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Abstract

The aim of this paper is to find optimal or nearly optimal designs for experiments to
detect spatial dependence that might be in the data. The question to be answered is, how
to optimally select predictor values to detect the spatial structure - if it is existent, and how
to avoid to spuriously detect spatial dependence if there is no such structure. The starting
point of this analysis are two different linear regression models (1) an ordinary linear
regression model with i.i.d. error terms - the non-spatial case, and (2) a regression model
with a spatially autocorrelated error term, a so called spatial autoregressive error model
(SAR error model). The procedure can be divided into two main parts: firstly, use of an
exchange algorithm to find the optimal design for the respective data collection process;
for its evaluation an artificial data set was generated and used. Secondly, estimation of
the parameters of the regression model and calculation of Moran’s I which is used as an
indicator for spatial dependence in the data set. The method is illustrated by applying it
to a well-known case study in spatial analysis.

1 Introduction

When one is concerned with the analysis of spatial data, before all there is the desire to
detect whether there is any spatial dependence in them or not. Should they be spatially
independent, the respective statistical analysis usually reduces to the application of a classical
and well established toolbox. Thus, the decision of whether one can confine oneself to this well
understood body of knowledge or whether one has to resort to the rather freshly developed
methodologies of spatial statistics (cf. Anselin, 1988 or Cressie, 1993) is a crucial element of
any serious spatial investigation.

Besides the nature of the investigated process, what has the most influence on our ability
to isolate spatial effects are the locations in space, where the data are collected, the so called
spatial sampling design. There have been made considerable efforts to make this design as
efficient as possible for the purpose of confirmatory spatial analysis, see e.g. Müller (2001).
However, it seems a little like negligence that this has never been considered for the very first
phase of a spatial study.

One explanation for this is that very frequently the sampling design is fixed beforehand.
The spatial data comes from a predefined lattice of locations or a given number of contiguous
areas. Usually this data comes at no or little cost at all design points/regions and thus there
is no need for posing the question: where (to measure)? However, this is not always the case,
since one can easily imagine that the data may come only at considerable costs and the decision
of which data to collect can be of great relevance. Moreover, it is well known that in spatial
analysis it can be sometimes an advantage not to employ the full potential data set (cf. the
well known Smit’s paradox in Smit, 1961).

Let us exemplify the ideas of the paper on a well-known case. In Anselin (1988) the author
presents us a study which became a classic testground for spatial analysis: the Columbus, Ohio
crime dataset. The data stem from 49 contiguous planning neighbourhoods in Columbus, Ohio,
USA, see Figure 1. The dependent variable is an index of criminal activity, it includes residential
burglaries and vehicle thefts per thousand households in a region, the explanatory variables are
household income and housing values in thousand dollars. Although the example does not
fit well for our practical purposes, as the data are freely available for all the neighbourhoods,
we have chosen it for its familiarity amongst the readership. It is evident that one can easily
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replace the crime index by another characteristic that may only be measured at a high cost
and all our considerations will continue to hold.

Figure 1: Neighbourhoods in Columbus, Ohio

As a measure for the intensity of the spatial dependence and consequently a valid test
statistic for detecting its potential existence we confine ourselves in this paper to the probably
most popular statistic, the Moran’s I, cf. Moran (1950), although a considerable number of
alternatives are available. Note however, that our principal considerations are not affected by
this choice.

1.1 Spatial Link Matrices

In spatial modeling the sampling design primarily affects the so called spatial link matrices (or
spatial weighting matrices), which represent the spatial relationships between the observations.
In general, spatial link matrices measure similarities, e.g. connectivity, neighbourhoods or in-
verse distances. A spatial link matrix G is an n by n matrix (n is the number of observations)
with the following properties:

(i) gij = 0 for i = j;

(ii) gij > 0 if i and j are spatially connected.

There are in principle two ways to define a a spatial weight matrix. First as a function of
the Euclidean distances between the locations of the observations,

gij = e−δdij − 1{i=j} (1)

with dij = ‖si − sj‖, where si and sj (i, j = 1, ..., n) are the coordinates of the locations, δ is
some decay parameter, and 1{i=j} is an indicator function for i = j. By ξ = {s1, . . . , sn} we
denote the collection of coordinates, the sampling design, defined on a design space given by
the set S.
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Another approach for building a spatial weight matrix is to use neighbourhood (contiguity)
matrices. These are symmetric, binary n× n matrices with entries gij = 1, if two observations
i and j are neighbours, and gij = 0, if i and j are not neighbours or if i = j. There are different
definitions of neighbourhood used in practice. Here, we used the so-called Queen’s criterion,
where adjacent areas are neighbours if they share zero-length or nonzero-length boundaries.

Spatial link matrices are often converted by using coding schemes to cope with the hetero-
geneity which is induced by the different linkage degrees of the spatial object. A widely used
coding scheme is the row-sum standardized coding scheme where the sum of each row of the
standardized link matrix is equal to one. Other coding-schemes are the globally standardized-,
and the variance stabilizing coding scheme (Tiefelsdorf, 2000). In the following, the spatial link
matrix V(ξ) is the row-standardized version of matrix G with entries gij.

The idea of choosing the spatial weight matrix was differently used by Kooijman (1976).
He maximized Moran’s I by choosing an appropriate spatial link matrix V (under certain
constraints), to increase the robustness of the test. In contrast to Kooijman (1976), we rather
try to find the optimal locations of the observations, the aim is not, to find a more robust test,
but to better detect a spatial effect that is potentially present in the data.

1.2 Models

We intend to estimate an ordinary linear model and use the residuals for the test of spatial
dependency, i.e. estimation of the model y = Xβ + ε under the assumption ε i.i.d. The real
data generating process, the true but unknown status of the world, is one of the following:

H0, spaceless: y = Xβ + ε and ε i.i.d. (ordinary linear model)

HA, spatial: y = Xβ + u and u = ρVu+ ε, and ε i.i.d. (SAR error model)

where y is an n × 1 vector of the depending variable, X is an n × k matrix of the regressors
(which may also depend upon ξ), β is the k × 1 parameter vector, ε is an n × 1 vector of
i.i.d. errors, u is an n × 1 vector of spatially correlated errors, ρ is the spatial autocorrelation
parameter, and V which depends upon ξ is the n× n spatial weight matrix.

Depending on the two examined cases, we either want to accept or reject the null hypothesis
of spatial independence of Moran’s I test (see section 2) to make a correct decision. The aim
of this paper is to find an optimal or nearly optimal design for a test strategy to receive either
acceptation or rejection of the null hypothesis for derivation of a model that matches the real
status of the world.

In this paper we restrict ourselves to Gaussian spatial processes, which are based on nor-
mally distributed regression disturbances. A Gaussian spatial process is parameterized by the
expected values of the observations E[y] = Xβ and their mutual covariance matrix, which
denotes the spatial interaction between the objects Cov(yy′) = E(yy′) = Ω(ρ), it depends on
the spatial autocorrelation parameter ρ. The disturbances are N(0,Ω(ρ)) distributed; see e.g.
Tiefelsdorf (2000).
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2 Some General Issues about Moran’s I
For a standard regression model it is crucial to know whether the residuals are spatially depen-
dent or not. If there is no spatial dependence in the residuals, one can use standard estimation
methods, like OLS, but if the residuals show spatial dependence, one has to use special methods
because spatial autocorrelation in the error term leads to biased estimates of the residual vari-
ance and inefficient estimates of the regression coefficients when the OLS estimation method is
applied, see e.g. Cliff and Ord (1981). For regression residuals Moran’s I is defined as scale in-
variant ratio of quadratic forms in the normally distributed regression residuals ε̂ = (ε̂1, ..., ε̂n)

′,
i.e.

I =
ε̂′ 1

2
(V +V′)ε̂

ε̂′ε̂
(2)

whereV is a standardized spatial weight matrix (
∑n

i=1

∑n

j=1 vij = n), see e.g. Tiefelsdorf (2000).

The classical Moran’s I as the two-dimensional analog of a test for univariate time series
correlation is given in Cliff and Ord (1981). For a random variable Y , measured in each of the
n non-overlapping subareas of the whole study area, Moran’s I is defined from the residuals of
an intercept only regression, i.e. ε̂ = My where y′ = (y1, . . . , yn), M = In − 1

n
1n1

′
n, In is an

n × n identity matrix and 1n is an n × 1 vector of ones. In this case, and if the spatial link
matrix V has full rank, i.e. there is no observation completely separated from all others, the
expected value of the test statistic I under independence is given by E[I|H0] = − 1

n−1
, and the

variance of I can be given in terms of the eigenvalues γi of matrix K = M′ 1
2
(V + V′)M as

Var[I|H0] =
2n

n2−1

∑n

i=1(γi − γ̄)2 = 2n
n2−1

σ2
γ , and I is asymptotically normally distributed.

The Moran’s I test is used for parametric hypotheses about the spatial autocorrelation level
ρ, i.e. H0 : ρ = 0 against HA : ρ > 0 for positive spatial autocorrelation; or H0 : ρ = 0 against
HA : ρ < 0 for negative spatial autocorrelation. Tests for positive correlation are much more
relevant in practice, because negative spatial autocorrelation very seldomly appears in the real
world. Thus, from now on ρ ≥ 0 will be assumed. The z-transformed Moran’s I is for normal
distributed regression residuals and well-behaved spatial link matrices under certain regularity
conditions (see e.g. Tiefelsdorf, 2000) asymptotically standard normally distributed, i.e. z(I)
is defined as

z(I) = I − E[I|H0]
√

Var[I|H0]
∼ N(0, 1). (3)

The exact small sample distribution of Moran’s I was obtained by Tiefelsdorf and Boots (1995),
but we refrain from using it here as it would be a restrictive computational burden on our al-
gorithm.

We shall later see that a special class of objects is relevant especially for design purposes.
These are observations that belong to a design but are far apart from all other objects, in the
sense that they have no spatial links to other observations; they will be called far-off objects in
the following. If e.g. one observation is completely separated from all other, V has one line and
one column with zero elements, nevertheless this does not lead to the same results as in case of
excluding this separated observation completely from the analysis, i.e. taking only an (n − 1)
point design. This problem is relevant in case of neighbourhood-based spatial link matrices.
On the contrary if the connectivity is based on distances, all elements - except for the ones
on the main diagonal which are zero by definition - are typically unequal zero and V has full
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rank (with the notable exception of the case when a sill is defined, i.e. from a certain distance
onwards the connectivity is assumed to be negligible and therefore set to zero). Thus, far-off
objects influence a spatial analysis, nevertheless the treatment of far-off objects is not really
worked out in literature. A discussion of far-off objects in Moran’s I test is given in Gumprecht
(2007). There are three obvious possibilities how to handle such observations:

(s) Include the separated observation and work with a spatial weight matrix which does
not have full rank. Thus, simply ignore the fact that an object is far apart.

(e) Exclude the separated observations from the design, i.e. work with (n− r) observa-
tions.

(ν) Include all n observations in the analysis, and use a modified unstandardized spatial
weight matrix U with elements uij + ν, with ν > 0 and ν → 0, for all i 6= j to avoid
zero-lines and zero-columns.

Whichever specification is used, it influences I, E[I|H0] and Var[I|H0] and therefore z(I) and
potentially the decision whether to reject the null hypothesis or not. Each treatment leads to
a specific spatial link matrix. For the case of only one far-off object (namely the first one) the
Moran’s I values have the following relationships:

I(ν) ≤ I(s) ≤ I(e), (4)

where equality holds only for ε̂1 = 0, i.e. the residuum of the far-off object is zero. A proof can
be found in the Appendix A.

For practical reasons the relationships of the z-transformed Moran’s I values are more
interesting, as theses values might influence the test decision. The relations of the z-values are
more complex as they include I, E[I|H0] and Var[I|H0], see (3). Under certain assumptions
the following relationships between the standardized Moran’s I values of case (s), (e) and (ν)
hold:

z[I(e)] ≤ z[I(s)] ≤ z[I(ν)]. (5)

It can be seen that treatment (e) leads to the most conservative test statistic, treatment (s)
rejects the null earlier, and treatment (ν) is the one which rejects the null hypothesis first.
All assumptions and a more detailed derivation of (5) can be found in Gumprecht (2007).
Unfortunately, a general statement on the behaviour of z(I) can not be made, nevertheless
it turns out that when the number of design points is large, it does not make a difference
which treatment is used for the far-off objects. Due to practical reasons, treatment (e) is not
recommended, because even if an observations is not connected to others it might be important
for the design.

2.1 Status of the World: Spaceless

Let us consider the first case of section 1.2, where we estimate a model under the assumption
of spatial independence, and the true model is of the same form. The aim is then to accept the
null hypothesis (=spatial independence). For the approximate test we require the moments of
Moran’s I, which can be expressed in terms of the eigenvalues of the matrix K (Tiefelsdorf,
2000), with M = I − X(X′X)−1X′ denoting the general projection matrix. Since only the
moments are of interest, the evaluation of eigenvalues can be by-passed by making use of the
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trace operator tr(.). In this case under the assumption of spatial independence, expected value
and variance of I are then given by

E[I | H0] =
tr(K)

n− k
=

tr{M1
2
(V +V′)M}
n− k

=
tr(MV)

n− k
(6)

and

Var[I | H0] =
tr(MVMV′) + tr(MV)2 + {tr(MV)}2

(n− k)(n− k + 2)
− {E[I | H0]}2

=
2{(n− k)tr(K2)− tr(K)2}

(n− k)2(n− k + 2)
(7)

respectively, see Henshaw (1966).
An application of the theoretical moments of Moran’s I is the approximation of the exact

distribution of Moran’s I by well-known simple distributions, that allow fast assessment of the
significance of an observed Moran’s I without numerical evaluation of its exact probability. If
the skewness and the kurtosis of Moran’s I (see Tiefelsdorf, 2000) do not differ substantially
from their counterparts of the normal distribution, the z-transformation of Moran’s I can
be used to obtain the significance of an observed Moran’s I. However if there is a marked
difference between the skewness and the kurtosis of Moran’s I to that of the normal distribution,
alternative approximation strategies, such as a saddlepoint approximation need to be employed
(Tiefelsdorf, 2002).

The null case is the simpler one, there is no spatial effect in the data, data follow an ordinary
linear model, the correct model is estimated and the null hypothesis of no spatial dependence
should be accepted. The intention is to find an optimal design which gives the best locations
for the observations in the sense that the rejection of the null hypothesis is minimized.

2.2 Status of the World: Spatial Dependence

Under the alternative the (wrongly) estimated model is still: y = Xβ+ ε and ε i.i.d., but now
the true assumed (but unknown) data generating process is a SAR error process:

y = Xβ + u, u = ρVu+ ε (8)

with ε i.i.d. Here the spatial dependence appears in the form of a spatially lagged error term u.
This model is called SAR error model, the parameter ρ is a spatial autoregressive coefficient.
This model can be transformed into a form with i.i.d. error terms, y = ρVy+Xβ−ρVXβ+ε,
being an exposition with a spatially lagged dependent variable Vy and a set of spatially lagged
exogenous variables VX. The variance-covariance matrix Ω(ρ) of the error terms is

Ω(ρ) = E[uu′] = σ2[(I− ρV)′(I− ρV)]−1 (9)

To ensure that Ω(ρ) is positive definite, ρ is restricted to the interval ] 1
λmin

; 1
λmax

[, where λmin

and λmax denote the smallest and largest eigenvalue of V.

The model is estimated via OLS and the residuals ε̂ = y−Xβ̂ are used for the calculation
of Moran’s I. If the real data generating process follows a SAR error process, the aim is to
reject the null hypothesis of no spatial dependence. The task is to maximize the power of the
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test, i.e. the probability to reject the null hypothesis given the alternative (spatial dependence).
For the normal approximation again only the conditional moments are needed. The conditional
expectation of Moran’s I can be evaluated by the improper integral

E[I|HA] =

∫ ∞

0

n−k
∏

i=1

(1 + 2λit)
− 1

2 ·
n−k
∑

i=1

h∗
ii

1 + 2λit
dt (10)

where h∗
ii are the diagonal elements of matrix H = P′AP with A = Ω′ 1

2M1
2
(V+V′)MΩ

1

2 , and

P is the matrix of the normalized eigenvectors of matrix B = Ω′ 1
2MΩ

1

2 , the eigenvalues and
their associated eigenvectors are re-sequenced so that 0 < λ1 ≤ λ2 ≤ ... ≤ λn−k. The variance
of I under the alternative is given by

Var[I|HA] = E[I2|HA]− E[I|HA]
2 (11)

where

E[I2|HA] =

∫ ∞

0

[

n−k
∏

i=1

(1 + 2λit)
− 1

2

]

·
[

n−k
∑

i=1

n−k
∑

j=1

h∗
iih

∗
jj + 2(h∗

ij)
2

(1 + 2λit)(1 + 2λjt)

]

t dt (12)

and E[I|HA] is given in equation (10). The upper truncation points for the integrals can be ap-
proximated by a formula given by De Gooijer (1980). Following him leads to an approximation
of the upper bound for the expected value (10) of

[

(n− k)hmax

2λ
n−k

2

1

(

n− k

2
− 1

)

1

ε

] 1

n−k
2
−1

= τ1 (13)

where hmax is the biggest absolute value of the elements of the diagonal of matrix H. An
approximation of the upper bound for E[I2|HA], (12), is

[

3(n− k)2h
(2)
max

(2λ1)
n−k

2

(

n− k

2
− 2

)

1

ε

] 1

n−k
2
−2

= τ2 (14)

with h
(2)
max denoting the biggest absolute value of the elements of matrix H. Tiefelsdorf (2000)

suggests to use 1
n−k

∑n−k

i=1 λi instead of λ1. The calculations of (10) and (12) are based on
a GAUSS-code implemented by M. Tiefelsdorf and the results were checked with a code in
Mathematica programm implemented by the authors.

3 Optimal Design Considerations

3.1 A Criterion

In both cases, where a linear regression model is estimated and the corresponding residuals are
used to calculate Moran’s I test, the aim, whether to accept or reject the null hypothesis of
no spatial autocorrelation in the error term, depends on the true data generating process.
As the true process is unknown, a general design criterion Ψ (which does not depend on
the knowledge of the true data generating process), is needed. The aim is to minimize the
probability that, given the alternative, the Moran’s I test accepts the null hypothesis of no
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spatial autocorrelation. The test statistic Z = I−E(I|H0)√
Var(I|H0)

is asymptotically normally distributed,
and therefore the aim is:

minHA
P

(

I − E(I|H0)
√

Var(I|H0)
≤ Φ−1(1− α)

)

This leads to
minHA

P
(

I ≤ Φ−1(1− α)
√

Var(I|H0) + E(I|H0)
)

Using the z-transformation for I under the alternative gives I−E[I|HA]√
Var[I|HA]

which is also asymp-

totically standard normal distributed. The final criterion to be maximized is therefore given
by

Ψ(ξ) = 1− Φ

(

Φ−1(1− α)
√

Var[I|H0] + E[I|H0]− E[I|HA]
√

Var[I|HA]

)

(15)

where Φ denotes the cdf of the standard normal distribution. The maximization of Ψ over
ξ ∈ S gives the final optimal locations of the observations and thus maximizes the power of
the Moran’s I test. To calculate Ψ, the expected value (6) and the variance (7) of I under the
null hypothesis, and the expected value (10) and the variance (11) of I under the alternative
hypothesis are needed. For the calculation of E[I|HA] and Var[I|HA] one has to assume a
particular spatial process.

Unfortunately the given criterion is not convex and thus we can not employ the well devel-
oped optimum design theory (cf. Silvey, 1980) but must resort to algorithmic approaches.

3.2 Design Algorithms

Full enumeration

Evidently, the global optimal design can be found by evaluating all possible designs, i.e. in an
m-point grid there are

(

m

r

)

possible r-point designs, r goes from 4+ k+ 1 to m, where k is the
number of the regressors in the model. This minimum number of points in a design follows from
the approximation of the upper truncation points for the integrals (13) and (14). The number
of possible designs increases very fast with the size of the grid. This leads to a high runtime, as
the numerical integration needs some time. From this point of view it is worth to notice that
not all possible designs are different in the sense that they have different criterion values. Some
of the r-point designs are only rotations, reflections or translations of other r-point designs, and
therefore give the same value of the criterion Ψ. A detailed discussion of this properties can be
found in Appendix B. We call the respective designs ’symmetric’. To avoid calculating Ψ for
those designs which are known to be symmetric to others, an appropriate symmetry check can
be done before the computation of Ψ. From formula (10) and (12) it can be seen, that designs
give the same Ψ if the absolute value of the elements of the lower triangular matrix of H, and
vector λ are the same. For illustration of this problem assume a regular 9-point grid, and the
model is a regression on the intercept. The number of all possible 8-point designs is

(

9
8

)

= 9,
they are illustrated here:
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Some of them are rotations or reflections of other, really different are only the following three
designs. All others have the same values |hij| and λ and therefore the same Ψ like one of these
three:

t

t

t

t

t

t

t

t

Design 1

t

t

t

t

t

t

t

t

Design 2

t

t

t

t

t

t

t

t

Design 5

For evaluating Ψ two integrals are needed, one for the expected value (10) and an additional
one for the variance under the alternative (12). Ignoring symmetric designs means there is only
need to compute 2 · 3 = 6 numerical integrals instead of 2 · 9 = 18.
The implementation of this symmetry check improves the runtime of the algorithm as the cal-
culations of the numeric integrals (10) and (11) take quite a long time. A further advantage is,
that the number of the ’really’ different designs, different in the sense of non-symmetric, can
be counted. A disadvantage is the high memory capacity needed for the symmetry check.
Nevertheless, the number of non-symmetric designs, that have to be evaluated, becomes large
if the number of points in the grid increases, e.g. in an intercept regression model on a 25-point
grid there are 1081575 different 17-point designs and still 108963 are non-symmetric. The
complete evaluation of all ’really’ different designs can only be done for very small grids and
therefore is not relevant for practical use.

Simple search algorithm

A possibility for finding a ’nearly’ optimal design is the use of a simple search algorithm. This
algorithm is much faster than the full enumeration algorithm as for the r-point design the num-
ber of evaluated (r − 1)-point designs is r. This algorithm can also be done in an acceptable
time for quite large grids. The procedure is quite simple:

1. Start with a initial design ξ0 = S, called ’base’ design. Thus in the first iteration the
number of points r in ξ0 is m.

2. Delete each point, one at a time, to get (r − 1) designs ξe, and compute Ψe. The
symmetries can be checked before the criterion is calculated.

3. Take the best (r−1) design ξe, i.e. the design with the largest Ψe, and put it as new base
design.

Go to step 2.

The algorithm stops if r = (4+k+1). The r-point design that gives the largest Ψ is the ’nearly’
optimal one. The disadvantage of this algorithm is, that once a r-point design is chosen, all
smaller r − i point designs are restricted to this set of points, it can happen quite easily that
one is trapped in a local maximum. To avoid this one could employ alternatively methods of
stochastic optimization such as in Haines (1987).

Fedorov exchange algorithm

As an alternative and sort of compromise, we suggest an exchange type algorithm based on
Fedorov (1972). The ’nearly’ optimal r-point design, when equal points in the design are
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not allowed, is found via an exchange type procedure. The aim is to improve the design by
exchanging points from it, one at a time, as follows:

1. Start with an initial r-point design, ξ0 = {s1, . . . sr}, the points are chosen at random
and should be different. Compute the design criterion Ψ0 for the initial design.

2. Take one point si from ξ0 (we call it ’base’ design) and exchange it with a point not
in ξ0 - these points are called candidate points, the set of all candidate points is ξc =
{S|ξ0} = {sr+1, . . . sm}. Do this for all candidate points in ξc and all points in the base
design ξ0 and compute Ψe for each different combination (design). Before the criterion is
computed, the symmetry check based on diag(H) and λ can be done.

3. Get the best r-point design (ξe), i.e. the design with the largest Ψe, from the previous
exchange step and put it as new base design ξ0.

Go to step 2.

The algorithm stops if there is no further improvement in the criterion, i.e. if Ψe is worse
than Ψ of the base design. In this way ’nearly’ optimal r-point designs are computed for
r = 4 + k + 1, ...,m, the overall best design is the best one of all r-point designs found by the
algorithm. A refinement of this algorithm, which could be useful also in our context is the
so-called coordinate exchange algorithm by Meyer and Nachtsheim (1995).

Algorithms that evaluate many different designs, like the ones given here, which are chosen
by random and/ or via exchanging points, will most probably also lead to designs with far-off
objects (see the discussion in section 2). In case of designs with far-off observations, excluding
the far-off treatment (e) can make an algorithm much faster, designs which include far-off ob-
jects do not have to be evaluated because they give the same criterion value as the ones without
this far-off point. In the following treatment (s), which leads to a more conservative test, is
used.

4 Examples

4.1 Artificial Data set

We estimate an OLS regression model with i.i.d. error terms. The OLS residuals are used
to calculate Moran’s I and its expected values and variances under the null and under the
alternative, see (2), (6), (7), (10) and (11), which are needed for evaluating the design criterion
Ψ (15). The best design is the one with the largest Ψ:

ξ∗ = argmax
ξ∈S

Ψ(ξ) (16)

Since Φ is a monotonous function we need to minimize its argument only, for computational
simplicity. The observations are taken on a regular 25-point grid [−1; 1]2. All three algorithms
described in the previous section were used. The null hypothesis is spatial independence, the
alternative hypothesis is spatial dependence with a spatial autoregressive parameter ρ = 0.5.
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4.1.1 Regression on Intercept

The considered model is a regression of y on an intercept: y = 1nβ + ε. We assume that
all observations derive from different locations. The full 25-point design (with numbering of
points) is simply:
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t
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t

t

t

t

t

t

t

t

t

t

t

t

t

t

The spatial link matrixVc is a row-standardized contiguity matrix (based on Queen’s criterion),
neighbours of point number i are given in row i, the spatial link matrixVd is a row-standardized
distance matrix based on (1) with parameter δ = 5.76, this setting gives the same criterion
value for the full design. The correlation structure with corresponding exponential function is
displayed in Figure 2.

Vc =















0 0.33 0 · · · 0
0.20 0 0.20 · · · 0
0 0.20 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0















,Vd =



















0 0.402 0.023 0.001 · · · 0.000
0.262 0 0.262 0.015 · · · 0.000
0.014 0.256 0 0.256 · · · 0.000
0.001 0.015 0.262 0 · · · 0.000

...
...

...
...

. . .
...

0.000 0.000 0.000 0.000 · · · 0



















Figure 2: Correlation for 25 point grid
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Simple Search Algorithm: Executing the Simple Search algorithm gives, for a distance
based spatial link matrix, a 16-point design with four points in each corner as the best one (Ψ =
0.603). Using a neighbourhood matrix leads to the same ’optimal’ design (with Ψ = 0.659).
Fedorov exchange algorithm: Running the Fedorov exchange algorithm for this example

finds the same best design when the spatial link matrix is based on a distance matrix (Ψ =
0.603). For the neighbourhood-based spatial link matrix a 12-point design is the best one
(Ψ = 0.720):

t

t

t

t

t

t

t

t

t

t

t

t

Contiguity

12-point design
E[I|H0] = −0.091
Var[I|H0] = 0.153
E[I|HA] = 0.692
Var[I|HA] = 0.058
Ψ = 0.720 t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

Distance

16-point design
E[I|H0] = −0.067
Var[I|H0] = 0.037
E[I|HA] = 0.318
Var[I|HA] = 0.067
Ψ = 0.603

The development of the ’nearly’ optimal designs found by the search- and the exchange
algorithm can be seen in Figure 3.

Figure 3: 25-Point grid, simple search & exchange algorithm, contiguity and distance matrices

4.1.2 Linear Trend Model

Let the considered model be a regression of y on an intercept and on the horizontal s1- and
vertical s2 coordinates of the observations: y = 1nβ0 + s1β1 + s2β2 + ε. For this example
again the artificial dataset was used and the simple search and the Fedorov exchange algorithm
were executed for both a distance based and a neighbourhood based spatial link matrix with
parameters ρ = 0.5 and for the distance based link matrix parameter δ = 0.543 respectively.
Here the best designs (12 points) coincide, the criteria are different, for the contiguity matrix
Ψ = 0.625 whereas for the distance matrix Ψ = 0.462.
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t

t

t

t

t

t

t

Contiguity

12-point design
E[I|H0] = −0.306
Var[I|H0] = 0.126
E[I|H1] = 0.333
Var[I|H1] = 0.157
Ψ = 0.625 t

t

t

t

t

t

t

t

t

t

t

t

Distance

12-point design
E[I|H0] = −0.298
Var[I|H0] = 0.102
E[I|H1] = 0.195
Var[I|H1] = 0.119
Ψ = 0.462

Figure 4: 25-Point grid, simple search & exchange algorithm, contiguity and distance matrices

4.2 Columbus Crime Data

Data for this example stem from the classical Columbus Crime dataset from Anselin (1988), see
section 1 and Figure 1. The spatial weight matrix V is the row-standardized neighbourhood
matrix, and the spatial autoregressive parameter ρ = 0.562, this value is the Maximum Likeli-
hood estimator of a linear regression model with a intercept, the two regressors and a spatially
dependent error term, for the estimation the contiguity matrix was used, see Anselin (1988).
The dependent variable ’crime’ is spatially autocorrelated with Moran’s I of 0.5109 which is
significant with z(I) = 5.675.

When we try to find the optimal design, we use the regression model with only an intercept.
The idea behind this approach is, that of course normally one looks for the design first, and
then data is collected on the corresponding locations, i.e. one does not know the values of the
regressors in the design generating process. Running the Fedorov exchange algorithm gives a
’best’ design with 29 locations with a criterion value Ψ = 0.983, see Figure 5, the dark grey
locations are the ones which were selected by both algorithms, and a Moran’s I = 0.417 and
z(I) = 1.914 which is significant on the 5%-level. The ’best’ design found by the simple search
algorithm is one with 31 locations with Ψ = 0.973, and I = 0.519 with z(I) = 2.705 which is
significant on the 1%-level. It is remarkable that the border regions are included in both cases.
The improvement over the full design is for both the Fedorov- and the simple search algorithm
22%. The values for design criteria Ψ for all different numbers of locations can be found in
Figure 6.
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Figure 5: Left: Simple search algorithm. Right: Fedorov exchange algorithm.

5 Conclusions

This new course of action combines the fields of optimal design theory and spatial analysis (via
the design criterion). It helps to select the best locations for an empirical analysis of spatial
data, especially if the data collecting process is expensive and/ or time-demanding, and there is
no or little knowledge about a potential spatial dependence. Using this procedure can lead not
only to more economic but also more efficient networks. The great generality of the approach
evidently allows improvements in many directions.

Thus, our suggestions for further work include the use of the exact distribution of Moran’s
I rather than the normal approximation; the development of more efficient numerical integra-
tion routines and search- or exchange algorithms (including heuristic techniques such as genetic
algorithms); more elaborate checks of symmetries of the designs for decreasing runtime. Fi-
nally, the implementation of other traditional criteria for checking spatial dependence might be
fruitful.

Acknowledgments

This paper was initiated during a research visit of Daniela Gumprecht and Werner G. Müller
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Figure 6: Columbus crime data, simple search- & exchange algorithm, contiguity matrix
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6 Appendix

6.1 Appendix A

Under the assumption that only one object (the first one) is far apart from all others, the
influence on Moran’s I can be easily derived. The far-off object affects the spatial link matrix,
according to the three treatments given above, three different weight matrices are relevant for
the calculation of Moran’s I. The unstandardized and symmetric spatial link matrix is denoted
by U, the row-standardized (nonsymmetric) weight matrix is denoted by V where vij =

uij
∑

j uij
,

and Q = 1
2
(V +V′), Q is used in Moran’s I, see (2).

In case (s), all n objects are taken into account:

U
(s)
n×n =















0 0 0 0 · · · 0
0 0 u23 u24 · · · u2n

0 u32 0 u34 · · · u3n
...

...
0 un2 un3 un4 · · · 0















,V
(s)
n×n =

















0 0 0 · · · 0
0 0 u23

∑n
j=2

u2j
· · · u2n

∑n
j=2

u2j

0 u32
∑n

j=2
u3j

0 · · · u3n
∑n

j=2
u3j

...
...

0 un2
∑n

j=2
unj

un3
∑n

j=2
unj

· · · 0

















.

In case (e), the far-off object is excluded, i.e. there are only (n− 1) design points left:

U
(e)
(n−1)×(n−1) =











0 u23 · · · u2n

u32 0 · · · u3n
...

...
un2 un3 · · · 0











,V
(e)
(n−1)×(n−1) =













0 u23
∑n

j=2
u2j

· · · u2n
∑n

j=2
u2j

u32
∑n

j=2
u3j

0 · · · u3n
∑n

j=2
u3j

...
...

un2
∑n

j=2
unj

un3
∑n

j=2
unj

· · · 0













.

In case (ν) again all n objects are included in the analysis, the row-standardized spatial weight
V(ν)∗ goes to V(ν) if ν → 0.

U
(ν)
n×n =















0 0 + ν · · · 0 + ν
0 + ν 0 · · · u2n + ν
0 + ν u32 + ν · · · u3n + ν

...
...

0 + ν un2 + ν · · · 0















,V
(ν)
n×n =

















0 1
(n−1)

1
(n−1)

· · · 1
(n−1)

0 0 u23
∑n

j=2
u2j

· · · u2n
∑n

j=2
u2j

0 u32
∑n

j=2
u3j

0 · · · u3n
∑n

j=2
u3j

...
...

0 un2
∑n

j=2
unj

un3
∑n

j=2
unj

· · · 0

















.

The corresponding matrices Q are written in the structure of block matrices to simplify the
comparison of the Moran’s I values for the treatments (s), (e) and (ν):
Case (s):

Q
(s)
n×n =















0 0 0 · · · 0
0 0 q23 · · · q2n

0 q32 0 · · · q3n
...

...
0 qn2 qn3 · · · 0















=





A1×1 : B1×(n−1)

.. ..
B′

(n−1)×1 : C(n−1)×(n−1)



 ,
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case(e):

Q
(e)
(n−1)×(n−1) =











0 q23 · · · q2n

q32 0 · · · q3n
...

...
qn2 qn3 · · · 0











= C(n−1)×(n−1),

case (ν):

Q
(ν)
n×n =

















0 1
2(n−1)

1
2(n−1)

· · · 1
2(n−1)

1
2(n−1)

0 q23 · · · q2n
1

2(n−1)
q32 0 · · · q3n

...
...

1
2(n−1)

qn2 qn3 · · · 0

















=







A1×1 : B
(ν)
1×(n−1)

.. ..

B
(ν)′
(n−1)×1 : C(n−1)×(n−1)






.

Now Moran’s I given in formula (2) can be written in block structure notation. Therefore the
vector of the residuals is partitioned into two blocks: ε̂n×1 = [ε̂1, ε̂2, . . . , ε̂n]

′ = [a′ : b′], where a
is simply the residuum ε̂1 of the far-off object and b is a (n− 1)× 1 vector of the residuals ε̂i
(i = 2, ..., n) of the ’well-behaved’ objects.

I =
ε̂′ 1

2
(V +V′)ε̂

ε̂′ε̂
=

ε̂′Qε̂

ε̂′ε̂
=

[a′ : b′]

(

A : B

B̈′ : C̈

)[

a

b̈

]

[a′ : b′]

[

a

b̈

] =
a′Aa+ b′B′a+ a′Bb+ b′Cb

a′a+ b′b

(17)
For the different treatments of the far-off object, the corresponding matrix Q is used in (17).
Case (s), the first element is separated, A = 0 and B is a vector of zeros, and Moran’s I is

I(s) =
b′Cb

a′a+ b′b
=

∑n

i=2

∑n

j=2 ε̂iε̂jqij
∑n

i=1 ε̂
2
i

. (18)

In case (e) the far-off object is excluded from the analysis and Moran’s I is given by

I(e) =
b′Cb

b′b
=

∑n

i=2

∑n

j=2 ε̂iε̂jqij
∑n

i=2 ε̂
2
i

. (19)

Finally case (ν), A = 0 but B =
[

1
2(n−1)

, . . . , 1
2(n−1)

]

, Moran’s I is given by

I(ν) =
b′B′a+ a′Bb+ b′Cb

a′a+ b′b
=

∑n

i=2

∑n

j=2 ε̂iε̂jqij −
ε̂2
1

n−1
∑n

i=1 ε̂
2
i

, (20)

because given that b′B′a = a′Bb = 1
2(n−1)

∑n

i=2 ε̂iε̂1, and
∑n

i=2 ε̂i = −ε̂1.

Now the Moran’s I values of the various treatments given in (18), (19) and (20) can be com-
pared. This gives relationship (4):

I(ν) ≤ I(s) ≤ I(e),

where equality holds only for ε̂1 = 0.
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6.2 Appendix B

A rotation of an angle θ (counter-clockwise) is given by the matrix

Rθ =

(

cos θ − sin θ
sin θ cos θ

)

For other hand, the basic reflection (respect to the y-axis) is given by

S0 =

(

−1 0
0 1

)

,

while a general reflection, in which the reflection axis goes through the origin and form an angle
θ with the y-axis, is represented by the matrix

Sθ =

(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)

Rotations and reflections are very related each other:

• the θ-angle rotation, Rθ, can be represented as the composition of two reflections with
reflection axis keeping an angle θ/2 between them

• the reflection Sθ is equivalent to first rotate an angle θ to convert the reflection axis in
the y-axis, then perform the basic reflection and finally undo the previous rotation; i.e.:
Sθ = RθS0R−θ

and they verify many nice properties. Especially interesting for our work are the following:

1. Both rotation and reflection matrices are orthogonal. Furthermore, the reflection matrix
is trivially idempotent. Orthogonality is essential for this paper since it means that
the transformation does not modify the matrix M =MX = I−X(X′X)−1X′: if R is a
rotation or reflection then R′ = R−1 and for Z′ = RX′ we have

MZ = I− Z(Z′Z)−1Z′ = I−XR(RX′XR)−1RX′ = I−X(X′X)−1X′ =MX

2. Both transformations maintain the distances between points as well as the contiguity,
thus they have no influence on the matrix V.

From the above properties it is clear that they do not modify the matrices Ω, B, P, A and
specially H, what means that they have no influence in the criterion function Ψ.

In fact not only rotations or reflections, but any movements of the design space verifying prop-
erties (1) and (2) do not modify the criterion function. There are even more transformations
giving equivalent designs (respect to the criterion function), for instance a transformation that
in general can move points out of the design space but that when applied to specific designs
keep all the points’s image in the design space, like some translations:

t

t

t

t

Design

t

t

t

t

Translation
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