the
mixture with 10 components and 30 parameters requires nearly 38,000 iterations to
converge. On a mobile PC with a 1.73 GHz Pentium M processor this takes about
5000 seconds. Although it is clearly not excluded to go beyond ten components from
the point of view of computing time, we have found that mixtures with 14 or more
components are plagued by numerical instabilities, resulting in negative values of
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Figure 1: Left: Kullback-Leibler distance δKL of the estimated mixtures from the
exact distribution; right: maximum absolute deviation of the estimated mixture
densities from the exact density. The mixtures were estimated by minimizing δKL.

the Kullback-Leibler divergence. These could probably be cured by a denser grid
and a more sophisticated integration rule, but the results show that this is not worth
the effort.

To study the effect of using different distance measures and different numbers of
mixture components, we consider a Metropolis-Hastings algorithm, based on propos-
ing the unknown model parameter β from an approximate model, where in (2) the
density pε(εi) is substituted by the mixture approximation qM,ε(εi). The acceptance
rate in the Metropolis-Hastings algorithm depends on the ratio

r(β,yu) =
p(yu|β)

qM(yu|β)
, (16)

where p(yu|β) is the likelihood of the exact model (2):

p(yu|β) =
N
∏

i=1

pε(y
u
i − xiβ), (17)

and qM(yu|β) is the likelihood of the approximate model obtained by substituting
pε(εi) by the mixture approximation qε,M (εi):

qM(yu|β) =
N
∏

i=1

qε,M (yu
i − xiβ). (18)

By computing the expected acceptance rate in this Metropolis-Hastings algorithm,
we will gain some insight into the accuracy of the various mixture approximations in
a sampling based context. The closer the expected acceptance rate is to 100 percent,
the more accurate is the corresponding mixture approximation.

We have evaluated this acceptance rate for a simple example, namely Bayesian
inference for N iid binary observations y1, . . . , yN , drawn with Pr(yi = 1|β) = π =
exp(β)/(1 + exp(β)). Under the prior π ∼ B (a0, b0) the posterior of π is known to

8



arise from the B (a0 + SN , b0 +N − SN)-distribution with SN =
∑N

i=1 yi counting
the number of ones. The augmented model, obtained after the first step of data
augmentation, reads:

yu
i = β + εi, (19)

with β = log π − log(1 − π). To evaluate how the approximation error introduced
through the mixture approximation influences the acceptance rate we consider a
marginal two-step sampler without introducing the indicators, where in a first step
we sample the utilities yu

1 , . . . , y
u
N as in step (b1) and propose βnew from the pro-

posal density qM(β|yu) ∝ qM(yu|β)p(β), with qM(yu|β) being the likelihood of the
approximate model defined in (18). The acceptance rate defined in (16) is random,
depending both on βnew and on yu. Since in equilibrium yu is drawn from the
stationary distribution, we determine the expectation of the acceptance rate with
respect to qM(βnew|yu)p(yu|β,y)p(β|y):

∫ {∫

min

(

1,
r(βnew,yu)

r(β,yu)

)

qM(βnew|yu)dβnew

}

p(yu|β, y)p(β|y)dyudβ.

Since the stationary distribution p(β|y) is known explicitly for this example, the
outer integral is evaluted through Monte Carlo integration, whereas the inner inte-
gral is evaluated numerically.

Table 2 and Table 3 report the expected acceptance rate with simulated data for
various values of π and N . The number of components rises from 2 two 10 both for
the L2 and for the Kullback-Leibler distance. As expected, by increasing the number
of components the acceptance rate approaches 100% for both distances. The perfor-
mance of the Kullback-Leibler distance is considerably better than the performance
of the L2 distance. The parameters of the best performing 10-component mixture
approximation based on the Kullback-Leibler distance are given in Table 1.

Note that the mixture approximation is applied to equation (19) not only once,
but N times. Both tables show how the approximation error accumulates when N
increases. For smaller number of components the acceptance rate of the mixture
approximations derived from the L2 distance rapidly decrease with rising N . The
mixture approximations derived from the Kullback-Leibler distance are much more
reliable in this respect.

Rather than deriving new mixture approximations, we could have used the
closely related normal mixture approximations suggested by Carter and Kohn (1997)
for semiparametric Bayesian inference for time series with mixed spectra, and by
Frühwirth-Schnatter and Wagner (2005) for a Bayesian analysis of regression mod-
els for small count data. In Carter and Kohn (1997), two different normal mixture
approximations with 5 components were fitted to the density of a random variable
defined as log(1

2
X) with X ∼ χ2

2. As the random variable − log( 1
2
X) follows a type

I extreme value distribution, we could have used the mixture approximation pub-
lished in Carter and Kohn (1997, Table 1 and 2) for our purpose, after switching
the signs of the means given in both tables. In Frühwirth-Schnatter and Wagner
(2005), a normal mixture approximation with 5 components was fitted to the den-
sity of a random variable defined as logX with X ∼ E (1). As the random variable
− logX follows a type I extreme value distribution, we could have used the mixture

9



Table 2: Expected acceptance rate (in percent) for a Metropolis-Hastings algorithm
based on a mixture approximation with M components minimizing the Kullback-
Leibler distance

π N 2 3 4 5 6 7 8 9 10
0.05 1 90.0 96.5 98.3 99.2 99.5 99.7 99.9 99.9 99.9

10 88.5 94.1 97.0 98.2 99.0 99.4 99.5 99.7 99.8
100 86.3 91.3 94.4 96.9 98.4 98.9 99.1 99.3 99.4

1000 83.2 90.1 94.5 96.8 97.8 98.7 99.2 99.3 99.4
0.20 1 90.0 96.5 98.6 99.2 99.6 99.7 99.9 99.9 99.9

10 85.3 93.7 96.3 98.1 98.7 99.3 99.5 99.6 99.7
100 83.4 90.4 94.5 96.4 98.0 98.5 98.8 99.0 99.2

1000 84.6 92.4 94.6 97.2 98.2 98.5 98.9 99.0 99.2
0.50 1 90.7 96.2 98.3 99.1 99.5 99.7 99.8 99.9 99.9

10 84.2 90.5 95.9 97.6 98.9 99.2 99.4 99.5 99.6
100 83.1 91.0 95.3 97.7 98.3 99.1 99.3 99.4 99.5

1000 83.2 90.5 94.4 97.1 97.8 98.3 98.6 98.9 99.0

Table 3: Expected acceptance rate (in percent) for a Metropolis-Hastings algorithm
based on a mixture approximation with M components minimizing the L2 distance

π N 2 3 4 5 6 7 8 9 10
0.05 1 91.0 96.5 98.6 99.3 99.6 99.8 99.8 99.9 99.9

10 86.6 94.3 97.4 98.7 99.3 99.5 99.7 99.7 99.8
100 53.3 79.6 91.7 96.0 97.6 98.2 98.6 98.8 98.9

1000 5.06 45.6 76.3 88.5 93.1 95.2 96.2 96.6 97.0
0.20 1 90.7 96.4 98.6 99.4 99.6 99.7 99.8 99.9 99.9

10 81.5 93.0 96.9 98.6 99.2 99.5 99.6 99.7 99.8
100 51.3 80.6 91.5 96.3 97.8 98.4 98.7 98.8 98.9

1000 6.72 50.7 78.9 90.1 94.6 96.4 97.3 97.6 98.1
0.50 1 88.1 95.8 98.2 99.2 99.6 99.8 99.8 99.9 99.9

10 81.6 90.8 95.4 97.8 98.7 99.1 99.3 99.4 99.5
100 51.7 81.3 91.9 96.2 97.7 98.5 98.9 99.0 99.2

1000 5.88 48.8 78.2 89.7 94.1 95.9 96.8 97.2 97.6
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Table 4: Expected acceptance rate (in percent) for a Metropolis-Hastings algo-
rithm based on previously published mixture approximations with 5 components;
CK1=Carter and Kohn (1997, Table 1), CK2=Carter and Kohn (1997, Table 2),
FW=Frühwirth-Schnatter and Wagner (2005, Table 1)

π N CK1 CK2 FW
0.05 1 96.6 94.8 99.1

10 94.2 93.3 97.9
100 89.8 89.7 96.3

1000 79.4 86.0 94.6
0.20 1 96.6 94.8 99.1

10 92.9 91.1 97.1
100 91.1 89.5 96.0

1000 88.3 85.3 95.7
0.50 1 96.3 95.2 99.2

10 92.3 90.7 97.8
100 79.0 89.4 97.1

1000 76.3 87.1 95.0

approximation published in Frühwirth-Schnatter and Wagner (2005, Table 1) for
our purpose, again after switching the signs of the means given in the table.

Since in both papers auxiliary mixture sampling was implemented without ex-
ploring the effect of using the approximate normal mixture distribution rather than
the exact distribution, we included these mixture approximations into the simula-
tion experiment described above. Table 4 reveals that the approximations derived
by Carter and Kohn (1997) are rather imprecise, whereas the approximation given
in Frühwirth-Schnatter and Wagner (2005) performs considerably better. Neverthe-
less, the 10-component mixture approximation derived in this paper improves the
accuracy of auxiliary mixture sampling even further.

3 Data Augmentation and Auxiliary Mixture Sam-

pling for the Multinomial Logit Regression Model

Let {yi} be a sequence of categorical data, i = 1, . . . , N , where each yi is assumed
to take a value in one of m + 1 unordered categories labelled by {0, . . . ,m}. For
each category k, with 1 ≤ k ≤ m, the probability that yi takes the value k depends
on covariates xi in the following way:

Pr(yi = k|β1, . . . ,βm) =
exp(xiβk)

1 +
∑m

l=1 exp(xiβl)
, (20)

where β1, . . . ,βm are category specific, unknown parameters. Furthermore we as-
sume that conditional on knowing β1, . . . ,βm the observations are mutually inde-
pendent.
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To make the model identifiable, the parameter β0 of the baseline category k = 0
is set equal to 0: β0 = 0. Thus the parameter βk is in terms of the change in
log-odds relative to the baseline category k = 0. To pursue a Bayesian approach,
we assume that the prior distribution p(βk) of βk follows a normal distribution,
Nd (bk0,Bk0) with known hyperparameters bk0 and Bk0.

3.1 Data Augmentation for the Multinomial Logit Regres-

sion Model

As for the binary model, we consider two data augmentation steps. The first data
augmentation step involves the well-known interpretation of a multinomial logit-
model in terms of utilities (McFadden, 1974). The latent utility yu

ki of observing the
category k for observation yi is modelled as being dependent on covariates:

yu
1i = xiβ1 + ε1i, (21)

· · ·

yu
mi = xiβm + εmi,

whereas the latent utility yu
0i of observing the category 0 for observation yi is in-

dependent of any covariates for reasons of identifiability. The observed category is
equal to the category with maximal utility:

yi = k ⇔ yu
ki = max

l
yu

li.

If εki, k = 1, . . . ,m, and yu
0i follow a type I extreme value distribution, the multino-

mial logit model (20) results as the marginal distribution of yi (McFadden, 1974).
The first data augmentation step introduces for each categorical observation yi

the latent utilities yu
i = (yu

1i, . . . , y
u
mi) as missing data as in Scott (2004). Conditional

on yu
i , we are dealing with the linear model (21), rather than with the non-linear

model (20). Scott (2004) uses this result to define multivariate proposal densities
within a Metropolis-Hastings algorithm. In this paper, we obtain a model that is
conditionally Gaussian by approximating the non-normal density of εki, for each
category k = 1, . . . ,m, by a normal mixture as above. The second step of our data
augmentation scheme introduces for each εki the latent component indicator rki as
missing data.

3.2 Auxiliary Mixture Sampling

Let yu = {yu
1i, . . . , y

u
mi, i = 1, . . . , N, } denote the collection of all latent utilities, and

let R = {r1i, . . . , rmi, i = 1, . . . , N} denote the collection of all latent component
indicators. Then conditional on yu and R we are dealing for each k = 1, . . . ,m with
the following linear regression model:

yu
ki = xiβk +mrki

+ srki
εki, εki ∼ N (0, 1) . (22)

Again it is easy to implement a two-block sampler that consists of the following
steps:

12



(a) Independent sampling of β1, . . . ,βm conditional on knowing yu and R, based
on the Gaussian regression model (22).

(b) Sampling of the utilities yu and the indicators R conditional on knowing
β1, . . . ,βm and y.

Step (a) is carried out in the same manner as in Subsection 2.2. Step (b) extends the
results of Subsection 2.2 to more than two categories. The joint posterior density
p(R,yu|y,β1, . . . ,βm) is decomposed as:

p(R,yu|y,β1, . . . ,βm) =
N
∏

i=1

m
∏

k=1

p(rki|y
u
ki,βk)p(y

u
1i, . . . , y

u
mi|yi,β1, . . . ,βm).

To sample from p(yu
1i, . . . , y

u
mi|yi,β1, . . . ,βm), we consider first the augmented pos-

terior p(yu
0i, . . . , y

u
mi|yi,β1, . . . ,βm) where the utility yu

0i of choosing category 0 has
been added. For fixed i, the latent utilities yu

0i, . . . , y
u
mi, are stochastically dependent,

and the joint distribution factorizes as (Scott, 2004):

p(yu
0i, . . . , y

u
mi|yi = k,β1, . . . ,βm)

= p(yu
ki|yi = k,β1, . . . ,βm)

∏

l=0,...,m,l 6=k

p(yu
li|yi = k,β1, . . . ,βm).

As εki, k = 1, . . . ,m, and yu
0i follow a Type I extreme value distribution, we obtain:

exp(−yu
0i) ∼ E (1) , (23)

exp(−yu
1i) ∼ E (λ1i) ,

· · ·

exp(−yu
mi) ∼ E (λmi) ,

where λki = exp(xiβk), for 1 ≤ k ≤ m. Given yi = k, yu
ki is known to be the maximal

utility. Thus exp(−yu
ki) is the minimum among all random variables appearing in

(23), and therefore:

exp(−yu
ki) ∼ E

(

1 +
m
∑

l=1

λli

)

. (24)

Given the minimum, all other utilities are conditionally independent:

exp(−yu
li) = exp(−yu

ki) + ξli, ξli ∼ E (λli) , (25)

where l = 1, . . . ,m, l 6= k. Therefore to sample yu
1i, . . . , y

u
mi for i = 1, . . . , N , we need

m+ 1 independent uniform random numbers Ui and V1i, . . . , Vmi:

yu
li = − log

(

−
log(Ui)

1 +
∑m

k=1 λki

−
log(Vli)

λli

I{yi 6=l}

)

, (26)

where l = 1, . . . ,m. Note that the same random number Ui is used for all categories,
since this generates exp(−yu

ki) by (24).
Conditional on the recent draw of yu

ki, the component indicator rki is sampled
from:

Pr(rki = j|yu
ki,βk) ∝

wj

sj

exp

{

−
1

2

(

yu
ki − log λki −mj

sj

)2
}

.
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4 Extension to More Complex Models

The basic logistic regression model has been modified in a number of ways. To
account for the dependency likely to be present in sequences of binary data, past
observations yi−1, yi−2, . . . have been introduced as covariates (Zeger and Qaqish,
1988). A couple of extensions deal with overdispersion due to omitted covariates,
like mixtures of binary regressions models (Wang et al., 1996; Hurn et al., 2003),
binary regression models with additive random effects (Aitkin, 1996), and mixtures
of binary regression models with random effects (Lenk and DeSarbo, 2000).

To illustrate the great flexibility of auxiliary mixture sampling, we consider in
detail MCMC estimation of two specific extensions of the standard logit model,
namely binary state space models and multinomial logit models with random effects.

4.1 State Space Modelling of Binary Data

4.1.1 Background

Let {yt} be a time series of binary observations, observed for t = 1, . . . , T . Each yt is
assumed to take one of two possible values, labelled by {0, 1}. The probability that
yt takes the value 1 depends on covariates xt = (xf

t xr
t ) through fixed parameters α

and time-varying parameters βs
t in the following way:

Pr(yt = 1|βs
1, . . . ,β

s
T ,α) =

exp(xf
tα+ xr

tβ
s
t)

1 + exp(xf
tα+ xr

tβ
s
t)
. (27)

We assume that conditional on knowing βs
1, . . . ,β

s
T ,α, the observations are mutually

independent. A commonly used model for describing the time-variation of βs
t reads:

βs
t = βs

t−1 + wt, wt ∼ Nd (0,Q) , (28)

with βs
0 ∼ Nd (β,B0). α and β are unknown location parameters, and Q is an

unknown covariance matrix.
Markov chain Monte Carlo estimation of logit-type state space models has been

considered by various authors, in particular by Shephard and Pitt (1997) and Gamer-
man (1998). A characteristic feature of any existing MCMC approach for binary
state space models, however, is that practical implementation requires the use of a
Metropolis-Hastings algorithm for sampling the state process, which in turn makes it
necessary to define a suitable proposal density in a rather high-dimensional param-
eter space. Single-move sampling for this type of models is known to be potentially
very inefficient; see e.g. Shephard and Pitt (1997). We are going to show in the
following subsection how to implement the auxiliary mixture sampler for a binary
regression model with time-varying parameters, which is easily extended to more
general state space models.

4.1.2 Data Augmentation and Gibbs Sampling

The data augmentation scheme introduced in Section 2 for the standard regression
model can be applied to a time series without any changes. A latent utility yu

t of
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choosing category 1 is introduced for each yt, to eliminate the non-linearity of the
model:

yu
t = x

f
tα+ xr

tβ
s
t + εt, (29)

where εt follows a type I extreme value distribution. To eliminate non-normality,
this distribution is approximated by a mixture of normals as in Subsection 2.1, and
a latent indicator rt is introduced for each yt. Let yu = {yu

1 , . . . , y
u
T} denote the

collection of all latent utilities, and let R = {r1, . . . , rT} denote the collection of all
latent component indicators. If we condition on the latent variables yu and R, we
obtain a linear Gaussian state space model with heteroscedastic errors with known
error variance:

βs
t = βs

t−1 + wt, wt ∼ Nd (0,Q) , (30)

yu
t = x

f
tα+ xr

tβ
s
t +mrt

+ srt
εt, εt ∼ N (0, 1) , (31)

for t = 1, . . . , T . Thus it is easy to implement a three block auxiliary mixture
sampler that consists of the following steps:

(a) Multi-move sampling of βs
0, . . . ,β

s
T ,β,α conditional on knowing yu, R, and

Q, based on the conditional linear Gaussian state space model (30) and (31).

(b) Sampling of Q conditional on knowing βs
0, . . . ,β

s
T , based on the transition

equation (30) of the conditionally linear Gaussian state space model.

(c) Sampling of the utilities yu and the indicators R conditional on knowing
βs

1, . . . ,β
s
T , α, and y.

The most important aspect of our data augmentation scheme is that, conditional
on yu

t and the indicators rt, we are dealing with a linear Gaussian state space model
when sampling α,β and βs

i in step (a) and sampling Q in step (b), where the
binary observation yt is substituted by the conditionally normal random variable
yu

t , and the error term follows a N
(

mrt
, s2

rt

)

-distribution. Thus for any state space
model for binary data based on a logit link, step (a) and (b) in the sampling scheme
introduced above are as simple as for the corresponding linear Gaussian state space
model. In step (a), for instance, joint multi-move sampling of all location parameters
βs

1, . . . ,β
s
T ,β,α is possible (Frühwirth-Schnatter, 1994; Carter and Kohn, 1994; De

Jong and Shephard, 1995; Durbin and Koopman, 2002).
Step (c) is implemented by writing the posterior p(R,yu|y,βs

1, . . . ,β
s
T ,α) as:

p(R,yu|y,βs
1, . . . ,β

s
T ,α) =

T
∏

t=1

p(rt|y
u
t ,β

s
t ,α)p(y

u
t |yt,β

s
t ,α).

Sampling of the latent utility yu
t and the component indicator rt is carried out exactly

as in Subsection 2.2:

yu
t = − log

(

−
log(Ut)

1 + λt

−
log(Vt)

λt

I{yt=0}

)

,

Pr(rt = j|yu
t ,α,β

s
t) ∝

wj

sj

exp

{

−
1

2

(

yu
t − log λt −mj

sj

)2
}

,

where Ut and Vt are two independent uniform random numbers, and λt = exp(xf
tα+

xr
tβ

s
t ).
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4.2 Multinomial Logit Models with Random-Effects

4.2.1 Background

Let {yit} be repeated categorical data observed for N subjects i, i = 1, . . . , N on Ti

occasions t = 1, . . . , Ti. Each yit is assumed to take a value in one of m+1 categories
labelled as {0, . . . ,m}.

For category k, with 1 ≤ k ≤ m, the probability that yit takes the value k
depends on covariates xit = (xf

it x
r
it) through fixed category specific parameters αk

and subject-specific random category parameters βs
ki in the following way:

Pr(yit = k|α1, . . . ,αm,β
s
1i, . . . ,β

s
mi) =

exp(xf
itαk + xr

itβ
s
ki)

1 +
∑m

l=1 exp(x
f
itαl + xr

itβ
s
li)
. (32)

Furthermore we assume that conditionally on knowing all βs
ki and αk the observa-

tions are mutually independent.
To make the model identifiable, the parameters of the baseline category k = 0

are set equal to 0: α0 = 0, βs
0i = 0, i = 1, . . . , N . A commonly used distribution for

modelling heterogeneity in βs
ki reads:

βs
ki ∼ Nd (βk,Qk) , (33)

where βk is an unknown location parameter, whereas Qk is an unknown covariance
matrix.

For m = 1 we are dealing with binary data, and the binary logit random effects
model results:

Pr(yit = 1|α,βs
i ) =

exp(xf
itα+ xr

itβ
s
i )

1 + exp(xf
itα+ xr

itβ
s
i )
, (34)

βs
i ∼ Nd (β,Q) .

4.2.2 Data Augmentation and Gibbs Sampling

The data augmentation scheme introduced in the previous sections for standard
regression models is easily extended to deal with repeated measurements. The first
data augmentation step introduces for each subject i the latent utilities yu

kit, k =
1, . . . ,m, of choosing category k at time t to eliminate the non-linearity of the
model:

yu
1it = x

f
itα1 + xr

itβ
s
1i + ε1it, (35)

· · ·

yu
mit = x

f
itαm + xr

itβ
s
mi + εmit,

where εkit, k = 1, . . . ,m follows a type I extreme value distribution. To eliminate
the non-normality this distribution is approximated by a mixture of normals as in
Subsection 2.1, and in the second step of our data augmentation scheme a latent
indicator rkit is introduced for each εkit as missing data.

Let R = {rkit, i = 1, . . . , N, t = 1, . . . , Ti, k = 1, . . . ,m} denote the collection
of all component indicators and let yu = {yu

1it, . . . , y
u
mit, i = 1, . . . , N, t = 1, . . . , Ti}
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denote the collection of all latent utilities. If we condition on the latent variables yu

and R, we obtain independently for each category k, k = 1, . . . ,m, a linear Gaussian
random-effects model with heteroscedastic errors with known error variance:

βs
ki ∼ Nd (βk,Qk) , (36)

yu
kit = x

f
itαk + xr

itβ
s
ki +mrkit

+ srkit
εkit, εkit ∼ N (0, 1) , (37)

for t = 1, . . . , Ti, i = 1, . . . , N . Thus it is easy to implement a three block auxiliary
mixture sampler that consists of the following steps:

(a) Multi-move sampling of βs
k1, . . . ,β

s
kN ,βk,αk conditional on knowing yu, R,

and Q, independently for each category k = 1, . . . ,m, based on the condition-
ally linear Gaussian random-effects model (36) and (37).

(b) Sampling of Qk independently for each category k = 1, . . . ,m from (36), con-
ditionally on knowing βs

k1, . . . ,β
s
kN ,βk.

(c) Sampling of the utilities yu and the indicators R conditionally on knowing y

and (βs
k1, . . . ,β

s
kN ,βk,αk), k = 1, . . . ,m.

An important aspect of our data augmentation scheme is that conditional on yu

and R, we are dealing with a linear Gaussian random effects model when sampling
αk,βk and βs

ki in step (a) and Qk in step (b), where the categorical observation yit

is substituted by a conditionally normal random variable yu
kit, and the error term

follows a N
(

mrkit
, s2

rkit

)

-distribution. Thus for a binary or multinomial logit model
with random effects, step (a) and (b) in the sampling scheme introduced above
are as simple as for the corresponding linear Gaussian random-effects model. In
step (a), joint multi-move sampling of all location parameters βs

k1, . . . ,β
s
kN ,βk,αk

is possible by sampling (βk,αk) from the marginal model, where the random effects
are integrated out (Frühwirth-Schnatter and Otter, 1999; Sahu and Roberts, 1999;
Frühwirth-Schnatter et al., 2004); see also Subsection 4.2.3.

Step (c) is implemented as above by observing that:

p(R,yu|y,βs
11, . . . ,β

s
1N , . . . ,β

s
m1, . . . ,β

s
mN ,β1, . . . ,βm,α1, . . . ,αm,Q1, . . . ,Qm) =

N
∏

i=1

T
∏

t=1

p(yu
1it, . . . , y

u
mit|yit,β

s
1i, . . . ,β

s
mi,α1, . . . ,αm)

m
∏

k=1

p(rkit|y
u
kit,β

s
ki,αk).

To sample yu
1it, . . . , y

u
mit, we need m + 1 independent uniform random numbers Uit

and V1it, . . . , Vmit:

yu
kit = − log

(

−
log(Uit)

1 +
∑m

l=1 λlit

−
log(Vkit)

λkit

I{yit 6=k}

)

, (38)

where λkit = exp(xf
itαk + xr

itβ
s
ki), whereas each component indicator rkit is sampled

from a discrete distribution with j = 1, . . . ,M categories:

Pr(rkit = j|yu
kit,β

s
ki,αk) ∝

wj

sj

exp

{

−
1

2

(

yu
kit + log λkit −mj

sj

)2
}

.
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4.2.3 Multi-move Sampling of all Regression Parameters

In this subsection we provide details on multi-move sampling of the category specific
location parameters βs

k1, . . . ,β
s
kN ,βk,αk from the posterior

p(βs
k1, . . . ,β

s
kN ,βk,αk|y

u,R,Qk) =
m
∏

k=1

N
∏

i=1

p(βs
ki|αk,βk,y

u,R)p(αk,βk|y
u,R,Qk),(39)

which is carried out independently for each k = 1, . . . ,m.
First we sample αk and βk from the marginal posterior p(αk,βk|y

u,R,Qk) with-
out conditioning on the random effects. For each unit i, the marginal model, where
in (37) the random effects are integrated out is equal to a multivariate regression
model with regression parameter (αk,βk):

yu
ki = X

f
iαk + Xr

iβk +mki + εki, εki ∼ NTi
(0,Vki) , (40)

using the matrix notation

X
f
i =







x
f
i1
...

x
f
i,Ti






, Xr

i =







xr
i1
...

xr
i,Ti






,

yu
ki =







yu
ki1
...

yu
ki,Ti






, mki =







mrki1

...
mrki,Ti






, εki =







εki1
...

εki,Ti
,






,

and error variance-covariance matrix Vki given by:

Vki = Xr
iQk(X

r
i )
′

+Dki, Dki = Diag
(

s2
rki1

, . . . , s2
rki,Ti

)

. (41)

Assume a joint normal prior Nd+r (bk0,Bk0) for (αk,βk) where r = dim(αk). Then
the posterior p(αk,βk|y

u,R,Qk) is a multivariate normal distributionNd+r (bkN ,BkN),
where

B−1
kN = B−1

k0 +
N
∑

i=1

(Xi)
′

V−1
ki Xi, bkN = BkN

(

B−1
k0 bk0 +

N
∑

i=1

(Xi)
′

V−1
ki (y

u
ki −mki)

)

,

Xi =
(

X
f
i Xr

i

)

.

The computation of these moments involves for each i = 1, . . . , N the inversion of
the (Ti × Ti) matrix Vki. If the dimension d of βs

ki is smaller than Ti the following
inversion formula can be applied:

V−1
ki = D−1

ki −D
−1
ki Xr

i

(

Q−1
k + (Xr

i )
′

D−1
ki Xr

i

)−1

(Xr
i )
′

D−1
ki

= D−1
ki −D

−1
ki Xr

iAki(X
r
i )
′

D−1
ki (42)

which requires for each i = 1, . . . , N the inversion of a (d× d) matrix:

Aki =
(

Q−1
k + (Xr

i )
′

D−1
ki Xr

i

)−1
. (43)
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Having drawn αk and βk, we sample for each i = 1, . . . , N the random effects βs
ki

conditional on αk and βk. The conditional posteriors p(βs
ki|αk,βk,y

u,R) is easily
derived to be equal to the normal density Nd (aki(αk,βk),Aki), where Aki is the
same as in (43), and the posterior mean reads:

aki(αk,βk) = Aki

(

Q−1
k βk + (Xr

i )
′

D−1
ki (y

u
ki −X

f
iαk −mki)

)

.

4.3 Modelling Data from the Binomial and the Multinomial

Distribution

Auxiliary mixture sampling is easily extended to data from a binomial distribution.
Consider a sequence of observations z1, . . . , zN , where

zi ∼ BiNom (Ti, πi) , log
πi

1− πi

= xiβ,

with Ti being known. The binomial distribution is regarded as the marginal distribu-
tion of the number of successes yit in Ti binary experiments with success probability
πi. Auxiliary mixture sampling is based on the full binary experiment, involving the
repeated binary measurements yit, where

yit =

{

1, 1 ≤ t ≤ zi,
0, zi < t ≤ Ti.

Evidently,

Pr(yit = 1|β) =
exp(xiβ)

1 + exp(xiβ)
,

and the application of auxiliary mixture sampling is straightforward.
A similar method may be applied to data from a multinomial distribution, which

are regarded as repeated measurement of a categorical variable.

4.4 Application to the Austrian Labor Market

4.4.1 The Data and the Model

We consider a panel of Austrian employees who were observed between 1986 and
1998 on May 31st of each year (Weber, 2001). The data were obtained from the
social security authority which collects detailed data for all employees. Here we use
only a random sample of N = 4376 individuals. We reanalyze these data with the
same wage categories as in Weber (2001). The wage of individual i in year t is
modelled as a categorical variable yit with states k ∈ {0, 1, . . . , 5}, where category 0
corresponds to the no-income class. Non-zero wage data were categorized according
to the quintiles of the yearly wage distribution into 5 income classes, coded as 1 to
5. For t = 0, . . . , T , yit takes the value k if person i belonged to wage category k at
time t.

The number of available individual characteristics is rather small and incomplete;
in particular there is no information on education, working time or family affiliation.
The covariates zit that are available are:

zit =
(

agei femi changeit whcollarit
)

,
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where:

agei . . . . . . . . age of a person in 1986
femi . . . . . . . . binary, 1 iff the person is female
changeit . . . . binary, 1 iff the person’s employers in years t and t− 1 are different
whcollarit . . . binary, 1 iff in year t the person is a white-collar employee

To analyze these data, Weber (2001) considered a multinomial logit regression
model which captures overdispersion due to omitted covariates through a category
specific regression intercept βs

ki that varies between the units (Aitkin, 1996).
The multinomial model is based on an inhomogeneous Markov chain model which

includes dependence of the occurrence probability of wage category yit both on the
wage category yi,t−1 of the previous year and on the covariates zit. The model reads
for k = 1, . . . , 5 and j = 0, . . . , 5:

Pr(yit = k|zit, yi,t−1 = j, βs
ki) =

exp(zitα
z
k + γjk + βs

ki)

1 +
∑5

l=1 exp(zitα
z
l + γjl + βs

li)
. (44)

The feedback parameter γjk captures the dynamic pattern of the Markov chain
model and determine the transition matrix. Since for each k one of the feedback
parameters γjk has to be assumed to be 0 for identifiability reasons, we set γ0k = 0
for k = 1, . . . , 5. Note that

Pr(yit = 0|zit, yi,t−1 = j, βs
ki) =

1

1 +
∑5

l=1 exp(zitα
z
l + γjl + βs

li)
,

therefore (44) also holds for the baseline category k = 0 with βs
0i = 0, αz

0 = 0, and
γj0 = 0.

The coefficients in this model have the following meaning. The elements of αz
k

capture the effect of the corresponding covariate on the log odds ratio of moving to
wage category k instead of moving to the no-income category. Thus the difference
αz

k −α
z
k′ captures the effect of the corresponding covariate on the log odd’s ratio of

moving to wage category k instead of moving to wage category k′. The feedback pa-
rameter γjk measures the difference in the log odds ratio of moving to wage category
k instead of moving to the no-income category between a person coming from wage
category j as opposed to a person coming from the no-income category. Thus the
difference γjk − γj′k measures the difference in the log odds ratio of moving to wage
category k instead of moving to the no-income category between a person coming
from wage category j as opposed to a person coming from wage category j ′.

4.4.2 Parameter Estimation

It is well known that individual fixed parameters βs
1i, . . . , β

s
mi cannot be estimated

consistently within a maximum likelihood approach, since Ti is a typically small
number of repetitions whereas only the number N of units is usually large. For this
reason many researchers follow the random effects approach and assume that the
individual parameters βs

ki are drawn from a certain distribution of heterogeneity,
commonly a normal distribution:

βs
ki ∼ N (βk, Qk) , (45)
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see, for instance, Verbeke and Lesaffre (1996) and Rossi et al. (2005, Chapter 5).
If Qk = 0 for all k = 1, . . . , 5, then βs

ki = βk and the model reduces to a standard
multinomial regression model with fixed intercept βk.

To obtain a model formulation as in (32), we introduce a design matrix for the
feedback parameters and define αk = (αz

k γ1k · · · γ5k) and

x
f
it =

(

agei femi changeit whcollarit I{yi,t−1=1} · · · I{yi,t−1=5}

)

,

where I{yi,t−1=k} captures the immediate income history of each person and takes 1
iff yi,t−1 = k. Note that xr

it = 1, since we are only dealing with a random intercept.
Marginally, model (44) is a mixed multinomial logit model with no closed form

for the marginal probability Pr(yit = k|zit, yi,t−1 = j) (McFadden and Train, 2000).
Aitkin (1996) suggested, for the special case of binary data, to approximate the
marginal distribution by a mixture of logit regression models using Gaussian-Hermite
quadrature, and to use the resulting approximate likelihood function for inference,
whereas McFadden and Train (2000) exploit maximum simulated likelihood estima-
tion.

It is straightforward to implement a Bayesian approach for this model using
the three block auxiliary mixture sampler described in Subsection 4.2. Our data
augmentation scheme leads for each category to the normal random-effects regression
model

βs
ki ∼ N (βk, Qk) ,

yu
kit = x

f
itαk + βs

ki +mrkit
+ srkit

εkit, εkit ∼ N (0, 1) ,

where the whole sequence (βs
k1, . . . , β

s
kN , βk,αk) can be sampled simultaneously in

an efficient manner.
To pursue the Bayesian approach we assume the following priors: for each cat-

egory k = 1, . . . , 5, the elements of αz
k, βk, and all parameters γjk are assumed to

be independent apriori, each following a standard normal distribution. By choosing
proper priors on the feedback parameters γjk we are able to avoid nonidentifiability
due to unobserved transitions between certain wage categories. Finally, we assume
an inverted Gamma G−1 (4, 3) prior on the variances Qk, which implies a prior ex-
pectation of 1.

The auxiliary mixture sampler was run for 25000 iterations and Bayesian pos-
terior inference is based on the last 12500 draws after discarding the first 12500
simulations.

4.4.3 Bayesian Posterior Inference

Parameter estimates and 95% credible regions for the parametersαz
k = (αz

k1, . . . , α
z
k4),

γjk, j = 1, . . . , 5, βk, and Qk are given for each category k = 1, . . . , 5 in Table 5. The
k-th column of this table corresponds to the effect of a certain covariate on the log
odds of moving to wage category k as opposed to moving to the zero wage category.

Since a direct interpretation of the parameters is not easy, we estimated the
transition matrix for 6 types of individuals born in 1971, who differ in some of
their characteristics, namely male or female, white collar or blue collar worker, and
having or not having changed employer. The corresponding transition matrices are
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Table 5: Parameters estimated by the mean of the posterior distribution, 95% cred-
ible intervals in parentheses

Parameter k = 1 k = 2 k = 3 k = 4 k = 5

αz
k1

−0.004 −0.0185 −0.016 −0.023 −0.023

(age) (−0.01, 0.0004) (−0.023,−0.013) (−0.021,−0.011) (−0.029,−0.018) (−0.028,−0.018)

αz
k2

1.35 0.0393 −0.569 −0.722 −1.21

(fem) (1.23,1.48) (−0.068, 0.14) (−0.69,−0.43) (−0.82,−0.61) (−1.36,−1.06)

αz
k3

7.98 7.79 7.47 7.2 7.0

(change) (7.79,8.16) (7.61,7.97) (7.32,7.63) (7.01,7.38) (6.83,7.17)

αz
k4

−0.292 −0.197 0.27 0.73 1.7

(whcollar) (−0.43,−0.15) (−0.33,−0.074) (0.13,0.39) (0.61,0.85) (1.57,1.81)

γ1k 5.19 4.29 3.29 2.0 1.16

(I{yi,t−1=1}) (5.06,5.32) (4.13,4.46) (3.05,3.53) (1.71,2.34) (0.65,1.59)

γ2k 3.59 6.45 5.77 3.7 0.484

(I{yi,t−1=2}) (3.41,3.76) (6.27,6.62) (5.59,5.95) (3.36,4.0) (0.028,1.11)

γ3k 2.16 4.82 7.38 6.33 2.96

(I{yi,t−1=3}) (1.8,2.52) (4.66,4.99) (7.22,7.61) (6.11,6.54) (2.62,3.37)

γ4k 1.09 2.63 5.6 8.07 6.47

(I{yi,t−1=4}) (0.69,1.45) (2.3,2.9) (5.4,5.8) (7.83,8.32) (6.29,6.64)

γ5k 0.785 1.04 2.51 5.68 8.57

(I{yi,t−1=5}) (0.3,1.35) (0.41,1.69) (1.94,3.01) (5.41,5.94) (8.44,8.74)

βk −5.03 −4.42 −4.97 −5.27 −6.05

(−5.21,−4.84) (−4.61,−4.24) (−5.21,−4.78) (−5.54,−5.02) (−6.23,−5.85)

Qk 0.77 0.63 0.40 0.44 0.24

(0.63,0.95) (0.51,0.77) (0.31,0.48) (0.34,0.52) (0.18,0.34)
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estimated from (44) by averaging over the MCMC draws and are plotted in Figure 2.
Independent of the other characteristics we find a typical difference between male
and female employees. First the risk of moving to the no-income wage category is
in general larger for women than for men. Second, the persistence probability in
the lowest (positive) wage quintile (k = 1) is much larger for women than for men.
Finally, for women the chance of moving to the next highest wage category is about
the same as the risk of moving the next lowest one, whereas for men the chance of
moving upwards is higher than the risk of moving downwards. This will exercise a
strong cumulative effect on the wage of a woman as opposed to the wage of a man
over the years.

Being a white collar rather than a blue collar worker has an effect in particular
for workers having had an income in the upper wage categories in the past year,
for both men and women. Thus the working status increases the chance of moving
to the next highest wage category, and it also reduces the risk of moving to the
no-income category.

Finally, changing the employer has a strong effect on the chance of moving out
of the no-income category, for both women and men. For female and male workers
being in the lowest (positive) wage quintile in the past years, changing the employee
reduces dramatically the risk of moving to the no income category. While for women
starting from the lowest (positive) wage quintile this mainly means improving the
chance of staying in the same wage category, changing the employer improves for
men starting from the lowest (positive) wage quintile also the chance of moving
upwards. The effect of changing the employer disappears for workers starting in a
higher wage quintile.

It is interesting to study the amount of unobserved heterogeneity in each wage
category, measured by Qk. The posterior mean of Qk given in Table 5 decreases
with increasing k, meaning that unobserved heterogeneity gets progressively smaller
in the higher wage categories; see also Figure 3.

Finally, it is worthwhile to take a closer look at the expected deviation E(βs
ki −

βk|y) of β
s
ki from βk, which is estimated for each category k = 1, . . . , 5 and for each

individual by averaging over the MCMC draws (βs
ki)

(m) − β
(m)
k . The box-plots in

Figure 3 shows the empirical distributions of the estimates of E(βs
ki − βk|y) over

all individuals for each wage category. Since these distributions are skewed to the
right, covariates are missing that have a positive effect on the odds of being in this
wage category as opposed to be in the no-wage category, which could be factors like
education or working time.

5 Concluding Remarks

In this paper we have introduced a new data augmentation algorithm for sampling
the parameters of a binary or a multinomial logit model from their posterior dis-
tribution within a Bayesian framework. The algorithm leads to a convenient Gibbs
type sampler that draws from standard distributions like normal or exponential dis-
tributions and does not require any tuning. The auxiliary mixture sampler can be
easily implemented for any binary or multinomial logit model, where the predictor
is linear in the unknown parameters, with covariates being categorical as well as
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Figure 2: Estimated transition matrices between two years for six types of individ-
uals born in 1971. Top: female, bottom: male; left: blue collar worker/no change
of employee; center: white collar worker/no change of employee; right: white collar
worker/change of employee. The area of each square is proportional to the transition
probability.
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continuous.
Some care must be exercised when a weakly identified model is fitted to binary

and multinomial data as data augmentation may lead to a poorly mixing sampler.
In various applications we found that mixing improves when data augmentation is
based on the scaled utilities yu,?

kit = δyu
kit, with δ unknown. Although δ is unidentified

from the data, it was noted by McCulloch and Rossi (1994) that introducing δ into
the MCMC scheme speeds up convergence. A theoretical justification for this kind
of data augmentation was developed by van Dyk and Meng (2001).

Note that auxiliary mixture sampling approximates the logit model by a mix-
ture of probit models as in Geweke and Keane (1999). In our approach, however,
the means, variances and weights of the mixture distribution are fixed rather than
unknown. As suggested by one of the referees, the information in Table 1 could be
used to set up a prior in the context of the Geweke and Keane (1999) approach to
shrink the probit mixture model toward a logistic distribution.

Because of this relationship to mixtures of probit models, auxiliary mixture sam-
pling could have been based on well-known methods for the Bayesian estimation of
multinomial probit models (McCulloch and Rossi, 1994; McCulloch et al., 2000).
We follow this approach in drawing β or, in more complex models, other regression
parameters. There is, however, a minor inconsistency in our sampler, because we
sample the utilities from the exact logistic distribution rather than from the probit
regression, conditional on knowing the indicators. The reason for doing so is that
our approach leads to very simple conditional densities, which are (translated) ex-
ponential distributions, and avoids the cumbersome sampling of the utilities from
truncatedm-dimensional normal densities as required in a multinomial probit model.
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Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models.
Springer Series in Statistics. New York/Berlin/Heidelberg: Springer.
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Frühwirth-Schnatter, S., R. Tüchler, and T. Otter (2004). Bayesian analysis of the
heterogeneity model. Journal of Business & Economic Statistics 22, 2–15.
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