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Abstract: In the present paper we provide a thorough study of small
sample and asymptotical comparisons of the efficiencies of equidistant
designs with taking into account both the parameters of trend θ, as well
as the parameters of covariance function r. We concentrate especially
to Ornstein-Uhlenbeck processes. If only trend parameters are of inter-
est, the designs covering more-less uniformly the whole design space are
rather efficient. We are showing that for all possible combinations of
parameters of interest, i.e. {θ}, {r} and {θ, r}, the interval over which
observations are to be made should be extended as far as possible. How-
ever doubling the number of observation points in a given interval, when
the only parameter θ is of interest and there are already a large number
of such points, gives practically no additional estimation information.
When {r} or {θ, r} are the sets of interest, doubling gives the double
information, which is also case of the D-optimal design for r tending
to 0. Finally we are proving analytically that n-point equidistant de-
sign for parameter θ is D-optimal. Such a result justifies the practise
of equidistantly measured returns derived from time series of stock ex-
change indexes.

Key words and phrases: D-optimal, efficiency, equidistant design, Ornstein-
Uhlenbeck process.

1 Introduction

In the present paper we consider the isotropic stationary process

Y (x) = θ + ε (x)

with the design points x1, ..., xN taken from a compact design space X = [0, l], l > 0.
The mean parameter E(Y (x)) := θ is unknown, the variance-covariance structure
C (d, r) depends on another unknown parameter r and d is the distance of a particu-
lar design points. Let us define 2γ(d) = Var (Y (s + d)− Y (s)) . The function 2γ(d)
is called variogram and γ(d) is called semivariogram (for more see Banerjee, Carlin
and Gelfand (2004, p. 22)). Such process is called in the literature also weak sta-
tionary (or second-order stationary), see Cressie (1993, p. 53). We assume that the
errors ε(x) are correlated and the correlation between two measurements depends
on the distance through the exponential semivariogram structure γ(d) = 1 − e−rd.
An exact design ξ = {x1, ..., xn} allows the experimenter to plan where to measure
the process to optimize a certain measure of variance of estimators. For optimal
design in spatial case see Müller (2001, Chap. 5). In this paper we consider entirely
1-dimensional design space.

We can find applications of various criteria of design optimality for second-order
models in the literature. Here we consider D-optimality, which corresponds to the
maximization of criteria function Φ(M) = det M, the determinant of a standard
Fisher information matrix. This method, ”plugged” from the widely developed
uncorrelated setup, is offering considerable potential for automatic implementa-
tion, although further development is needed before it can be applied routinely
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in practice. Theoretical justifications for using the Fisher information for D-optimal
designing under correlation can be found in Abt and Welch (1998) and Pázman
(2004). Abt and Welch (1998) considered a design space X = [0, 1] with the
correlation function of the form cov(Y (x), Y (x + d)) = σ2e−rd. They shown that
limn→+∞ (M−1(r, σ2))1,1 = 0 and limn→+∞ n (M−1(r, σ2))1,1 = 2(rσ2)2. These re-
sults obtained from the information matrix coincide with the variance of the asymp-
totic distribution of

√
n(r̂σ̂2 − rσ2) found in Ying (1993), based on approximations

of the log-likelihood function.
Zhu and Stein (2005) use the simulations (under Gaussian random field and

Matérn covariance) to study whether the inverse Fisher information matrix is a
reasonable approximation of the covariance matrix of maximal likelihood (ML) esti-
mators as well as a reasonable design criterion. For more references on the Fisher in-
formation as design criterion in the correlated setup see e.g. Stehĺık (2007). Therein
is studied the structure of the Fisher’s information matrices for stationary process.
Stehĺık (2007) showed that under the mild conditions given on covariance structures
the lower bound for Mθ(k) is an increasing function of the distances between the
design points. Particularly this supports the idea of increasing domain asymptotics.
If only trend parameters are of interest, the designs covering uniformly the whole
design space are very efficient. The similar observation has been made by recent
paper by Dette, Kunert and Pepelyshev in a more general framework. They proved
that if r → 0, then any exact n-point D-optimal design in the linear regression model
with exponential semivariogram converges to the equally spaced design. A recurring
topic in the recent literature is that uniform or equi-spaced designs perform well in
terms of model-robustness when a Bayesian approach is adopted, when the maxi-
mum bias is to be minimized or when the minimum power of the lack-of-fit test is
to be maximized (see Goos, Kobilinsky, O’Brien and Vandebroek (2005)). However,
the equidistant design is easy to construct in the case of a single experimental vari-
able. When more than one variable is involved in an experiment and the number
of observations available is small, it becomes much more difficult to construct these
type of designs. Uniform design is a kind of space-filling design whose applications
in industrial experiments, reliability testing and computer experiments is a novel
endeavor. The concept of uniform designs was introduced by Fang (1978) and has
now gained popularity and proven to be very successful in industrial applications
(see Pham (2006, Chap. 13)).

Hoel (1958) considered the weighted least square estimates and using the gener-
alized variance as criterion for the efficiency of estimation. Some results are obtained
on the increased efficiency arising from doubling the number of equally spaced obser-
vation points when the total interval is fixed or when it is doubled. The asymptotical
comparison is made for three cases of covariance structures. As is pointed out the
asymptotic measures of estimation efficiency obtained may not be very realistic for
small samples. However, Hoel (1958) is considering the only trend parameters as
the parameters of interest. In principle one can identify two sets of parameters
of interest: one describing the trend and the second one describing the covariance
functions.

In the present paper we provide a thorough study of small sample and asymp-
totical comparisons of the efficiencies with taking into account both the parameters
of trend as well as the parameters of covariance function. We will demonstrate the
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substantial differences between the cases when only trend parameters are of inter-
ests and when the whole parameter set is of interest. The paper is organized as
follows. In the section 2 the recurrent relations for the Fisher information Mθ(n)
about the trend parameter θ and for the Fisher information Mr(n) about the co-
variance parameter r are derived. These formulas are used to establish the small
and large sample comparisons of the efficiencies. In the section 3 D-optimal designs
are derived. Therein we are proving that an equidistant design is D-optimal for the
trend parameter θ. To maintain the continuity of the explanation the proofs are
included into the Appendix.

2 Equidistant designs

2.1 Recurrent relations for Mθ(n) and Mr(n)

In the proposed model we have Fisher information matrices

Mθ(n) = 1T C−1 (r) 1

and (see Pázman (2004) and Xia, Miranda and Gelfand (2006))

Mr(n) =
1

2
tr

{
C−1 (r)

∂C (r)

∂r
C−1 (r)

∂C (r)

∂rT

}
.

So for both parameters of interest we have M(n) (θ, r) =

(
Mθ(n) 0

0 Mr(n)

)
.

Theorem 1 Let us consider an equidistant n-point design with d = xi+1− xi. Then

Mθ(n) =
2− n + nerd

1 + erd

and

(n− 1)Mr(2) = Mr(n), Mr(2) = d2 e2rd + 1

(e2rd − 1)2
(1)

holds. The D-criterion Φ(M) = det M for both parameters r, θ has the form

Φn(M) =
(n− 1)(nerd + 2− n)d2(1 + e2rd)

(1 + erd)(e2rd − 1)2
.

One can find a nice geometrical interpretation of (1) firstly proposed as conjecture
in Stehĺık (2006). Let us imagine that design points (vertexes) are connected with
edges and constitute a simple tree (from Graph Theory, see e.g. Foulds (1992, Chap.
3)), such that all vertices besides the first one and the last one have the degree two.
Then adding another design point adds one edge. So the information relation (1)
has a direct graphical representation and interpretation. However, we did not find
any simple interpretation of behavior of the ratios Mθ(n)

Mθ(n−1)
and Φn(M)

Φn−1(M)
. We see, that

for r → 0 we have
Φn(M)

Φn−1(M)
=

n− 1

n− 2
=

Mr(n)

Mr(n− 1)
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and Mθ(n)
Mθ(n−1)

= 1. This supports the observed fact that the D-optimal designs are
mainly influenced by the parameters of covariance functions, at least when the trend
has a linear form. In fact, the limit r → 0 is modeling the maximally correlated
case and Dette, Kunert and Pepelyshev (see Theorem 3.6 therein) were proved that
in such a case the exact n-point D-optimal design in the linear regression model
with exponential covariance converges to the equally spaced design. For d → +0 we
obtain the same behavior.

When n → +∞ we obtain the intuitive convergence of all three fractions to 1,
since no more information is added in these cases by additional observation when
the number of observations becomes infinite.

We can see the limits of increasing domain asymptotics under the equidistant
design for d → +∞. The highest rate of increase of information has Φn(M),

Φn(M)

Φn−1(M)
=

n

n− 2
,

since the both information on θ and r are increasing with n,

Mr(n)

Mr(n− 1)
=

n− 1

n− 2
,

Mθ(n)

Mθ(n− 1)
=

n

n− 1
.

The interesting feature of the estimation of both of the parameters {θ, r} is that
there exist D-optimal equidistant design with finite d? > 0 when n > 3. This is
not a case when the only r is estimated parameter, since the function d → Mr(2)
is strictly decreasing and thus the D-optimal design is collapsing. However for
n = 2, 3 the collapsing should be compensated by a so called nugget effect (see
Stehĺık, Rodŕıguez-Dı́az, Müller and López-Fidalgo). The following Theorem gives
the procedure how to compute the D-optimal distance d? numerically when n > 3.
Theorem 2 In the case when both parameters θ, r are of interest and n > 3, the
D-optimal distance d? > 0 is the positive solution of the equation

−rd =
−e−5rd(n− 2) + ne−4rd − e−rd(2− n)− n

e−4rd(n− 1) + e−3rd(7− 4n) + e−2rd(4n− 1) + e−rd(3− 2n) + n
. (2)

2.2 Comparisons of equally spaced designs

Hoel (1958) provided asymptotical comparisons made for equally spaced sets of
points. The sets of points that he selected for consideration were the following:

(a) n equally spaced points in the interval (0, l)
(b) 2n equally spaced points in the interval (0, l)
(c) 2n equally spaced points in the interval (0, 2l)
(d) two sets of observations of type (a)
A comparison of the relative advantage of choices (b), (c) and (d) over (a) were

made by comparing their generalized variances. Letting d denote the interval length
between the consecutive x values, i.e. d = xi+1−xi, these generalized variances will
be denoted by M−1

θ (n, d), M−1
θ (2n, d/2),M−1

θ (2n, d) and M−1
θ (2 runs), respectively.

For comparison purposes we use the ratios introduced by Hoel (1958), i.e. in our
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notation they are:

R1 =

[
M(n, d)

M(2n, d/2)

]−1

R2 =

[
M(n, d)

M(2n, d)

]−1

R3 =

[
M(n, d)

M(m runs)

]−1

.

These ratios are used in the three cases,
(A) when the only trend parameter θ is estimated
(B) when the only correlation parameter r is estimated
(C) when the both parameters (θ, r) are estimated. Thus the ratios are denoted

by Ri(θ), Ri(r) and Ri(θ, r), respectively. We denote by R∗
i (θ), R

∗
i (r), R

∗
i (θ, r) the

limits of Ri(θ), Ri(r) and Ri(θ, r) for n → +∞.
The comparison of efficiencies is in a good coherence with two main current

asymptotical frameworks, increasing domain asymptotics and infill asymptotics, for
obtaining limiting distributions of maximum likelihood estimators of covariance pa-
rameters in Gaussian spatial models with or without a nugget effect. These limit-
ing distributions differ in some cases. Zhang and Zimmerman (2005) have investi-
gated the quality of these approximations both theoretically and empirically. They
have found, that for certain consistently estimable parameters of exponential co-
variograms approximations corresponding to these two frameworks perform about
equally well. For those parameters that cannot be estimated consistently, however,
the infill asymptotics is preferable. They have also observed, that the Fisher in-
formation appears to be a compromise between the infill asymptotic variance and
the increasing domain asymptotic variance. For exponential variogram some infill
asymptotic justification can be found in Zhang and Zimmerman (2005). In our
comparison, doubling the design points in the fixed-length interval corresponds to
the infill asymptotics whereas doubling the design points with the fixed neighbor
distances corresponds to the increasing domain asymptotics.
Theorem 3 We have

R1(θ) =
(1 + erd)

(1 + e
rd
2 )

(2 + 2n(−1 + e
rd
2 ))

(2 + n(−1 + erd))
, R∗

1(θ) =
2(1 + erd)

(1 + e
rd
2 )2

. (3)

R2(θ) =
2(1− n + nerd)

2− n + nerd
, R∗

2(θ) = 2. (4)

R1(r) =
(2n− 1)(1 + e−rd)3

4(n− 1)(1 + e−2rd)e−rd
, R∗

1(r) =
(1 + erd)3

2(1 + e2rd)
. (5)

R2(r) =
2n− 1

n− 1
, R∗

2(r) = 2. (6)
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R1(θ, r) =
(2n− 1)(1 + e−rd)3(1− n + ne

rd
2 )(1 + erd)

2(n− 1)(1 + e−2rd)(1 + e
rd
2 )e−rd(2− n + nerd)

, (7)

R∗
1(θ, r) =

(1 + erd)4

e3rd + 2e
5rd
2 + e2rd + erd + 2e

rd
2 + 1

. (8)

R2(θ, r) =
(2− n + nerd)(n− 1)

(1− n + nerd)(2n− 1)
, R∗

2(θ, r) = 4. (9)

Results (3) and (4) correspond to the results in Hoel (1958, p. 1141). For
instance, considering the numerical value e−rd = 0.64 (i.e. correlation coefficient
between neighboring y values is 0.64) we have R∗

1(θ) = 1.01. Thus doubling the
number of observation points in a given interval, when the only parameter θ is of
interest and there are already a large number of such points, gives practically no
additional estimation information, which is in accord with the conclusions of Hoel
(1958). However, doubling the number of observation points in a given interval
gives two times higher information in the case when r or {θ, r} are the parameters
of interest and r → +0, since R∗

1(r) = R∗
1(θ, r) → 2 for r → +0. This is the case when

any exact n-point D-optimal design in the linear regression model with exponential
semivariogram converges to the equally spaced design. Thus we can conclude that
also for the D-optimal design (for r → +0) doubling the number of observation
points in a given interval gives a double information. The value of R∗

2(θ) shows that
the same asymptotic efficiency is gained here as in the case of uncorrelated variables.
It is clear, that for all possible combinations of parameters of interest, i.e. {θ}, {r}
and {θ, r}, the interval over which observations are to be made should be extended
as far as possible, since R∗

2(θ) = R∗
2(r) = 2 and R∗

2(θ, r) = 4.
Let us derive the limits of increasing domain asymptotics under the equidistant

design for d → +∞. We have

lim
d→+∞

R∗
1(θ) = lim

d→+∞
R1(θ) = lim

d→+∞
R∗

2(θ) = lim
d→+∞

R2(θ) = 2

which again justifies that the interval over which observations are to be made should
be extended as far as possible.

3 D-optimal designs

The information matrix Mθ(2) has the form 2erd

1+erd and this is increasing function of
d. Thus the optimal design is the maximal distant. If we consider three-point-design
in Stehĺık (2004) is proved, that the design {−1, 0, 1} is D-optimal, when the design
space is [−1, 1]. However the proof is more general and actually is proving that for
general design space [a, b] is an equidistant three point design D-optimal. Let us con-
sider 4-point design. Employing the exchange algorithm Stehĺık (2004) has checked
that the D-optimum design is the equidistant one (on the design space [−1, 1]) and
the D-optimum design information is M = 1.964538. Due to the knowledge of the
analytical form of the information one can employ also Lipschitz and continuous
optimization (see Horst and Tuy (1996)), which can be implemented like a net-
searching algorithm. The only problem of such an algorithm is its time complexity.
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The Fisher information in the case of 5-point design has much more complicated
form and can be found in Stehĺık (2006). Therein we have computationally obtained
that the D-optimal design is equidistant with d1 = d2 = d3 = d4 = 1/2 and has
information M = 1.979674635 (note, that information is increasing with number of
design points). The following theorem provides analytical verification of obtained
numerical observations.
Theorem 4 The equidistant design for parameter θ is D-optimal.

This theorem is extension of the Theorem 3.6 in Dette, Kunert and Pepelyshev.
Therein is proved, that for r → 0 the exact n-point D-optimal design in the linear
regression model with exponential covariance converges to the equally spaced design.
Acknowledgment This work was supported by WTZ project Nr. 04/2006 and
by ASO project No. SK-0607-BA-018. Authors are grateful to Werner G. Müller
for helpful comments during the preparation of the paper.

4 Appendix

Proof of Theorem 1 The covariance matrix and its inverse have the forms (here
x = e−rd, see also Hoel (1958, p. 1140)

C(n, r) =




1 x x2 . . . xn−1

x 1 x . . . xn−2

...
...

...
...

xn−1 xn−2 xn−3 . . . 1


 ,

C(n, r)−1 =
1

1− x2




1 −x 0 . . . 0 0
−x 1 + x2 −x . . . 0 0
...

...
...

...
...

0 0 0 . . . −x 1


 .

Furthermore, we have

∂C(n, r)

∂r
=




0 −xd −2x2d . . . (1− n)xn−1d
−xd 0 −xd . . . (2− n)xn−2d

...
...

...
...

(1− n)xn−1d (2− n)xn−2d (3− n)xn−3d . . . 0


 .

Finally we have

Mr(n) = (n− 1)d2 e2rd + 1

(e2rd − 1)2
= (n− 1)Mr(2),

since Mr(2) = d2 e2rd+1
(e2rd−1)2

(see Stehĺık (2007)) and

Mθ(n) = 1T C−1 (n, r) 1 =
2− n + nerd

1 + erd
.

¤
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Proof of Theorem 2 Let us have n = 2. Then in Stehĺık (2004) is proved
that the two-point design for both parameters θ, r is collapsing, i.e. the maximal
information is gained for d = 0.

Let us consider n = 3. Then

∂Mr,θ(3)

∂d
=
−4d

(
rd

[
3e5rd − 3e4rd + 11e3rd − 5e2rd + 2erd

]− 3e5rd + 3erd + e4rd − 1
)

(1 + erd)(e2rd − 1)3
.

Thus we have to solve 4d = 0 or

rd
[
3e5rd − 3e4rd + 11e3rd − 5e2rd + 2erd

]− 3e5rd + 3erd + e4rd − 1 = 0.

We have the only solution d = 0.
Finally, let us consider n > 3. For all r > 0 is the function d → det M(n)(θ, r)

continuous and differentiable at (0, +∞). Let us consider the solutions

d ∈ [0, +∞) :
∂ det M(n)(θ, r)

∂d
=

2(n− 1)de−rdV (d)

(erd + 1)2(e−2rd − 1)3
= 0. (1)

A thorough analysis of (1) shows, that there exist one trivial solution d = 0 and the
nontrivial d∗ ∈ (0, +∞) one, such that V (d∗) = 0. Finally we obtain the implicit
equation (2) to compute the d∗.

Now let us prove that there exist a non-trivial solution of implicit equation (2)
for each n > 3. Indeed, V (d) = rd− T (rd), where

T (x) =
(ex + 1)(ex − 1)(e2x + 1)(nex + 2− n)

ex
(
ne4x + e3x(3− 2n) + e2x(4n− 1) + ex(7− 4n) + n− 1)

) .

Thus V (x) is vanishing iff T (x) has a fixed point, or equivalently T (x)− x = 0. We
have T (0) = 0, T (x) is continuous and for all n > 3 we have limx→+∞−T (x) + x =
+∞. It is sufficient to find xn for every n > 3 such that −T (xn) + xn < 0. Let us
take xn = 0.1, n > 3. Then we have

−T (xn) + xn = −10−10 (0.1054993192 1018 n− 0.3319711520 1018)

0.128517221 109 n + 0.4782185045 1010
< 0

for n > 3. This completes the proof.
¤

Proof of Theorem 3 It is easy to see that R?
1(θ) = 2(1+erd)

(1+e
rd
2 )2

is strictly increasing

at d ∈ (0, +∞), and limd→0 R∗
1(θ) = limd→0 R1(θ) = 1.

We have limd→0 R2(θ) = 1, limd→+∞ R∗
2(θ) = limd→+∞ R2(θ) = 2.

We have limd→0 R1(r) = 2n−1
n−1

, limd→∞ R1(r) = ∞, limd→0 R∗
1(r) = 2, limd→∞ R∗

1(r) =
∞. The both functions, R1(r), R

∗
1(r) are strictly increasing at d ∈ (0, +∞).

Function R2(θ, r) is strictly increasing at d ∈ (0, +∞) and limd→∞ R2(θ, r) =
4n−2
n−1

, limd→0 R2(θ, r) = 2n−1
n−1

. We have limd→+∞ R1(θ, r) = limd→+∞ R∗
1(θ, r) = +∞.

¤
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Proof of Theorem 4
Let us consider n ≤ 5. Denote di = xi+1 − xi, qi = e−rdi . We have

C(n, r) =




1 q1 q1q2 q1q2q3 . . . . . .
∏n−1

i=1 qi

q1 1 q2 q2q3 . . . . . .
∏n−1

i=2 qi

q1q2 q2 1 q3 . . . . . .
∏n−1

i=3 qi

q1q2q3 q2q3 q3 1 . . . . . .
...

...
...

...
...

. . .
...

...
...

...
...

. . . qn−1∏n−1
i=1 qi

∏n−1
i=2 qi

∏n−1
i=3 qi . . . . . . qn−1 1




and

C(n, r)−1 =




1
1−q2

1

q1

q2
1−1

0 0 . . . . . . 0
q1

q2
1−1

V2
q2

q2
2−1

0 . . . . . . 0

0 q2

q2
2−1

V3
q3

q2
3−1

. . . . . . 0

0 0 q3

q2
3−1

V4 . . . . . .
...

...
...

...
...

. . .
...

...
...

...
... Vn−1

qn−1

q2
n−1−1

0 0 0 . . . . . . qn−1

q2
n−1−1

1
1−q2

n−1




,

where Vk =
1−q2

kq2
k−1

(q2
k−1)(q2

k−1−1)
, k = 2, . . . , n− 1. Thus we have

−Mθ(n) =
2q1 − 1

1− q2
1

+
−1

1− q2
n−1

−
n−1∑
i=2

[
2qi

q2
i − 1

+
1− q2

i q
2
i−1

(q2
i − 1)(q2

i−1 − 1)

]
.

The minus of gradient is

−∇Φθ(M) = (2/(q1 + 1)2, ..., 2/(qi + 1)2, .., 2/(qn−1 + 1)2).

Thus function Φθ(M) is increasing in all coordinates di with the same speed and the
maximum condition is di = l/(n − 1), where l is the length of the design interval.
The analysis of Hesse matrices under the optimality condition di = l/(n− 1) shows
that an equidistant design is the D-optimal for the parameter θ.
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