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Abstract

The paper provides a simplified derivation of the density of the sum of

independent non-identically distributed uniform random variables via an in-

verse Fourier transform. We also provide examples illustrating the quality of

the Normal approximation and corresponding MATHEMATICA code.

1 Introduction

The sum of independent albeit not necessarily identical uniformly distributed ran-
dom variables arises naturally in the aggregation of scaled values with differing
numbers of significant figures. Its distribution was first established by Olds (1951)
via an inductive proof. Sadooghi et al. (2007) find this distribution by employing a
Laplace transform, also seemingly utilizing beforehand knowledge of the result.

In contrast, Bradley and Gupta (2002) derive an explicit formula in all its generality
through characteristic function inversion. However, their proof, although elegant, is
quite involved. In the following we present a considerably simplified version, that
should be comprehensible at the level of a first course in mathematical statistics,
such as Casella and Berger (2002).

2 Another Derivation of the Density of Sn

Let Sn be the sum of n independent random variables Xk, which are uniformly
distributed in (−ak, ak). We require this setting for symmetry purposes, but it is
quite evident that generality is not restricted, since by simple shifts any intervals
may be considered. Eventually we will give a corresponding example in section 3.

2.1 The derivation of the density using the characteristic

function

The characteristic function of Xk is E(exp[itXk]) = eit·ak−e−it·ak

2it·ak
= sin t·ak

t·ak
. Due to

independence the characteristic function of Sn is the product ϕn(t) =
∏n

k=1
sin t·ak
t·ak

.

The integral
∫

∞

−∞
|ϕn(t)|dt exists and so we determine the density from ϕn(t) as the

inverse Fourier transform

fn(s) =
1

2π

∫

∞

−∞

e−its · ϕn(t)dt.

Remark: To see that fn(s) is a real-valued function, we make use of the fact that
e−its = cos(ts)− i · sin(ts), and due to the odd function sin(ts) ·ϕn(t) the imaginary
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part vanishes from the integral. Now, using sinx = (eix − e−ix)/2i gives

fn(s) =
1

2π

∫

∞

−∞

e−its

(2i)n · tn ·
∏

ak
·

n
∏

k=1

(

eit·ak − e−it·ak
)

dt.

Multiplying out the product results in a sum of 2n terms of the form σj ·exp[it ·a.εj].
The n-dimensional row vector εj is one of the 2n possible length n sequences of
arranging the signs +1 and -1. The signs σj result from the product over the entries
in εj and are positive in the case of an even number of -1 in εj and negative otherwise.

Multiplying this sum by e−its gives
∑2n

j=1 σj · exp[it · (a.εj − s)] =
∑2n

j=1 σj · e
it·bj ,

where the row vector bj denotes a.εj − s. Reversing the order of integration and
summation gives

fn(s) =
1

2n+1π ·
∏

ak

2n
∑

j=1

σj ·

∫

∞

−∞

ei·t·bj

(it)n
dt

Let us consider the summands Ij =
∫

∞

−∞

e
i·t·bj

(it)n
dt and apply ν times the recursion

∫

eitb

(it)n
dt = 1

n−1

(

−eitb

i(it)n−1 + b ·
∫

eitb

(it)n−1dt
)

:

Ij =
1

n− 1
lim
A→∞

−eitb

i(it)n−1

∣

∣

∣

∣

A

−A

+ · · ·+
(n− ν − 1)!

(n− 1)!
lim
A→∞

−bν−1 · eitb

i(it)n−ν

∣

∣

∣

∣

A

−A

+

+
bν(n− ν − 1)!

(n− 1)!

∫

∞

−∞

eitb

(it)n−ν
dt

Since c · limA→∞

eiAb−e−iAb

An−ν = c · limA→∞

2 cos(A·b)
An−ν = 0 the first ν terms vanish while

ν < n. Repeating n− 1 times the recursion gives

Ij =
bn−1
j

(n− 1)!
·

∫

∞

−∞

ei·t·bj

i · t
dt.

Substituting y = t · b yields

∫ b·∞

−b·∞

ei·y

i · y
dy =

∫ b·∞

−b·∞

cos y + i · sin y

i · y
dy =

∫ b·∞

−b·∞

sin y

y
dy = sign(b) · π,

due to the odd function cos y
y

and the sine integral. Inserting Ij in the sum above
finally leads to

fn(s) =
1

2n+1(n− 1)! ·
∏

ak
·

2n
∑

j=1

σj · sign(a.εj − s) · (a.εj − s)n−1,

where s ∈ IR. This is the same formula as given in Theorem 1 in Bradley and Gupta
(2002).
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2.2 Simplification of the density

The above formula is symmetric about s, but has the disadvantage to sum up over
all 2n indices j. In Corollary 1 Bradley and Gupta (2002) proof the sufficiency of
summing up only over j : aj .εj + s > 0. This proves to be correct, but does not
follow as easily as they claim. We can prove that {a.εj : a.ε > s} is a sufficient
subset.

2.2.1

The first step is to show that S :=
∑2n

j=1 σj · (a.εj − s)n−1 = 0. This is not evident
since terms do not cancel in pairs. Expanding the binomial to a sum of n terms and
changing the order of summation gives

S =
n−1
∑

ν=0

(

n− 1

ν

)

· sn−1−ν ·
2n
∑

j=1

σj · (a.εj)
ν .

We consider the inner sum and use the fact that each row vector εj has exactly one
counterpart εj′ = −εj. Using σj =

∏n

k=1 εjk, term j ′ of the sum is
∏n

k=1(−εjk) ·
(−a.εj)

n−1 and is equal to minus term j. So the inner sum vanishes in pairs and
S = 0 is proved.

In the Appendix an alternative proof is given. It is made by induction and shows,
that S vanishes for all powers 0 < p < n of the binomial inside the sum.

2.2.2

Separating the index set J = {j : 1 ≤ j ≤ 2n} into J = {j : a.εj < s} and
J+ = {j : a.εj > s} yields

fn(s) = fn(s) + S =

=
1

2n+1(n− 1)!
∏

ak

(

∑

j∈J

σj sgn(a.εj − s) (a.εj − s)n−1 +
∑

j∈J

σj (a.εj − s)n−1

)

=

= const ·

(

−
∑

j∈J−

σj · (a.εj − s)n−1 +
∑

j∈J+

σj · (a.εj − s)n−1

)

=

=
1

2n(n− 1)!
∏

ak
·
∑

j∈J+

σj · (a.εj − s)n−1.

If s > 0 this formula reduces the number of terms to sum up from 2n to 2n/4 on
average and also avoids subtracting similarly large terms if n is a great number. As
a by-product we see fn(s) vanishing for |s| >

∑

ak, because no a.εj is greater than
∑

ak and fn(s) is symmetric about 0. Thus the most parsimonious way to calculate
or plot fn(s) for any s is to replace it by |s|.
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3 Some illustrative examples calculated with MATH-

EMATICA

3.1 Plotting the density fn(s)

For the general case, that Yk ∼ U(gk, hk), its distribution can be regarded as U(−ak+
ck, ak+ck). Because

∑n

k=1 Yk = Sn+
∑

ck the density of the sum is symmetrical with
respect to

∑

ck and can thus be calculated directly by making use of the formula
above where s is replaced by |s−

∑

ck|.

The implementation of the distribution in MATHEMATICA required a few amend-
ments, which are described in the comments to the code below, which plots fn(s)
together with the density of an approximating normal distribution.

In1:= << Statistics̀<< Statistics̀<< Statistics̀
The package <<Statistics‘ is only required for the evaluation of the normal
pdf.

In2:= n = 3; a = {0.5, 1.2, 1.5}; c = {−1, 3, 4};n = 3; a = {0.5, 1.2, 1.5}; c = {−1, 3, 4};n = 3; a = {0.5, 1.2, 1.5}; c = {−1, 3, 4};
We have rather arbitrarily chosen n = 3, a = {0.5, 1.2, 1.5}, and
c = {−1, 3, 4} as an example.

In3:= Sa = Apply[Plus, a]; Sa2 = Apply [Plus, a2] ; Sc = Apply[Plus, c];Sa = Apply[Plus, a]; Sa2 = Apply [Plus, a2] ; Sc = Apply[Plus, c];Sa = Apply[Plus, a]; Sa2 = Apply [Plus, a2] ; Sc = Apply[Plus, c];
cnst = 2n ∗ (n− 1)! ∗ Apply[Times, a];cnst = 2n ∗ (n− 1)! ∗ Apply[Times, a];cnst = 2n ∗ (n− 1)! ∗ Apply[Times, a];
e = Table [IntegerDigits[i− 1, 2, n], {i, 2n}] ∗ 2− 1;e = Table [IntegerDigits[i− 1, 2, n], {i, 2n}] ∗ 2− 1;e = Table [IntegerDigits[i− 1, 2, n], {i, 2n}] ∗ 2− 1;
The rows of the (2n, n)-matrix ε are calculated as vectors of the dual numbers
of 0 up to 2n− 1, filled up with zeros from the left and with zeros replaced by
-1.

In4:= ea = e.a;σ = Apply[Times,Transpose[e]];ea = e.a;σ = Apply[Times,Transpose[e]];ea = e.a;σ = Apply[Times,Transpose[e]];
The 2n-dimensional vector a.ε is calculated as product e.ae.ae.a and denoted by eaeaea.
The sign σj counts the number of -1 in row j of ε and is calculated as

∏

εjk.

In5:= fn[s ]:=
∑2n

j=1 σ[[j]] ∗ Max
[

ea[[j]] − Abs[s− Sc], 0
]n−1

/

cnstfn[s ]:=
∑2n

j=1 σ[[j]] ∗ Max
[

ea[[j]] − Abs[s− Sc], 0
]n−1

/

cnstfn[s ]:=
∑2n

j=1 σ[[j]] ∗ Max
[

ea[[j]] − Abs[s− Sc], 0
]n−1

/

cnst

The range of summation J+ = {j : a.εj < s} holds also if max[a.εj − s, 0] is
used for j ∈ [1, 2n].

In6:= ll = −Sa + Sc− 1; uu = Sa + Sc + 1;ll = −Sa + Sc− 1; uu = Sa + Sc + 1;ll = −Sa + Sc− 1; uu = Sa + Sc + 1;
The density of the sum is positive in (−

∑

ak +
∑

ck,
∑

ak +
∑

ck) and is
plotted for the domain (−

∑

ak+
∑

ck−1,
∑

ak+
∑

ck+1) for better visibility.

In7:= ndist = NormalDistribution
[

Sc,
√

Sa2/3
]

;ndist = NormalDistribution
[

Sc,
√

Sa2/3
]

;ndist = NormalDistribution
[

Sc,
√

Sa2/3
]

;

The mean of the corresponding normal approximation is
∑

ck and its variance
is Σ(2ak)

2/12.

In8:= Plot[{fn[s],PDF[ndist, s]}, {s, ll, uu},Plot[{fn[s],PDF[ndist, s]}, {s, ll, uu},Plot[{fn[s],PDF[ndist, s]}, {s, ll, uu},
AxesLabel→ {"s", "fn(s)"},PlotStyle→ {{},Dashing[{0.01}]}];AxesLabel→ {"s", "fn(s)"},PlotStyle→ {{},Dashing[{0.01}]}];AxesLabel→ {"s", "fn(s)"},PlotStyle→ {{},Dashing[{0.01}]}];
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Figure 1: The density fn(s) for an example (solid line) and the corresponding
normal approximation (dashed line).

3.2 The quality of the normal approximation

The normal approximation in Figure 1 seems reasonable. However to better judge
its quality it may be advantageous to compare the respective cumulative distribution
functions. Calculating Fn(s) in MATHEMATICA is given by

In9: Fn[s ]:=
(

h =
∑2n

j=1 σ[[j]] ∗ Max
[

ea[[j]] − Abs[s− Sc], 0
]n/

(n ∗ cnst);Fn[s ]:=
(

h =
∑2n

j=1 σ[[j]] ∗ Max
[

ea[[j]] − Abs[s− Sc], 0
]n/

(n ∗ cnst);Fn[s ]:=
(

h =
∑2n

j=1 σ[[j]] ∗ Max
[

ea[[j]] − Abs[s− Sc], 0
]n/

(n ∗ cnst);

If[s < Sc, h, 1− h])If[s < Sc, h, 1− h])If[s < Sc, h, 1− h])

This, since the integral of sums
∫ s

−∞
fn(x)dx is equal to a sum of integrals and

∫ s

−∞
(a.εj − x)n−1dx = −(a.εj − s)n/n.

We now illustrate the deviations from the normal by plotting the differences between
the cdf’s and pdf’s respectively in Figure 2. In this example the numbers of variables
were chosen as series n = {3, 6, 9, 12}, the endpoints as a = 1 + k/10, and the
translations as c = 0.
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Figure 2: Differences of cdf’s and pdf’s of the exact distribution and the approxi-
mation for various n.
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4 Another way to compute the density

Instead of summing up over j ∈ J+ there is an equivalent way by using sums of
k-tuples of a: Adding a.εj +

∑

ak −
∑

ak cancels each a.εj < 0 and a doubled sum
of k-tuples minus

∑

ak remains.

We denote A as matrix of k-tuples Akl with row index 0 ≤ k ≤ n and column index
1 ≤ l ≤

(

n

k

)

and define A01 = 0. The number of -1 in εj agrees with the index n− k
of the row occupied by a.εj and so

fn(s) = const ·
n
∑

k=0

(−1)n−k ·
∑

l∈Lk+

(2 · Akl −
∑

ak − s)n−1

with the indexing set Lk+ = {l : 2Akl −
∑

ak > s}.

Let us look at two special cases:
4.1 If Xk are independent and uniformly distributed in (0, ak) the density of Yn =
∑n

k=1 Xk is

fn0(y) = 2 · fn(2s−
∑

ak) =
= 2 · const ·

∑n

k=0(−1)
n−k ·

∑

l∈Lk+(2 · Akl − 2y)n−1 =
= 1

(n−1)!
∏

ak
·
∑n

k=0(−1)
n−k ·

∑

l:A(k,l)>s(Akl − y)n−1 for 0 < y <
∑

ak

Another way to notate the inner sum is to use 1 ≤ l ≤
(

n

k

)

and to sum up powers
of (y − Akl)+ := Max[0, y − Akl], as was done in Bradley and Gupta (2002) and
Sadooghi et al. (2007) and in the inductive proof in Olds (1951).

4.2 In the case of a = 1 and with [y] as least integer less than y the density reduces

to fn(y) =
1

(n−1)!
·
∑[y]

k=0(−1)
k ·
(

n

k

)

·(y−k)n−1. This formula also is given in Sadooghi

et al. (2007).

5 Conclusions

Sadooghi et al. (2007) claim that their proof is more easily comprehensible. After
our amendments to the proof of Bradley and Gupta (2002), we leave it to the reader
to decide.

Appendix A: another proof by induction

The inductional assumption is that
∑2n

j=1 σj · (a.εj − s)p = 0 for 0 ≤ p < n.

At the zeroth step take n = 2 and +(−a1− a2− s)p− (−a1 + a2− s)p− (+a1− a2−
s)p + (+a1 + a2 − s)p = 0 is true for p = 0 and p = 1 and s ∈ IR.
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In the induction step we make use of the set (a.εj + an+1)∪ (a.εj − an+1). Its length
is 2n+1 and the signs σ remain unchanged if an+1 is added and change if an+1 is
subtracted:

S =
2n
∑

j=1

σj · (a.εj + an+1 − s)n −
2n
∑

j=1

σj · (a.εj − an+1 − s)n

We expand each term (a.εj − s± an+1)
n to

(

n

0

)

· (a.εj − s)n · a0
n+1 ±

(

n

1

)

· (a.εj − s)n−1 · a1
n+1 +

(

n

2

)

· (a.εj − s)n−2 · a2
n+1 ± . . .

If n = 2l and even or n = 2l − 1 and odd, term j of the subtracted sum is 2 ·
∑l

ν=1

(

n

2ν−1

)

· (a.εj − s)n−2ν+1 · a2ν−1
n+1 . Changing the order of summations gives S =

2·
∑l

ν=1

(

n

2ν−1

)

·a2ν−1
n+1 ·

∑2n

j=1 σj ·(a.εj−s)
n−2ν+1 = 0 due to the inductional assumption:

∑2n

j=1 σj · (a.εj − s)p vanishes if p < n.
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