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Abstract

We provide the exact likelihood ratio testing procedure of the scale pa-

rameter of the Erlang and gamma distribution when there is a missing time-

to-failure information. This is an important result because the asymptotical

χ
2-test is oversized an thus inappropriate especially for small merged samples.

The small merged samples can arise also for a large sample sizes when individ-

ual times-to-failure are not available. Data sets with missing time-to-failure

data can arise from field data collection systems. Real data and simulated

examples are provided to illustrate the methods discussed.
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1 Introduction

Reliability prediction plays a major role in many reliability programs across gov-
ernment and industry. The reliability prediction is the process of forecasting, from
available failure-rate information, the realistically achievable reliability of a part,
component, subsystem or system (for details see [1]). Standards based reliabil-
ity (see e.g. www.weibull.com) predictions relies on defining failure rates for the
components of a system based on predefined standards, depending on the types
of components, the use environment, the way the components are connected and
the reliability prediction standard. These component failure rates are then used to
obtain an overall system failure rate. Several standards have been introduced by
various governments and industry organizations to assist in conducting this type of
analysis.

Complete data indicates that all of the units under the test failed and the time-to-
failure for each unit is known. Therefore, complete information is known regarding
the entire sample. However, data collection is generally performed passively by the
system owner and such type of data collection is often uncontrolled and important
details are not always recorded or they can be lost. The actual times-to-failure are
often not recorded even though the failure itself has been carefully noted. E.g. for a
variety of reasons over 90% of the data in the Reliability Analysis Center (RAC) does
not have the individual failure times recorded (see [2]). Many large organizations
such as the national airlines or train systems and utility companies develop reliability
databases to track the field reliability on the systems they operate and maintain. The
magnitude of such efforts often leads to compromises in the level of details tracked
on the system and component failures. For the assessment of component reliability,
field data has many distinct advantages (see [2]). For all of the advantages of the
field data, there are also disadvantages, including incomplete or inaccurate data
reporting and others. Several of these disadvantages are described in more detail by
[3]. The disadvantage to be addressed in [2] is the fact that the individual times-
to-failure are often missing. There has been other research concerned with the use
of data with missing attributes. In [7] was developed a simulation model to observe
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the behavior of grouped data and test an exponential distribution assumption. Coit
and Dey (see [4]) have developed and demonstrated a hypothesis test to evaluate an
exponential distribution assumption when there is missing time-to-failure data. In
[2] the grouped exponential data was modeled using a k-Erlang distribution.

In this paper we provide the exact likelihood ratio (LR) test of the scale hypoth-
esis

H0 : λ = λ0 versus H1 : λ 6= λ0 (1)

to support the reliability prediction in the model with missing time-to-failure in-
formation when times-to-failure are exponentially, Erlang or generalized gamma
distributed. The data is often available only in the form of rj collective failures ob-
served Tj cumulative hours with no further delineation or detail available (see [2]).
Quantities rj and Tj are known but the individual failure times are not. Analysts
may have many of these merged data records available for the same component.

In particular a reliability practitioner could be interested in conducting the hy-
pothesis (1) test, e.g. to see whether the field reliability has significantly changed
from its current level, and λ0 could be the previously observed exponential pa-
rameter. Then, a significant shift in the exponential parameter could trigger an
exploratory reliability investigation into failure causes and mechanisms, if it got
worse.

Such a test could be useful also for a mean time to failure (MTTF) analysis. A
component or a system with exponential lifetime and rate parameter λ has MTTF
1/λ. Moreover, such a test could be employed also by analysis of a system described
by a Markov diagram with only one route through the diagram and constant tran-
sition rates. Such a system has MTTF consisting of the sum of mean times spent
in each state, i.e.

MTTF =
1

λ1

+
1

λ2

+ . . .

(for more about MTTF see [17]).
Table 1 presents a data set of this type, the data on aircraft indicator lights from

the database RAC (see [2]). Individual time-to-failure is not available, however, the
total number of failures and the cumulative operating hours are recorded. Here Tj
is the jth cumulative operating time with rj failures, i.e.

Tj = X1 + ...+Xrj

where Xi is the ith time-to-failure.

Table 1: Airplane indicator light reliability data

Failures Tj Cumulative operating time (hours)

2 T1 51 000
9 T2 194 900
8 T3 45 300
8 T4 112 400
6 T5 104 000
5 T6 44 800

We made the following assumptions
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• times-to-failure are independent, identically distributed

• times-to-failure are exponentially (section 2.1), Erlang and gamma (section
2.2) distributed with unknown scale parameter λ. The exponential distribution
often occurs in the modelling of the time-to-failure, see e.g. the software-
reliability model of Moranda developed further by Gaudoin and Soler (see [8]).
Erlang and gamma distribution are also often used time-to-failure distributions
(see [2]).

• repair times are insignificant compared to operating time

• system repair does not degrade or otherwise affect the reliability of the unfailed
components.

The paper is organized as follows. In Section 2 we discuss the exact LR test of the
scale hypothesis (1) and the exact power function of such test. There we consider the
all cases of times-to-failure distribution, exponential, Erlang and general gamma. In
Section 3 we provide the case study of the time processing dataset plotted in Table 1.
Two simulated data examples are also provided to illustrate the methods discussed.
To maintain the continuity of the explanation the properties of the Lambert W
function are included into the Appendix.

2 Exact test of the scale with the missing times-

to-failure

2.1 Times-to-failure are exponentially distributed

When time-to-failureXi is distributed according to the exponential distribution with
unknown scale parameter λ, then Tj =

∑rj
i=1

Xi is distributed in accordance with an
Erlang distribution with the same scale parameter and shape parameter equal to rj.
Let us shortly remember mentioned distributions. The family of density functions

f(y|λ) =
λ(λy)k−1

(k − 1)!
e−λy, y > 0, k = 1, 2, 3, ...

is referred to as the family of Erlang (k, λ)-distributions. The length of time interval
required in order to collect k arrivals from a Poisson process is distributed according
to the Erlang distribution with the shape parameter k. Erlang distribution is fre-
quently used in queueing systems (see [9]). The special case of Erlang distribution,
Erlang (1, λ), is exponential distribution with scale parameter λ.

Let us consider the LR test of the hypothesis (1). Let Tj, j = 1, .., J, is the jth
cumulative operating time with rj failures, i.e.

Tj = Xj,1 + ...+Xj,rj

where Xj,i is the ith time-to-failure corresponding to the jth cumulative operating
time. Then the LR Λ of the hypothesis (1) test is defined by

Λ =
maxλ∈H0

∏J

j=1
f(tj, rj, λ)

maxλ∈H1

∏J

j=1
f(tj, rj, λ)

(2)
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where H0 = {λ0}, H1 = (0, λ0)∪ (λ0,+∞) and f(tj, rj, λ) denotes the density of the
Erlang (rj, λ)-distribution.

The cumulative operating time with rj failures, tj, j = 1, .., J, is Erlang (rj, λ)-
distributed. The application of the Theorem 4 in [13] provides the exact cumulative
distribution function of the test statistics. The following theorem provides the LR
test statistics and its exact distribution to enable the exact testing procedure of the
scale hypothesis (1).

Theorem 1 Let tj, j = 1, .., J is the jth cumulative operating time with rj failures
and times-to-failure are independent, exponentially distributed with the unknown
scale parameter λ. Then the Wilks statistics of the hypothesis (1) test has the form

−2 lnΛ = 2Gω(λ0

J
∑

j=1

tj)− 2Gω(ω), (3)

where ω =
∑J

j=1
rj and for u > 0 let us introduce a function

Gu(x) =

{

x− u ln x, for x > 0,
0, for x ≤ 0.

The exact cumulative distribution function (cdf) of the Wilks statistics −2 lnΛ has
under the H0 the form

FN(ρ) =

{

Fω(−ωW−1(−e
−1−

ρ

2ω ))−Fω(−ωW0(−e
−1−

ρ

2ω )), ρ > 0,
0, ρ ≤ 0.

(4)

Here Wk, k = −1, 0, is the k-th branch of the Lambert W function (see Appendix)
and Fω is the cdf of the gamma distribution with the shape parameter ω and scale
parameter 1.

The LR test of the hypothesis (1) is unbiased, uniformly the most powerful (UUMP),
see [10]. Moreover, if all rj = 1 then the exact likelihood ratio test is asymptotically
optimal in the Bahadur sense (see [11, 12] and [13]).

The Wilks statistics −2 lnΛ of the LR test of the hypothesis (1) is under H0

asymptotically χ2

1
-distributed (see [16]) and the test based on this asymptotics is

oversized. The oversizing of the asymptotical test can be defined as the difference
between αe,N and α, where αe,N = 1−FN(χ

2

α,1) and χ
2

α,1 denotes (1−α)-quantile of
the asymptotical χ2

1
-distribution, FN is the exact cdf of the Wilks statistics −2 lnλ

of the LR test of the hypothesis (1) under the H0. Here α is the size of the test
given from the Wilks asymptotics while αe,N is the exact size of the same test.
The table giving the oversizing of the asymptotical test for small samples when the
observations are distributed exponentially can be found in [14].

In other words, the oversizing of the asymptotical test means, that for critical
constants the inequality holds

ca,α < cN,α,

where ca,α is the critical constant of the χ2

1
α-sized asymptotical test based on the

Wilks statistics and cN,α is the critical constant of the α-sized exact test based on
the the Wilks statistics when the sample size is N.
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It means that for all λ0 such that

ca,α < −2 lnΛ ≤ cN,α

we reject the null hypothesis H0 : λ = λ0 statistically incorrectly. In other words,
there is no α-level significant change in reliability driven by changes of λ0 but we
oversize the level of significance of the test by inappropriate use of χ2

1
-asymptotics.

The determination of the hypothesis (1) LR test power function based on the
χ2-asymptotics is also inaccurate for small samples. Therefore we recommend to
compute the exact power of the LR test of the hypothesis (1) by the use of the
following theorem:

Theorem 2 The exact power p(γ, α) of the LR test based on the Wilks statistics
of the hypothesis (1) in the situation considered in Theorem 1 on the level α at the
point λ of the alternative has the form

p(λ, α) = 1−Fω(−ω
λ

λ0

W−1(−e
−1−

cα
2ω )) + Fω(−ω

λ

λ0

W0(−e
−1−

cα
2ω )), (5)

where cα denotes the critical value of the exact test of the hypothesis (1) on the level
α.

Proof

The critical region based on the Wilks statistics of the LR test of the hypothesis
(1) on the level of significance α has the form

Wc = {t ∈ T : −2 lnΛ(t) > c} such that P{Wc|λ = λ0} = α,

where T denotes the sample space. The power p(λ1, α) of the test of the hypothesis
(1) at the point λ1 of the alternative is equal to P{Wc|λ = λ1}. Applying Theorem
4 in [13] we obtain the equality

1− P{Wc|λ = λ1} = Fω(−ω
λ1

λ0

W−1(−e
−1−

cα
2ω ))−Fω(−ω

λ1

λ0

W0(−e
−1−

cα
2ω )).

The other possibility is employing of the Theorem 4 in [15]. Thus we obtain (5).
This completes the proof. ¤

2.2 k-Erlang and gamma distributed times-to-failure

In this subsection we discuss the case when component time-to-failure is distributed
in accordance with a gamma distribution. The Erlang (k, λ)-distribution is a special
case of gamma distribution with shape parameter k = 2, 3, .. and scale parameter λ.

The limitations of the field data and the simplicity of the exponential maximum
likelihood estimator (MLE) have been used to rationalize the exponential distribu-
tion in applications where it would seemingly be a poor choice (for more see [2]).
The constant hazard function associated with the exponential distribution is not
intuitively appropriate for some failure mechanisms which can be attributed to the
accumulation of stress, such as fracture, fatigue, corrosion and wear mechanisms.

5



The gamma distribution is a flexible distribution that can model many particular
component failure mechanisms.

Actually we have proved more by proofs of Theorem 1 and 2. Thus we can
constitute the following statement about the LR exact test of the scale hypothesis
(1) for the general case when the operating times are gamma distributed.

Theorem 3 Let tj, j = 1, .., J is the sequence of independent cumulative operating
times and tj is gamma distributed with known shape parameter rj and unknown
scale parameter λ. Then the Wilks statistics of the hypothesis (1) test has the form
(3) where ω =

∑J

j=1
rj. The exact cumulative distribution function of the Wilks

statistics −2 lnΛ has under the H0 the form (4). The exact power p(γ, α) of the LR
test based on the Wilks statistics of the hypothesis (1) on the level α at the point λ
of the alternative has the form (5) where cα denotes the critical value of the exact
test of the hypothesis (1) on the level α.

3 Illustrative examples

The first example is the airplane indicator light example presented in Table 1. This
data is from RAC database (see [2]). The other examples use simulated data.

3.1 Real data example

In [2] we can found the MLE of shape parameter (v̂ = 0.7) and scale parameter
(λ̂ = 0.0000484) of the gamma distributed times-to-failure of the airplane indicator
light data presented in Table 1. We have ω =

∑

6

j=1
rj = 38 × 0.7 = 26.6 and

∑

6

j=1
Tj = 552 400. Let us consider the testing problem

H0 : λ = 0.00003207 versus H1 : λ 6= 0.00003207 (6)

at the level of significance α = 0.05. The critical value c0.05 of the exact LR test
of the hypothesis (6) is c0.05 = 3.86550298. The value of the Wilks statistics of
the LR test of the hypothesis (6) is −2 lnΛ = 3.855303 < c0.05. Therefore the null
hypothesis is accepted at the level 0.05.

The power function p(λ, 0.05) of the LR test of the hypothesis (6) has the form

1−F26.6(−
26.6λ

0.00003207
W−1(−e

−
57.06550298

53.2 )) + F26.6(−
26.6λ

0.00003207
W0(−e

−
57.06550298

53.2 ))

and is for λ ∈ (0.00001, 0.00008) displayed in Figure 1.
Let us illustrate the oversizing of the asymptotical χ2

1
-test. The critical value of

the χ2

1
-test is ca,0.05 = 3.841459 and

ca,0.05 < c0.05.

It means that for all λ0 such that

ca,0.05 < −2 lnΛ ≤ c0.05

we reject the null hypothesis H0 : λ = λ0 statistically incorrectly. In other words,
there is no change in reliability driven by λ0, but we oversize the level of significance
of the test by inappropriate use of χ2

1
-asymptotics. In our example such a situation

appears for instance if λ0 = 0.00003207.
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Figure 1: The power function.

3.2 Simulated examples

Here we use the simulated data from examples 2 and 3 in [2].

Table 2: Simulated data

Failures Tj Cumulative time in exponential case Cumulative time in Erlang case

2 T1 28 131 46 170
5 T2 61 363 83 170
6 T3 64 995 88 950
8 T4 98 859 110 530
8 T5 145 683 103 210
9 T6 37 607 93 010

The exponentially distributed times-to-failure are simulated with the scale pa-
rameter λ = 0.000 068 79. We have ω =

∑

6

j=1
rj = 38 and

∑

6

j=1
Tj = 436 638. The

critical value of the exact LR test of the hypothesis

H0 : λ = 0.00006217965 versus H1 : λ 6= 0.00006217965 (7)

is c0.05 = 3.858319. We have −2 lnΛ = 3.851893 < c0.05, but −2 lnΛ > ca,0.05. We
accept the H0 at the level of significance α = 0.05. The χ2

1
-asymptotics is misleading

and rejecting H0, because of oversizing.
The power function p(λ, 0.05) of the LR test of the hypothesis (7) has the form

1−F38(−
38λ

0.00006217965
W−1(−e

−
79.8583

76 )) + F38(−
38λ

0.00006217965
W0(−e

−
79.8583

76 ))

and is for λ ∈ (0.00001, 0.00013) displayed in Figure 2.
The 3-Erlang times-to-failure are simulated with the scale parameter λ = 0.000 2064.

Then we have ω =
∑

6

j=1
rj = 114 and

∑

6

j=1
Tj = 535 240. The critical value of the

exact LR test of the hypothesis

H0 : λ = 0.00017624 versus H1 : λ 6= 0.00017624 (8)
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Figure 2: The power function.

is c0.05 = 3.84707364949. We have −2 lnΛ = 3.842721 < c0.05, but −2 lnΛ > ca,0.05.
We accept the H0 at the level of significance α = 0.05. The χ2

1
-asymptotics is

misleading and rejecting H0, because of oversizing.
The power function p(λ, 0.05) of the LR test of the hypothesis (8) has the form

1−F114(−
114λ

0.00017624
W−1(−e

−
231.8471

228 )) + F114(−
114λ

0.00017624
W0(−e

−
231.8471

228 ))

and is for λ ∈ (0.0001, 0.0003) displayed in Figure 2.
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Figure 3: The power function.
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4 Conclusion

An exact testing procedure of the hypothesis (1) has been developed when the
times-to-failure are independent, exponentially, Erlang or gamma distributed and
time-to-failure information is missing. Data sets with missing time-to-failure data
can arise from field data collection systems. The advantages of our approach are:

• we provide the procedure for the exact LR testing of the hypothesis (1)

• we provide the power-function in the explicit analytical form

• the exact LR test of the hypothesis is UUMP

• the provided procedure could be easily implemented to the computational
softwares in terms of Lambert W function and gamma cumulative distribution
function.
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Appendix

The Lambert W function (LW function) is defined to be the multivalued inverse of
the complex function f(y) = yey. As the equation yey = z has an infinite number
of solutions for each (non-zero) value of z ∈ C, the LW has an infinite number of
branches. Exactly one of these branches is analytic at 0. Usually this branch is
referred to as the principal branch of the LW and is denoted by W or W0. The
other branches all have a branch point at 0. These branches are denoted by Wk

where k ∈ Z \ {0}. The principal branch and the pair of branches W−1 and W1

share an order 2 branch point at z = −e−1. The principal branch W is real-valued
for z ∈ (−e−1,∞) and the branch W−1 is real-valued on the interval (−e−1, 0). For
all the branches other than the principal branch the branch cut dividing them is
the negative real axis. The branches are numbered up and down from the real axis.
A detailed discussion of the branches of the LW can be found in [5]. Since the LW
function has many applications in pure and applied mathematics, the branches of
the LW are implemented to many mathematical softwares, e.g. the Maple, Matlab,
Mathematica and Mathcad. For instance, the Figures 1,2 and 3 are made in Matlab.
For more information about the implementation and some computational aspects
see [6].
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