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Abstract

We consider a non-centered parameterization of the standard random-

effects model, which is based on the Cholesky decomposition of the variance-

covariance matrix. The regression type structure of the non-centered param-

eterization allows to use Bayesian variable selection methods for covariance

selection. We search for a parsimonious variance-covariance matrix by iden-

tifying the non-zero elements of the Cholesky factors. With this method we

are able to learn from the data for each effect, whether it is random or not,

and whether covariances among random effects are zero. An application in

marketing shows a substantial reduction of the number of free elements in the

variance-covariance matrix.

Keywords: covariance selection, random-effects models, Markov chain Monte

Carlo, fractional prior, variable selection

1 Introduction

This article addresses various problems associated with estimating the variance-
covariance matrix Q of the random effects within the framework of hierarchical
linear models.

A computational challenge in estimating hierarchical linear models is to select a
suitable parameterization of the variance-covariance matrix, which typically has a
large number of parameters, that are related by the very complex constraint that
the resulting matrix needs to be positive definite.

A particularly useful parameterization of variance-covariance matrices is based
on the Cholesky decomposition of either Q or Q−1. As pointed out by Pinheiro
and Bates (1996), this parameterization is of considerable numerical convenience as
it involves unconstrained parameters, only. Within the framework of hierarchical
models, it is usual to work with the Cholesky decomposition of Q, as illustrated
by Lindstrom and Bates (1988), Meng and van Dyk (1998), and Chen and Dunson
(2003), among others. Following this tradition, we will consider in this article a
parameterization of the variance-covariance matrices based on the Cholesky decom-
position Q = CC

′

with a lower triangular matrix C.
As a major contribution of the paper, we aim at a parsimonious representation

of the random-effects covariance matrix, rather than estimating a fully unrestricted
variance-covariance matrix, as is usually done.

To some extend, we follow the seminal work of Smith and Kohn (2002) who
model directly observed data, arising from a multivariate normal distribution with
unknown variance-covariance matrix Q. They identify zero off-diagonal elements
in the inverse Q−1 of the variance-covariance matrix, whereas the diagonal is not
object of model selection. As opposed to Smith and Kohn (2002), we identify zeros
in the Cholesky factors of Q rather than of Q−1. It will be shown, that our approach
allows to shrink random effects toward fixed ones, a feature that would not result
from a direct application of Smith and Kohn (2002) to the matrix Q−1 appearing
in a hierarchical model.

In general, little work has been done for parsimonious variance-covariance se-
lection for hierarchical models, exceptions being Albert and Chib (1993) and Chen
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and Dunson (2003). The covariance selection approach of Chen and Dunson (2003)
allows to select fixed effects in the variance-covariance matrix. However, it is not
possible to select the finer structure of zeros in the off-diagonal elements of Q with
their approach. In contrast to this, we consider variable selection on all free elements
in the matrix C appearing in the Cholesky decomposition Q = CC

′

as this leads to
a more parsimonious representation of Q for highly correlated random effects. This
Cholesky decomposition of Q leads in a natural way to a non-centered parameteri-
zation of a random-effects model, where all free elements of C appear as unknown
coefficients in a regression type model, which is related to but different from the
non-centered parameterization considered by Meng and van Dyk (1998) and Chen
and Dunson (2003).

The rest of the article is organized as follows. In Section 2 we define a parsi-
monious representation of the random-effects model. In Section 3 we show that a
straightforward MCMC scheme for joint variable selection and parameter estima-
tion is available, that involves sampling from standard densities, only. In Section
4 we discuss parsimonious covariance selection for simulated data and apply the
algorithm to real data coming from marketing in Section 5.

2 Parsimonious Linear Mixed Models and Vari-

able Selection

2.1 Parsimonious Linear Mixed Models

It is common to write the random-effects model in the following centered parame-
terization for subjects i = 1, . . . , N :

yi = X
f
iα+Xr

iβ
s
i + εi, εi ∼ NTi

(

0, σ2
εITi

)

, (1)

βs
i = β +wi, wi ∼ Nd (0,Q) . (2)

The vector yi contains Ti observations and X
f
i is a design matrix of dimension

Ti×df for the df -dimensional vector α containing the fixed effects. Xr
i is the Ti×d-

dimensional design matrix for the d-dimensional vector of random effects βs
i , which

are normally distributed with mean parameter β and variance-covariance matrix Q.
While in a standard linear mixed model, Q is an unrestricted variance-covariance

matrix depending on d(d + 1)/2 unknown parameters, our goal is to represent Q
by a lower dimensional parameter the dimensionality of which is determined from
the data. It is not straightforward how to do that when working directly with Q
because reducing dimensionality could be achieved only by imposing complicated
constraints on the elements Qkj of Q, in order to ensure that the resulting matrix
is not negative definite.

To achieve parsimony while avoiding complicated constraints, it is useful to rep-
resent Q by

Q = CC
′

, (3)

where C is a (d × d) matrix, because the resulting covariance matrix will be semi-
positive definite for arbitrary matrices C. From (3) we obtain that the element Qkj
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is obtained by multiplying the kth and the jth row of C:

Qkj =
d
∑

l=1

CklCjl, (4)

hence any diagonal element is given by:

Qkk =
d
∑

l=1

C2
kl. (5)

In general, the elements of the matrix C are not uniquely defined. A necessary
condition to identify C is that C, like an unrestricted variance-covariance matrix Q,
depends on at most d(d+1)/2 free parameters. One way to achieve this is to set at
least d(d− 1)/2 elements of C equal to zero. As it turns out, a more parsimonious
representation of Q results, if more than d(d − 1)/2 elements of C equal to zero,
leading to less than d(d+ 1)/2 free parameters to represent C and consequently Q.

However, only for a few special cases the position of these zero elements is
uniquely defined by the structure of Q. This is the case, for instance, if Q is a
diagonal matrix. Then C will be diagonal, too, hence the position of the zeros in
C is unique. Without further assumptions the position of the zero elements of C is
not unique for general matrices Q.

Uniqueness of the position of the zero elements, however, is achieved by consid-
ering in (3) the Cholesky decomposition of Q, where C is a lower triangular matrix,
hence for each j = 1, . . . , d Ckj = 0 by definition for all 1 < k < j. The lower
triangular elements of C are determined recursively from:

Qkj =

min(j,k)
∑

l=1

CklCjl, (6)

First, for each column k, k = 1, . . . , d, the diagonal element Ckk is obtained by
solving

Qkk −
k−1
∑

l=1

C2
kl = C2

kk, (7)

whereas the remaining elements Cjk of column k are given for j = k + 1, . . . , d by:

Qkj −
k−1
∑

l=1

CklCjl = CkkCjk. (8)

A careful investigation of recursion (7) and (8) reveals that the positions of zero and
non-zero elements of C is uniquely defined. However, any nonzero element of C is
not unique in a strict sense. Recursion (7) leads to a diagonal element Ckk which is
unique iff Ckk is equal to 0. If Ckk is different from 0, then the sign of Ckk evidently
is not unique and could be switched without affecting (7), causing all remaining
elements of column k, defined in (8), to change sign as well. Evidently, all zero
elements in column k are unaffected by sign switching. Furthermore, if recursion
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(7) leads to a diagonal element Ckk which is equal to 0, then the remaining elements
Cjk of column k are undefined, see again (8), and may be set to any arbitrary value.
To achieve further parsimony, we assume in this case that Cjk is equal to 0 for
j = k + 1, . . . , d.

To distinguish between zero and free elements, we introduce for each element
Clm, m = 1, . . . , d, l = 1, . . . , d, an indicator γlm which takes the value 0, if Clm = 0,
and 1 if Clm is unconstrained:

γlm = 0, iff Clm = 0,
γlm = 1, otherwise.

(9)

Let γ = {γlm,m = 1, . . . , d, l = 1, . . . , d} denote the matrix containing all indicators.
Then, for a given value of γ, the number qγ of free elements in C is given by:

qγ =
d
∑

l=1

d
∑

m=1

γlm. (10)

The indicator matrix γ turns out to be very useful when analyzing the structural
properties of Q. An interesting side effect of using the Cholesky decomposition is
that the indicators provide information about the rank of Q, which is given by

rg(Q) = rg(C) =
d
∑

k=1

γkk, (11)

because C is a lower triangular matrix. Rank reduction occurs for two reasons which
are mirrored nicely by the zero pattern in C.

First, if one of the random effects, say the kth effect βs
i,k, reduces to a fixed effect

then the kth column and the kth row of Q are necessarily equal to 0, reducing the
rank of Q by one. Because Qkk = 0, equation (5) implies immediately that the kth
row (and consequently the kth column) of C must be equal to 0 as well. Thus a
random effect βs

i,k reduces to a fixed effect iff the kth row of C contains only zeros.
This allows to identify fixed effects immediately from the indicator matrix γ. For
each effect k, k = 1, . . . , d, we introduce a fixed effect indicator δFk , which is defined
by

δFk =
k
∏

l=1

(1− γkl), (12)

and takes the value 1 iff the kth effect βs
i,k reduces to a fixed effect. Whenever any

element in the kth row of C is different from zero, then βs
i,k is a truly random effect

which deviates randomly from βk. If rg(Q) is equal to d−
∑d

k=1 δ
F
k , the total number

of truly random effects, then the presence of fixed effects is the only reason for rank
deficiency in Q.

Further rank reduction occurs if the d−
∑d

k=1 δ
F
k truly random effects are linearly

dependent and are related to some common factor of dimension d−
∑d

k=1 δ
F
k −p with

p > 0. This will cause p columns of C to contain only zeros, while the corresponding
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lines contain non-zero elements. The number p of such columns is related to the
indicators γkl by

p =
d
∑

k=1

(1− γkk − δFk ). (13)

If all effects are truly random (δFk = 0 for all k = 1, . . . , d) while rg(Q) = d− p < d,
the Cholesky decomposition leads to a kind of factor analytical representation of Q
in terms of a (d×p) matrix C? which is obtained from C simply by deleting all zero
columns. In general, C contains d − rg(Q) zero columns and d − rg(Q) − p zero
lines, where the position of the lines indicates which effects are fixed.

While many of the zeros in C will be caused by these two structural properties
of the random effects, additional zeros might be present outside zero lines and zero
columns, leading to a further reduction of qγ, the number of free parameters needed
to represent Q. We may think of these zero elements as achieving parsimony in
describing the finer structure of Q, like independence only of specific components
of βs

i , say βs
i,j and βs

i,k. It has to be noted that the Cholesky decomposition does
not necessarily lead to the most parsimonious representation of Q in terms of being,
among all possible decompositions Q = CC

′

, where C is an arbitrary (d×d) matrix,
the one which yields the smallest number of nonzero elements. Nevertheless, as our
case study from marketing will show, qγ is typically much smaller than d(d+ 1)/2,
even if we stay within the framework of the Cholesky decomposition.

A final aspect which needs to be discussed is how the ordering of the random
effects influences the representation of Q we obtain. As opposed to Smith and
Kohn (2002) who considered longitudinal data, there is no natural ordering of the
variables in a random effects model, and there exist d! different ways to arrange
the components of βs

i . Several characteristics of the corresponding matrices C will
remain unaffected by reordering, while others change. First of all, the rank of Q,
and consequently, the rank of C as well as the number

∑d
k=1 δ

F
k of fixed effects and

the number p of zero columns resulting from linear dependence among the truly
random effects obviously are invariant under reordering.

The zero pattern, however, will change under reordering according to a permu-
tation ρ. Assume that for a given ordering of the variables the variance-covariance
matrix Q is represented by Q = CC

′

, with C being a Cholesky factor containing
qγ free elements. When permuting the ordering of the random effects, we obtain

Qρ = ΠρQΠ
′

ρ = (ΠρC)(ΠρC)
′

(14)

for a suitable permutation matrix Πρ, interchanging rows and columns. Note that
ΠρC is a decomposition of Q with the same number qγ of free elements as C,
however, in general it is no longer a Cholesky decomposition.

If we reordered the variables before deriving the Cholesky decomposition, we
obtain

Qρ = CρC
′

ρ, (15)

where certain aspects of the zero pattern in C and Cρ will match. Zero lines and
zero columns inC corresponding to a fixed effect will change their position according
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to the selected permutation and will correspond to the appropriate zero lines and
zero columns in Cρ. Thus identifying fixed effects by searching for zero lines (and
zero columns) in the Cholesky factor is invariant to reordering the variables and the
fixed effect indicator δFk will be zero iff the fixed effect indicator δFk′ where k′ = ρ(k)
is zero. The position, but not the number of additional zero columns corresponding
to linear dependence, will change.

However the total number of free elements, qγ, may vary for different permuta-
tions ρ. To give an example, we define the following variance-covariance matrix Q
of rank two:

Q =









4 −2 2 0
−2 5 0 0
2 0 1.25 0
0 0 0 0









, C =









2 0 0 0
−1 2 0 0
1 0.5 0 0
0 0 0 0









(16)

Rank reduction stems from one fixed effect at position four and from linear depen-
dence of the truly random effects. Both is reflected by the pattern of zeros in the
Cholesky factor C: the fourth row and the third and the fourth column are zero
rows or columns, respectively. Concerning the finer structure of Q, we find that
βs
i,2 and βs

i,3 are uncorrelated, causing an additional zero element in C. Thus the
number of free elements qγ in C equals five.

If we reverse the order of the random effects, so that ρ = [4 3 2 1], we obtain the
following Qρ with Cholesky factor Cρ:

Qρ =









0 0 0 0
0 1.25 0 2
0 0 5 −2
0 2 −2 4









, Cρ =









0 0 0 0
0 1.12 0 0
0 0 2.24 0
0 1.79 −.89 0









(17)

As expected, the position of the zero columns and the zero line in Cρ is changed
according to the permutation. Note, however, that the rank of Q which is defined
by the number of non-zero diagonal elements in Cρ and the number of fixed effects,
defined by the number of zero lines, stays unaffected. However, the total number of
free elements qγ in the Cholesky matrix Cρ changed and equals four, rather than
five, after reordering.

This suggests that reordering the random effects may yield a more parsimonious
representation of the variance-covariance Q.

2.2 Variable Selection in the Non-centered Parameteriza-

tion of the Linear Mixed Model

Parameterization (1) and (2) of the linear mixed model is known as the centered pa-
rameterization. The parameterization of the random-effects model turns out to be of
enormous importance for the convergence behavior of various estimation methods,
in particular for MCMC estimation, as analyzed by Gelfand, Sahu and Carlin (1995)
and Papaspiliopoulos, Roberts and Skold (2003). Convergence often improves, when
the random-effects model is formulated in the non-centered parameterization, intro-
duced by Meng and van Dyk (1998), and studied in much detail in Van Dyk and
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Meng (2001). In these papers, the non-centered parameterization reads

yi = X
f
iα+Xr

iβ +Xr
iLDz

s
i + εi, εi ∼ NTi

(

0, σ2
εITi

)

, (18)

zsi ∼ Nd (0, Id) , (19)

and is based on the Cholesky decomposition Q = LDDL
′

, where L is a lower
triangular matrix with ones in the diagonal and D is a diagonal matrix.

The Cholesky decomposition (3) of the random-effects covariance matrix Q,
introduced in the previous subsection, leads to a similar, however, slightly different
non-centered parameterization. Since the random effects βs

i may be represented
as βs

i = β + Czsi , where zsi ∼ Nd (0, Id), we obtain the following non-centered
parameterization of a hierarchical linear mixed model:

yi = X
f
iα+Xr

iβ +Xr
iCz

s
i + εi, εi ∼ NTi

(

0, σ2
εITi

)

, (20)

zsi ∼ Nd (0, Id) , (21)

which has similar computational advantages over the centered parameterization as
the non-centered parameterization introduced by Meng and van Dyk (1998).

An even more important advantage of using the Cholesky decomposition (3),
together with this non-centered parameterization, is that it suggests a quite natural
way for finding parsimonious variance-covariance matrices for a hierarchical linear
mixed model. Combining these two techniques reduces the problem of variance-
covariance selection for a hierarchical linear mixed model to the more common
problem of Bayesian variable selection in multiple regression models, as reviewed,
for instance, in George and McCulloch (1997).

This relation becomes more evident by rewriting the observation equation (20)
as follows. Depending on the indicators γ, various elements of C will be restricted to
0, whereas the remaining free elements of C are treated as an unknown parameter,
denoted by Cγ. The parameter vector Cγ is constructed from C by stacking the
free elements of C column by column. For known random effects zsi , observation
equation (20) may be regarded as following regression model in Cγ:

yi = X
f
iα+Xr

iβ +W
γ

i C
γ + εi, εi ∼ NTi

(

0, σ2
εITi

)

, (22)

where the predictor matrixWγ

i depends on the design matrix Xr
i , and on the latent

random effects zsi . We will provide details of how W
γ

i is constructed at the end
of this subsection. Like in standard Bayesian variable selection, elements in the
predictor matrix Wγ

i will be included or deleted, depending on γ. As a notable
difference, however, variable selection in (22) is with respect to predictors that are
latent, rather than directly observed.

For a fixed value of γ, Wγ

i is constructed from the design matrix Xr
i and the

latent random effects zsi = (zsi1, . . . , z
s
id)

′

in the following way. The matrix W
γ

i

consists of d submatrices with different number of columns,

W
γ

i =
(

W
γ

·1

i zsi1 · · · W
γ

·d

i zsid
)

,

where for all m = 1, . . . , d, W
γ

·m

i is the regressor matrix of all non-zero elements of
the column C·m of C. To account for zero elements in column C·m, the lth columns
of Xr

i has to be deleted whenever γlm = 0, in order to obtain W
γ

·m

i .
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2.3 Related Work

Our approach of finding a parsimonious variance-covariance matrix through Bayesian
variable selection is related to Smith and Kohn (2002) and Chen and Dunson (2003),
but differs from these papers in various important aspects.

By performing variable selection on the Cholesky decomposition of Q, our ap-
proach is substantially different from Smith and Kohn (2002), who use the Cholesky
decomposition Q−1 = LDL

′

of the inverse of Q where L is a lower triangular ma-
trix with ones in the diagonals and D is a diagonal matrix of full rank. Smith and
Kohn (2002) introduce only d(d− 1)/2 indicators γlm to perform variable selection
on the strictly lower diagonal elements of L, whereas the elements of D are assumed
to be positive. If all indicators are equal to 1, all d(d − 1)/2 elements of L are
unconstrained, leading to the estimation of an arbitrary positive definite variance-
covariance matrix Q as in our approach. If all indicator are equal to 0, however, Q
is shrunk toward the diagonal matrix D−1. Thus a direct application of the Smith
and Kohn (2002) approach to the inverse of the variance-covariance matrix of a
random-effects model would not allow to reduce any of the random effects to a fixed
one.

Our approach is related to Chen and Dunson (2003), who apply a similar but
more specific approach to the Cholesky decomposition Q = DLL

′

D, where L is
a lower triangular matrix with ones in the diagonal and D is a diagonal matrix.
In order to reduce random effects to fixed ones, they allow the diagonal elements
of D to have a positive probability of being zero, whereas no variable selection is
performed for the elements of L. Thus our approach is more general than theirs, as
we introduce variable selection also on the lower diagonal elements of the Cholesky
factor, and therefore are able to capture the finer structure of Q, which is especially
important in higher dimensional problems.

3 Bayesian Estimation

3.1 Prior Distributions

3.1.1 Prior for the indicator matrix γ

For Bayesian estimation one has to select the prior of the indicator matrix γ. Condi-
tional on a known value τ ∈ [0, 1] we assume priori independence indicator variables
γlm with Pr(γlm = 1|τ) = τ . This implies that the number of non-zero elements
in C follows the binomial distribution BiNom (ds, τ), where ds = d(d + 1)/2 is the
total number of free parameters in C. For variance-covariance matrices Q of moder-
ate size this density is fairly non-informative on the number of non-zeros elements,
whereas with increasing number of elements this density approaches a normal dis-
tribution with mean dsτ and variance dsτ(1 − τ) and the prior distribution of qγ,
the number of non-zero elements in C, will crucially dependent on τ .

To reduce the sensitivity with respect to choosing τ , we consider it as a hyper-
parameter and use a uniform prior for τ on [0, 1] as in Smith and Kohn (2002). If
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we integrate the hyperparameter τ out of the analysis, we obtain:

p(γ) =

∫

p(γ|τ)p(τ)dτ = Beta(qγ, ds − qγ + 1). (23)

Here, Beta(·, ·) is the beta function and qγ is the number of non-zero elements in C,
see also (10). Note that the marginal prior (23) implies a priori dependence between
the elements of the indicator matrix γ.

Within our MCMC sampling scheme we need the conditional prior for one ele-
ment γlm given the remaining elements of γ, denoted γ\lm. Let us first consider the

case where γold
lm = 1. We derive the following conditional priors:

p(γlm = 0|γ\lm) = h1/(h1 + 1), p(γlm = 1|γ\lm) = 1/(h1 + 1).

Here

h1 =
ds − qγ + 1

qγ
,

and qγ is the number non-zero elements in Cold. Note that 1/(h1 + 1) ≈ τ̂ , where
τ̂ = qγ/ds is the estimated fraction of non-zero elements in C. If γold

lm = 0, then

p(γlm = 0|γ\lm) = h0/(h0 + 1), p(γlm = 1|γ\lm) = 1/(h0 + 1),

where

h0 =
ds − qγ
qγ + 1

.

3.1.2 Fractional Prior for the Variance-Covariance Matrix of the Ran-

dom Effects

Like in variable selection problems for the standard regression model, the specific
choice of a prior for the Cholesky factor C is likely to be rather influential on the
posterior of the indicator matrix γ, see O’Hagan (1995) and George and McCulloch
(1997). We extend the fractional prior approach introduced by O’Hagan (1995) to
the present context of selecting the prior for the variance-covariance matrix of the
random effects in hierarchical linear models. Fractional priors were first introduced
to Bayesian estimation of variance-covariance matrices by Smith and Kohn (2002),
who use a fractional prior for the non-zero elements of the off-diagonal elements of
L in the Cholesky decomposition Q−1 = LDL′.

It is, however, not at all clear how to define a fractional prior for a hierarchical
linear model which is a latent variable model. As common in Gibbs sampling for la-
tent variable models, we are using the conditional likelihood p(y|γ,α,β, zs, σ2

ε ,C
γ),

where the random effects zs = (zs1, . . . , z
s
N ) are fixed, for defining the fractional prior.

Hence our prior is a conditionally fractional prior depending on the random effects.
We construct a fractional prior for Cγ from a part of the conditional likelihood

p(y|γ,α,β, zs, σ2
ε ,C

γ), namely a fraction b ∈ (0, 1). The fractional prior is easily
shown to be the density of a multivariate normal distribution,

p(Cγ|zs, σ2
ε ,α,β,yTN×b) ∼ Nqγ (aN , σ2

εAN/b) , (24)
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where aN and AN are given by

aN = AN

(

N
∑

i=1

(Wγ

i )
′(yi −X

f
iα−X

r
iβ)

)

, (25)

A−1
N =

N
∑

i=1

(Wγ

i )
′

W
γ

i .

Details are given in Appendix A. Following Smith and Kohn (2002) we choose the
fraction b for the fractional prior equal to 1

N ·T
.

We finally note that the marginal prior p(Cγ|σ2
ε ,α,β,yTN×b) where the ran-

dom effects zs are integrated out is an infinite mixture of these conditionally frac-
tional priors, but not a fractional prior with respect to the marginal likelihood
p(y|Cγ, σ2

ε ,α,β), where the random effects are integrated out.
This prior is related to the one introduced in Smith and Kohn (2002), who real-

ized that for data from a multivariate normal distribution with unknown variance-
covariance matrixQ, the normal distribution is a natural conjugate conditional prior
for the free elements of the lower triangular matrix L in the Cholesky decomposition
Q−1 = LDL

′

. In the context of random-effects models, a conditionally conjugate
normal prior for the Cholesky factors of the variance-covariance matrix Q was in-
dependently suggested by Tüchler and Frühwirth-Schnatter (2003) and Chen and
Dunson (2003).

It is worth mentioning that the prior we consider in this article is different from
the prior of Chen and Dunson (2003), who considered the Cholesky decomposition
Q = DLL

′

D, in various aspects. Chen and Dunson (2003) use a conditionally
normal prior on the free elements of the lower triangular matrix L, and consider a
zero inflated half normal distribution for the free elements in the diagonal matrix D,
consisting of a mass point at zero (with probability 1−τ) and a normal density with
mean a0 and variance A0 truncated below zero. Their prior may be formulated in
terms of d variable indicators γl, l = 1, . . . , d, for the d free elements of D, in which
case τ is found to be the prior probability of γl = 1. Chen and Dunson (2003) hold
τ fixed for posterior inference. As discussed above, fixing τ will be of considerable
influence on posterior inference within increasing size of Q, whereas our prior is
more flexible. Second, we include the diagonal into the Cholesky decomposition,
which allows to define a normal prior on all non-zero elements of C, not only on the
lower triangular matrix L.

3.1.3 Remaining Priors

It remains to choose a prior for the mean parameters (α,β) and the observation
error variance σ2

ε . For the mean parameters (α,β) we assume a joint normal prior
distribution Nd+df

(b0,B0), whereas the observation error variance σ2
ε is a priori

inverted gamma distributed with G−1 (s0/2, S0/2).
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3.2 MCMC Sampling

3.2.1 The MCMC Scheme

We introduce an MCMC scheme which simultaneously carries out model selection
and estimation of all unknown parameters. The non-centered parameterization
based on the Cholesky decomposition, together with the priors defined in Section 3.1,
give way to the following convenient sampling scheme involving standard densities,
only:

(i) Sample γlm|γ\lm,α,β, σ2
ε ,y, where γ\lm denotes all elements of the indicator

matrix γ but the element γlm, from a discrete density with two realizations.

(ii) Sample Cγ|α,β, zs, σ2
ε ,y from a normal distribution.

(iii) Sample α,β|Cγ, σ2
ε ,y from a normal distribution.

(iv) Sample zs|α,β,Cγ, σ2
ε ,y from a normal distribution.

(v) Sample σ2
ε |α,β, zs,y from an inverted Gamma distribution.

Subsequently, we will discuss each step in more detail.

3.2.2 Sampling the Indicators and the Cholesky Factors

The most crucial part of our algorithm is sampling the parsimonious variance-
covariance matrix of the random effects. Based on the non-centered parameteri-
zation, we sample the Cholesky factor C of the variance-covariance matrix Q rather
than the matrix itself in two steps. First, we sample the indicator for each of the
d(d+1)/2 free elements of the Cholesky factor from the marginal conditional density
p(γlm|γ\lm,α,β, σ2

ε ,y), where γ\lm denotes all elements of the indicator matrix γ

but the element γlm. Then conditional on knowing γ, all non-zero elements Cγ of
C are sampled from the appropriate distribution.

Note that the density p(γlm|γ\lm,α,β, σ2
ε ,y) is marginalized over the Cholesky

factors in order to avoid the computational problems discussed e.g. in George and
McCulloch (1997). To implement this step, the marginal likelihood
p(y|γ,α,β, zs, σ2

ε) where C
γ is integrated out is required.

The marginal likelihood function under fractional priors To combine the
fractional prior with the information in the data in a variable selection context
there are basically two routes to follow. The first approach, pursued by Smith
and Kohn (2002), is to combine the fractional prior with the complete likelihood
p(y|γ,α,β, zs, σ2

ε ,C
γ). This means, however, using a fraction of the data, namely

100b percent, twice (both in the prior and in the likelihood).
Following O’Hagan (1995), we pursue the alternative approach, where infor-

mation used for constructing the prior does not reappear in the likelihood. We
define what could be called a fractional marginal likelihood for model selection in
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random-effects models, by combining the fractional prior with the remaining likeli-
hood p(y|γ,α,β, zs, σ2

ε ,C
γ)1−b:

p(y|γ,α,β, zs, σ2
ε) =

∫

p(y|γ,α,β, zs, σ2
ε ,C

γ)1−bp(Cγ|zs, σ2
ε ,α,β,yTN×b)dCγ, (26)

where p(Cγ|zs, σ2
ε ,α,β,yTN×b) is equal to the fractional prior (24). As only quadratic

forms in Cγ are involved both in the fractional prior as well as in the conditional
likelihood, it is possible to carry out integration with respect to Cγ explicitly in
(26):

p(y|γ,α,β, zs, σ2
ε) = bqγ /2

(

1

2πσ2
ε

)NT (1−b)/2

exp

(

−
(1− b)

2σ2
ε

Sγ

)

, (27)

where qγ = dim(Cγ) and

Sγ =
N
∑

i=1

||yi −W
γ

i aN −X
f
iα−X

r
iβ||2. (28)

Sampling the indicator matrix To sample the indicator matrix, we proceed
columnwise for l = 1, . . . , d and sample the diagonal elements γll first. If the indica-
tor of the lth diagonal element is zero we set all elements of the lth column to zero
to preserve identification. If the indicator of the lth diagonal element equals one the
remaining column-elements γml are sampled for m = l + 1, . . . , d.

To sample the indicators γlm we could apply a Gibbs sampler. However, efficient
sampling of this step is essential for the speed of the algorithm. Smith and Kohn
(2002) have developed a fast algorithm for sampling the indicators and we apply
their scheme to our model here. Details may be found in Appendix B.

Sampling Cγ We generate Cγ|γ, δ, zs, σ2
ε ,y from the following normal posterior

distribution:

Cγ|γ, zs,α,β, σ2
ε ,y ∼ Nqγ

(

aN , σ2
εAN

)

,

where aN and AN are given in (25).
Note that we obtain equal likelihoods if we change the sign of whole columns

of C, see Section 2.1. Inference about Q, like for example estimation of the rank
and the number of fixed effects is independent of these sign-switches. The number
of free elements qγ in C is also not affected by sign-switching. Therefore we do not
need to identify a unique matrix out of all 2d possible sign-combinations for the
estimation problems of our paper. However, inference about quantities of C, like for
example estimation of the posterior mean, would not yield a meaningful result and
unique identification of the column signs would be necessary. Sign switching could
be avoided by posing a formal non-negativity constraint on Ckk, like Ckk > 0.

12



3.2.3 Sampling the remaining parameters

Conditional on knowing γ and Cγ we are dealing with a random-effects model with
known variance-covariance matrix Q = CC′, where C is the Cholesky factor with
those elements set to zero, which were indicated by γ. Consequently, one could use
any of the available MCMC schemes from the literature in order to sample α, β,
σ2
ε , and the non-centered random effects zs. Here we use the partially marginalized

sampler of Frühwirth-Schnatter, Tüchler and Otter (2004), which samples the fixed
effects and the mean parameters efficiently without conditioning on the random
effects. We give details in Appendix C.

4 Simulation Study

We include the variance-covariance matrices from our example of Section 2.1 in
our simulation study. We generate a data set from a random-effects model with
variance-covariance matrix Q given in equation (16) and obtain a second data set
by simple reordering of the effects according to permutation ρ = [4 3 2 1], which
yields the covariance matrix Qρ of (17) for this new data set. Details of the design
and other parameters are given in Appendix D. We base our analysis on 30 000
iterations after a burn-in of 5 000 iterations.

In Table 1 and Table 2 we compare posterior modes for the number of free
elements qγ in the Cholesky factors, the rank of the variance-covariance matrices,
and the number of fixed effects for the two data sets. In Section 2.1 we stated that
the rank of the variance-covariance matrix as well as the number of fixed effects is
invariant towards a reordering of the random effects. This is also reflected by the
posterior modes of these measures, which are equal for both MCMC simulations.
Furthermore we noted in Section 2.1 that the number of free elements qγ might vary
for different permutations of the effects and that (17) yields a more parsimonious
Cholesky factor than (16). This may again be observed for the MCMC simulations,
where the posterior mode of qγ for the latter case equals five, whereas this value is
four for the ordering ρ = [4 3 2 1], see Table 1.

Table 1: Simulation study: relative frequency for the number of free elements qγ in
C (Cρ).

4 5 6 7 8
equ. (16) .18 .46 .24 .09 .02
equ. (17) .54 .33 .09 .03 .01

Table 2: Simulation study: Posterior modes and in brackets their relative frequency
for: the number of fixed effects (column 1) and the rank of Q (Qρ) (column 2).

no. fixed eff. rank
equ. (16) 1 (.72) 2 (.59)
equ. (17) 1 (.84) 2 (.59)
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It is worth mentioning that the difference in qγ also affects the posterior num-
ber of free elements in the variance-covariance matrix Q. Note that indicators for
unrestricted elements in Q may easily be derived at each MCMC iteration by multi-
plication of the indicator matrices of C: γγ

′

. In this new matrix non-zero elements
indicate unrestricted elements in Q. In Table 4 we give posterior probabilities for
the elements of Cρ and of Qρ to be unrestricted. We observe that these poste-
rior probabilities match the true pattern of non-zeros in (17) very well. But if we
compare the posterior probabilities for Q to be unrestricted with Q of (16) we find
that the zero element Q23 stays unrestriced throughout the MCMC simulations, see
Table 3. There is an obvious explanation for this. The indicator matrix matching
C of (16) would be

γ =









1 0 0 0
1 1 0 0
1 1 0 0
0 0 0 0









The indicator matrix for the elements of Q, γγ
′

, has only unrestricted elements in
the upper-left three times three block. However, the posterior mean for element Q23

is close to zero and equals −.35, with a standard deviation of .43.

Table 3: Simulation study with Q from (16): posterior probabilities for the elements
of the Cholesky factor C (left-hand side) and Q (right-hand side) to be unrestricted
(rounded).

1 0 0 0
1 1 0 0
1 .7 .29 0
.04 .04 0.05 0.19

1 1 1 .04
- 1 1 .08
- - 1 .11
- - - .28

Table 4: Simulation study withQρ from (17): posterior probabilities for the elements
of the Cholesky factorCρ (left-hand side) andQρ (right-hand side) to be unrestricted
(rounded).

.16 0 0 0

.02 1 0 0

.02 .1 1 0

.02 1 1 0.32

.16 .02 .02 .02
- 1 .1 1
- - 1 1
- - - 1

5 Application to Real Data

Our application comes from a brand-price trade off study in the Austrian mineral
water market. These data are challenging due to the high dimension of the variance-
covariance matrix and the power of the new method may be demonstrated here. 213
consumers stated their likelihood to buy mineral water products on a 20 point rating
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scale. Five different brands were offered at three different prices levels. Therefore
our data consist of 15 observations per consumer. The design matrices were defined
in a way that effects of brands, prices, quadratic prices as well as interaction effects
between brands and prices could be investigated. Details on this brand-price trade
off study from the marketing point of view may be found in Otter, Tüchler and
Frühwirth-Schnatter (2004). The design matrix Xr

i consists of 15 rows for the 15
observations per consumer and of 15 columns: 5 brand columns (one brand as the
baseline), one price and one quadratic price column, four brand by linear price and
four brand by quadratic price columns.

We reanalyzed these data, starting with a general model structure where all ef-
fects were specified as random effects and ran 50 000 iterations of our new procedure.
The first 20 000 iterations were discarded for burn-in.

Without variable selection there would be 120 free elements in the Cholesky
matrix C. With our new procedure this number may be reduced substantially. In
Figure 1 we see the posterior distribution of the number of free elements qγ in C.
We have to estimate only 32 parameters, on average. This is also reflected by the
posterior estimates of the indicators γ in Table 5. These posterior probabilities for
the elements of C to be different from zero are very small for many elements.

20 25 30 35 40 45
0

1000

2000

3000

4000

5000

6000

Figure 1: Application: the posterior distribution of the number of free elements qγ
in C, based on 30 000 iterations after burn-in.

In Table 6 we give posterior probabilities for the elements of the variance-
covariance matrix Q to be unrestricted. For the first nine effects of the design
we obtain unrestricted elements for the diagonal as well as for the off-diagonal ele-
ments, whereas the structure is mores sparse with many elements restricted to zero
especially for the last four effects.

Let us now look at selected random and fixed effects. The diagonal of Table 6
may be interpreted as posterior probabilities for the effects to be random effects.
Here only the 14th effect has a low probability of .21 for being a random effect.
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Table 5: Application: posterior probabilities for the elements of the Cholesky factor
matrix C to be unrestricted (rounded).

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 .97 1 0 0 0 0 0 0 0 0 0 0 0 0
1 .03 .21 1 0 0 0 0 0 0 0 0 0 0 0
1 .2 .04 1 1 0 0 0 0 0 0 0 0 0 0
1 .16 .53 1 .07 1 0 0 0 0 0 0 0 0 0
1 .75 .95 .12 .37 1 1 0 0 0 0 0 0 0 0
.97 .02 .08 .02 .03 .01 .1 1 0 0 0 0 0 0 0
.96 .04 .19 .01 .02 .04 .02 1 .03 0 0 0 0 0 0
.03 .16 .37 .96 .02 .02 .03 1 0 .25 0 0 0 0 0
.37 .02 .07 .01 1 .09 .02 .04 0 .04 .12 0 0 0 0
.01 .67 .05 .01 .06 .01 .02 .02 0 .01 0 .02 0 0 0
.05 .29 .15 .06 .03 .02 .01 .01 0 0 0 0 .03 0 0
.01 .06 .02 .04 .02 .01 .02 .01 0 0 0 0 0 .03 0
.01 .35 .01 .01 .22 .01 .01 .16 0 .01 .01 0 0 0 .02

The first eleven effects are random throughout all MCMC iterations, whereas the
remaining four effects are estimated as fixed at least in some iterations. In the upper
row of Figure 2 we give the sample path for the number of fixed effects. During 40
percent of the iterations there are two fixed effects. It is worth looking at Table 7
showing the five models which are selected with the highest probability. All these
five models include the 14th effect as fixed effects. However this fixed effect appears
in different combinations with other fixed effects from the last 4 columns of the
design.

Whereas most of the effects are random in this particular application, which is a
common finding in marketing research, see, for instance Rossi, Allenby and McCul-
loch (2005), they seem to be highly correlated and linearly dependent. Apparently,
strong rank reduction occurs in Q, see the posterior distribution of rg(Q) in the
lower plot of Figure 2. The middle-plot of Figure 2 shows the posterior draws of
p, the number of zero columns in C, not corresponding to zero lines, which has
been derived in (13) from the indicator matrix γ. As explained in Subsection 2.1,
p is a measure of linear dependence among the truly random effects, which may
be explained by rg(Q) linearly independent factors which are random across the
population. For the present application we find that the posterior mode of rg(Q) is
given by eight, which means strong linear dependence among the random effects.

6 Concluding Remarks

In this paper, we consider a non-centered parameterization of the standard random-
effects model, which is based on the Cholesky decomposition of the variance-covariance
matrix. This parameterization automatically delivers variance-covariance matrices
without the need to introduce any constraints, as the Cholesky factors of variance-
covariance matrices are unconstrained. This feature is rather desirable from a com-
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Table 6: Application: posterior probabilities for the elements of the variance-
covariance matrix Q to be unrestricted (rounded).

1 1 1 1 1 1 1 .97 .96 .03 .37 .01 .05 .01 .01
- 1 1 1 1 1 1 .97 .96 .18 .38 .67 .33 .06 .35
- - 1 1 1 1 1 .97 .96 .48 .42 .66 .44 .08 .36
- - - 1 1 1 1 .97 .96 .96 .38 .05 .13 .05 .03
- - - - 1 1 1 .97 .96 .96 1 .23 .17 .07 .23
- - - - - 1 1 .97 .96 .96 .49 .2 .3 .09 .08
- - - - - - 1 .97 .96 .54 .67 .48 .28 .08 .4
- - - - - - - 1 1 1 .41 .04 .07 .02 .18
- - - - - - - - 1 1 .41 .06 .12 .03 .18
- - - - - - - - - 1 .14 .2 .17 .07 .21
- - - - - - - - - - 1 .1 .06 .02 .23
- - - - - - - - - - - .72 .31 .06 .11
- - - - - - - - - - - - .52 .06 .03
- - - - - - - - - - - - - .21 .01
- - - - - - - - - - - - - - .59

Table 7: Application: model choice with respect to fixed effects.

effect no.
12 13 14 15 Prob

rand rand fixed fixed .18
rand rand fixed rand .16
fixed fixed fixed rand .14
rand fixed fixed rand .12
rand fixed fixed fixed .11

putational point of view.
Based on the non-centered parameterization, we are able to search for a par-

simonious variance-covariance matrix by identifying the non-zero elements of the
Cholesky factors using well-known Bayesian variable selection methods.

It turns out that the pattern of zeros in the Cholesky factors gives way to several
important implications about the effects. First, we are able to learn from the data
for each effect, whether it is random or not. Second, we are able to derive zero
covariances among the random effects. This feature is of special importance for
higher dimensional data, where determination of the finer structure in the covariance
matrix often yields a substantial reduction of the number of parameters in the model.
Finally, we may derive at each iteration the rank of the variance-covariance matrix.
Again this is of importance in many real applications, where the truly random effects
are likely to depend linearly on a lower-dimensional common factor.

This method is potentially of great interest in many areas of applied statistics.
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Figure 2: Application: details about rank reduction in Q.
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A Fractional Prior for Cγ

The basic idea of the fractional prior is to use part of the likelihood
p(y|γ, zs, σ2

ε ,α,β,Cγ), where y = (y1, . . . ,yN), to construct a proper prior for
covariance selection under the improper prior p(Cγ|σ2

ε) ∝ constant:

p(y|γ, zs, σ2
ε ,α,β,Cγ)1−bp(y|γ, zs, σ2

ε ,α,β,Cγ)b (29)

∝ p(y|γ, zs, σ2
ε ,α,β,Cγ)1−bp(Cγ|zs, σ2

ε ,α,β,yTN×b),
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where b lies between 0 and 1. p(Cγ|zs, σ2
ε ,α,β,yTN×b) is the fractional prior ob-

tained from normalizing p(y|γ, zs, σ2
ε ,α,β,Cγ)b:

p(Cγ|zs, σ2
ε ,α,β,yTN×b) = p(y|γ, zs, σ2

ε ,α,β,Cγ)b/p(yTN×b),

p(yTN×b) =
∫

p(y|γ, zs, σ2
ε ,α,β,Cγ)bdCγ.

B Details on Sampling the Indicators

Let γold
lm denote the current value of γlm. Generate u from a uniform distribution on

[0, 1]. Then,

(i-1) if γold
lm = 1 and u > p(γlm = 0|γ\lm), set γnew

lm = 1;

(i-2) if γold
lm = 0 and u > p(γlm = 1|γ\lm), set γnew

lm = 0.

(i-3) if γold
lm = 1 and u ≤ p(γlm = 0|γ\lm), generate v ∼ U [0, 1] and set γnew

lm = 0,
if v ≤ l(γlm = 0)/(l(γlm = 0) + l(γlm = 1));

(i-4) if γold
lm = 0 and u ≤ p(γlm = 1|γ\lm), generate v ∼ U [0, 1] and set γnew

lm = 1,
if v ≤ l(γlm = 1)/(l(γlm = 0) + l(γlm = 1)).

Here p(γlm = i|γ\lm), i = 0, 1 is the conditional prior of γlm, see Subsection 3.1.1.
l(γlm = i) denotes the marginal likelihood p(y|γ,α,β, zs, σ2

ε) defined in (27) where
γlm either takes the value i = 0 or i = 1. If the fraction qγ/ds of non-zero elements
in C is small, step (i-1) will occur most often, whereas step (i-2) will occur most
often, if this fraction is large. The other steps occur frequently, if this fraction is
about 0.5. Note that in cases (i-1) and (i-2) only the prior has to be calculated,
which is computationally cheap compared to the likelihood appearing in the other
two steps.

C Sampling the parameters of the random-effects

model

C.1 Sampling α,β

From model (1) and (2) we derive the marginal heteroscedastic model:

yi ∼ NTi

(

X
f
iα+Xr

iβ,Xr
iQ(Xr

i )
′ + σ2

εITi

)

(30)

for i = 1, . . . , N .
We sample the fixed effects α and the mean parameter β together in one block

from model (30) with the random effects being integrated out. This yields the
following posterior distribution:

p(α,β|γ,Cγ, σ2
ε , y) ∼ Nd+df

(BNbN ,BN ) ,
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where

bN =
N
∑

i=1

[Xf
i X

r
i ]
′(Xr

iQ(Xr
i )
′ + σ2

εITi
)−1yi +B−1

0 b0,

B−1
N =

N
∑

i=1

[Xf
i X

r
i ]
′(Xr

iQ(Xr
i )
′ + σ2

εITi
)−1[Xf

i X
r
i ] +B−1

0 .

C.2 Sampling zs

i

To generate from zs|γ,α,β,Cγ, σ2
ε ,y we first observe, that the various components

of zs = (zs1, . . . , z
s
N) are conditionally independent. The conditional distribution

of zsi |γ,α,β,Cγ, σ2
ε ,y is a normal distribution, obtained by combining the prior

zsi ∼ Nd (0, Id) with the likelihood p(yi|z
s
i ,γ,α,β,Cγ, σ2

ε) through Bayes’ theorem:

zsi |γ,α,β,Cγ, σ2
ε ,y ∼ Nd (Pi pi,Pi) ,

where

pi = σ−2
ε (Xr

iC)′(yi −X
f
iα−X

r
iβ),

P−1
i = σ−2

ε (Xr
iC)′ · (Xr

iC) + Id.

C.3 Sampling σ2
ε

We sample σ2
ε |γ,α,β, zs,y from the inverted Gamma posterior density:

σ2
ε |γ,α,β, zs,y ∼ G−1 (sN/2, SN/2) ,

with sN = TN + s0 and

SN = S0 + Sγ + (aN − a0)
′A−1

0 (aN − a0),

with Sγ being the sum of squared errors defined in (28).

D Design of the simulation studies

We simulate data for i = 1, . . . , 200 subjects from the random-effects model (1) and
(2) with design matrix Xr

i equal to

Xr
i =

















1 ui1 0 ni1

1 ui2 0 ni2

1 ui3 0 ni3

1 0 ui4 ni4

1 0 ui5 ni5

1 0 ui6 ni6

















,

where uik come from a uniform distribution on the interval [1, 2] and nik are standard
normally distributed random numbers, for k = 1, . . . , 6. We include no fixed effects
(α = 0), and the random effects have mean parameter β = (1 − 2 1.5 .8)′ and
variance-covariance matrices defined in (16) and (17). The model error variance σ2

ε

equals 1.
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