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Abstract

This paper studies the regularity properties of stochastic representation
of the solution of Dirichlet problem for Poisson equation. We consider the
representation introduced in [Stehĺık 05]. When the correlation structure is
exponential, we relate the representation process to the Ornstein-Uhlenbeck
one. Following [Stehĺık 06] we derive some properties of blow-up identification
by the singular points of the correlation structure.
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1 Introduction

Here we consider a Poisson equation, often written as ∆u = f, or ∇2u = f. Poisson
equation has a broad utility in electrostatics, mechanical engineering and theoretical
physics.

The Dirichlet problem for Poisson equation consists in finding a solution u ∈
H1
0 (G) on some domain G such that for f ∈ L2(G) and Γ = ∂G

−∆u = f, in G, (1)

u = g, in Γ. (2)

We say, that solution to (1) and (2) is regular, if u ∈ C2(G) ∩ C(G ∪ Γ).
Now let G be a bounded domain in Rm and let u be a sufficiently regular solution

of the equation
1

2
∆u+ f(x) = 0

in G, let u ∈ C(Ḡ) and u = g on ∂G. Then the following representation for x ∈ G
holds

u(x) = E[

∫ τ(x)

0

f(x+Wt)dt+ g(x+Wτ(x))], (3)

where τ(x) = inf{t : x + Wt ∈ G}. This relation between the Wiener process
Wt and the Laplace operator has been obtained by the employing of probabilistic
construction of the solution of the heat equation (see [Prokhorov and Shiryaev 98]).

We may say that such a representation is local, in the sense, that we are com-
puting the value of the solution at a given point of the domain. In [Stehĺık 05] we
have derived a global probability representation of the Dirichlet boundary problem
solution. Therein we consider an isotropic Gaussian random field Y (x) ∈ Y ⊂ R

k

with parametrized covariance function cov(Y (s), Y (t)) = c(||s− t||, r), measured on
some compact design space X ⊂ R

s, and parameter r ∈ G ⊂ R
m. Such a field

is in [Stehĺık 05] related to the D-optimality problem when the errors are corre-
lated (see e.g. [Müller and Stehĺık 04]). Let h(y, r) be the density of the Gaussian
random field Y (x). We have defined the abstract energy E(r) = −

∫

Y
|∇ru|2eudy,

where dµ = eudy is some (unit) mass distribution over Y . We say abstract energy,
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because the integration can be employed over space of dimension k, but the op-
erator (Laplacian) is according to m-dimensional cartesian coordinates (r1, . . . , rm)
of the parameter r. This can correspond to the ”classical” energy −

∫

Y
|∇r(y)u|2dµ

under m = k, due to some diffeomorphism r = r(y). Some interpretations of this
abstract energies can be found in theoretical physics. This abstract energy is from
the Statistical point of view the Fisher information on the parameter r.

In [Stehĺık 05] is given that for any Gaussian random field there exists the Dirich-
let problem for Poisson equation, e.g. there exist sufficiently regular f and φ so
that lnh is the solution of (1,2). Furthermore, there exists the abstract energy
E(r) which is equal to the Fisher information. In [Stehĺık 06] we have studied the
blow up identification by the singular points of the correlation structure. Based
on [Uciński 05] we have provided a deterministic interpretation of abstract energy
assuming some regularity conditions on an inverse problem operator Φ given in
[Chung and Kravaris 88]. We related the abstract energy to Turing’s measure of
conditioning (see [Walter and Pronzato 90]).

In the present paper, we show that for the Gaussian representant with parametrized
covariance function, the limiting case r → 0+ together with σ =

√
2r of Ornstein-

Uhlenbeck process represents the blow up of the limit of the regular solutions of the
sequence of Dirichlet problems for the Poisson equation.

2 Blow-up and Ornstein-Uhlenbeck process

In this section we relate the stochastic representation via the Gaussian field to the
linear stochastic differential equation. Let us consider the linear stochastic equation
(for more details see [Karatzas and Shreve 91]):

dXt = (A(t)Xt + a(t))dt+ σ(t)dWt, 0 ≤ t <∞.

X0 = ξ.

Here W is an r-dimensional Brownian motion independent on the d-dimensional
initial vector ξ, and the d × d, d × 1 and d × r matrices A(t), a(t) and σ(t) are
nonrandom, measurable and locally bounded. In the case d = r = 1, a(t) = 0, A(t) =
−α and σ(t) = σ > 0 we obtain the oldest example

dXt = −αXtdt+ σ(t)dWt

of a stochastic differential equation (see [Karatzas and Shreve 91], p. 358). If the
initial random variable X0 has a normal distribution with mean zero and variance
σ2

2α
, then X is a stationary, zero-mean Gaussian process with covariance function

ρ(s, t) = σ2

2α
e−α|t−s|. If the representing process has exponential correlation of the

form exp(−rd), then it is driven by Ornstein-Uhlenbeck process via

dXt = −rXtdt+
√
2rdWt.

The Ornstein-Uhlenbeck process is stationary, Gaussian, Markovian and continuous
in probability.

Now let us consider the blow-up problem introduced in [Stehĺık 06]. Let us have
a system {Gn, fn} where Gn ⊂ Gn+1 ⊂ Rm is the increasing system of sufficiently
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regular domains and fn+1/Gn = fn is the system of right sides for Dirichlet problem.
The limiting domain is G∞ = ∪∞i=1Gi with boundary Γ∞ = ∂G∞.

If the Dirichlet problem (1,2) is regular for all n, we are interested in whether
there is a blow up at Γ∞. Theorem 2.1 in [Stehĺık 05] is saying that if the correlation
structure of the representation process is collapsing, then there is a blow-up. Theo-
rem 1 in [Stehĺık 06] is giving a dimensionality interpretation of such blow-up at r?

in the sense of the dimensionality loss of the stochastic representant. In more de-
tails, the representing stochastic process Y is loosing the dimension, i.e. there exist
a hyperplane L1 such that L1 ⊂ Rk and dimL1 < k and there exists a neighborhood
U(r?) of point r? such that for all r ∈ U(r?) ∩ G∞ we have P (Y ∈ L1|r) < 1 but
P (Y ∈ L1|r?) = 1.

The following theorem will provide a different interpretation via Ornstein-Uhlenbeck
process. Note that we can represent the whole system {Gn, fn} just by one Gaussian
field.

Theorem 1 Let {Gn, fn}∞n=1 is the system of domains and right sides given above.
Assume that the solution of Dirichlet problem (1,2) is regular for all n and detΣ(r)→
0 for r → 0 ∈ Γ∞. Let the representant is Gaussian with exponential covariance
exp(−rd). Then there is a blow-up at r? = 0 and the systems {lnh(Y (x), r)}r>0
and {h(Y (x), r)}r>0 are stochastically unbounded. Moreover, the related Ornstein-
Uhlenbeck process

dXt = −rXtdt+
√
2rdWt

degenerates to the dXt = 0, t > 0.

Proof
It is easy to check that detΣ→ 0, for r → 0 ∈ G∞. From continuity of the map

r → Σ(r) we have also detΣ(0) = 0.
Now let C > 0 be arbitrary constant. Then

P (lnh(Y (x), r) > C) =

∫

{y:yTΣ−1y<−2 ln(2πeC(detΣ)1/2)}

dµ(y).

Let U be the nonsingular matrix such that UTΣ−1U = I. Then after substitution
w = U−1y we employ the polar coordinates substitution to obtain the latter integral

in the form 1− e−
√
−2 ln(2πeC(detΣ)1/2). Thus we have for 0 < r < − 1

2d
ln(1− e−2C

4π2 ) the
formula

P (lnh(Y (x), r) > C) = 1− e−
√

−2 ln(2πeC
√
1−e−2rd).

So finally limr→0 P (lnh(Y (x), r) > C) = 1.We have proved, that systems {lnh(Y (x), r)}r>0
and {h(Y (x), r)}r>0 are stochastically unbounded.

The representing process satisfies

dXt = −rXtdt+
√
2rdWt

and for r → 0 we have dXt = 0. This completes the proof. ¤
The following example is illustrating such a situation.
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Example 1 Let us consider m = 1, k = 2, Gn = ( 1
n
, 1
3
),Γn = { 1

n
, 1
3
}, n > 3,Y =

R2, Y (x1) = y1, Y (x2) = y2, d = x2−x1 > 0 (here {x1, x2}, x1 < x2, is the design in
X = [−1, 1]). Further we have fn = f/Gn where f(r) = exp(−rd)d2(−2 exp(−rd)+
2 exp(−3rd)+2y21 exp(−3rd)+2y21 exp(−rd)−y1y2−6y1y2 exp(−2rd)−y1y2 exp(−4rd)+
2y22 exp(−3rd) + 2y22 exp(−rd))/(−1 + exp(−2rd))3.

Let us consider the system of boundary functions gn = g/Γn, g(Γn) ⊂ R such
that

lim
n→+∞

g(
1

n
) =∞

and

g(
1

3
) = − ln 2π − 0.5 ln detΣ(

1

3
) + 0.5

y21 − 2y1y2 exp(−d
3
) + y22

−1 + exp(−2
3
d)

,

where Σk,l(r) = exp(−r|xk − xl|).
We obtain dµ(y) = (2π)−1|Σ|−1/2 exp(yTΣ−1y)dy1dy2, and solution

u(r) = − ln 2π − 0.5 ln detΣ(r) + 0.5
h(y1, y2, r)

−1 + exp(−2rd)

where h(y1, y2, r) = y21 − 2y1y2 exp(−rd)+ y22. Such a solution u(r) is blowing-up for
all evolutions r → h(y1, y2, r) in Y for which

lim
r→0

h(y1, y2, r)

detΣ(r)
< +∞.

3 Discussion

Typically, an interesting case of the Ornstein-Uhlenbeck process is studied, when r
approaches zero with σ becomes infinite in such a way, that rσ2 approaches a fixed
constant (see [Rybicki 94]). Usually it is accomplished by letting σ2 = D

2r
, where D

is a constant, called the diffusivity. This limiting case is often called the Gaussian
random walk process. The correlation function σ2e−rd of the random walk is not
defined, since σ → +∞ as r → 0 + . However, the variogram defined as

ψ(τ) = E([x(t)− x(t+ τ)]2) = 2σ2(1− e−r|τ |)

does have meaning in the limit, namely ψ(τ) = D|τ |.
However, as we have shown in the present paper, also limit r → 0+ together

with σ =
√
2r gives an interesting interpretation for the blow up of the limit of the

regular solutions of the sequence of Dirichlet problems for the Poisson equation.
The generalization of the Gaussian field representation is through the set prob-

ability density function with support on a finite interval. The set of probabil-
ity functions is a convex subset of L1 and it does not have a linear structure
when using ordinary sum and multiplication by real constants. To overcome these
limitations, Aitchinson’s ideas on compositional data analysis have been used in
[Egozcue et al. 06], generalizing perturbation and power transformation, as well as
the Aitchison inner product, to operations on probability density functions with
support on a finite interval.
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