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Abstract

In this paper we consider several new estimators of the marginal likelihood
for complex non-Gaussian models which make use of the output of auxiliary
mixture sampling as developed in Frühwirth-Schnatter and Wagner (2006)
for count data and in Frühwirth-Schnatter and Frühwirth (2007) for binary
and multinomial data. One of these estimators is based on combining Chib’s
estimator (Chib, 1995) with data augmentation as in auxiliary mixture sam-
pling, while the other estimators are importance sampling and bridge sampling
based on constructing an unsupervised importance density from the output
of auxiliary mixture sampling. These estimators are applied to a logit regres-
sion model, to a Poisson regression model, to a binomial model with random
intercept, as well as to state space modeling of count data.

Keywords: auxiliary mixture sampling, Bayesian model selection, bridge sam-
pling, importance sampling, Markov chain Monte Carlo

1 Introduction

For an applied statistician, choosing an appropriate model from a class of candidate
models is a fundamental data analytical task. In a classical framework model selec-
tion problems are addressed either via hypothesis testing for nested models, or by
using information criteria such as the Akaike information criterion (Akaike, 1974)
or Schwarz’s criterion or BIC (Schwarz, 1978).

In a Bayesian setting model selection relies on the posterior probabilities of a
model given the data, see Bernardo and Smith (1994) as well as the recent rewiews
by Godsill (2001), Green (2003) and Kadane and Lazar (2004). More formally,
suppose there are K different models M1, . . . ,MK , which are candidates for having
generated the data y. Each of these models is assigned a prior probability p(Mk)
and the goal is to derive the posterior model probabilities p(Mk|y) for each model
Mk, k = 1, . . . , K.

There are basically two strategies to implement Bayesian model selection. Model
space MCMC methods directly sample from the discrete models space (M1, . . . ,MK)
by drawing jointly model indicators and parameters, using e.g. the reversible jump
MCMC algorithm (Green, 1995) or the stochastic variable selection approach (George
and McCulloch, 1993, 1997). A more classical strategy which dates back to Jeffreys
(1948) and Zellner (1971) determines the posterior model probabilities p(Mk|y) of
each model separately by using Bayes’ rule:

p(Mk|y) ∝ p(y|Mk)p(Mk),

where p(y|Mk) is the marginal likelihood for model Mk. The evaluation of the
marginal likelihood typically requires computation of high-dimensional integrals.
Let ϑk denote the parameter of model Mk then the marginal likelihood is given as

p(y|Mk) =

∫

Θk

p(y|ϑk)p(ϑk)dϑk, (1)

with p(ϑk) being the prior distribution of model parameter ϑk.
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An analytical solution to (1) exists only for conjugate problems like linear re-
gression models with normally distributed errors. For more complex, in particular
for non-Gaussian models, practical Bayesian model choice requires the use of a nu-
merical techniques to evaluate the marginal likelihood p(y|Mk).

In general, the computation of the marginal likelihood for complex statistical
models is a nontrivial integration problem. Marginal likelihoods have been estimated
using methods such as standard importance sampling (Zellner and Rossi, 1984), im-
portance sampling-based on mixture approximations (Frühwirth-Schnatter, 1995,
2004), Chib’s estimator (Chib, 1995; Chib and Jeliazkov, 2001), combining MCMC
simulations and asymptotic approximation (DiCiccio, Kass, Raftery, and Wasser-
man, 1997), and bridge sampling (Meng and Wong, 1996; Frühwirth-Schnatter,
2004). Han and Carlin (2001) provide a comparative review of MCMC methods
for computing Bayes factors and marginal likelihoods for model selection.

In this paper we consider several new estimators of the marginal likelihood for
complex non-Gaussian models which make use of the output of auxiliary mixture
sampling. Auxiliary mixture sampling is a simple MCMC method for estimating
a broad class of non-Gaussian models, developed in Frühwirth-Schnatter and Wag-
ner (2006) for count data and in Frühwirth-Schnatter and Frühwirth (2007) for
binary and multinomial data. One of these estimators is based on combining Chib’s
estimator (Chib, 1995) with data augmentation as in auxiliary mixture sampling,
while the other estimators are importance sampling and bridge sampling based on
constructing an unsupervised importance density as in Frühwirth-Schnatter (1995,
2004). These estimators are applied to logit regression models, Poisson regression
models, binomial models with random intercept, as well as to state space modeling
of count data.

2 Non-Gaussian Fixed Parameter Models

An important non-Gaussian fixed parameter model is the generalized linear model,
see e.g. Dey, Ghosh, and Mallick (2000). An analytical expression for the marginal
likelihood (1) exists only for very restricted non-Gaussian models, like observing iid
observations from a Poisson, binomial or multinomial distribution. For more inter-
esting models the posterior distribution p(ϑk|y) ∝ p(y|ϑk)p(ϑk) does not belong to
a well-known distribution family, making analytical integration in (1) unfeasible.

2.1 Estimating the Marginal Likelihood

2.1.1 Chib’s Estimator

In Chib (1995) the marginal likelihood is written as

p(y|Mk) =
p(y|ϑk)p(ϑk)

p(ϑk|y)
, (2)

which is known as the basic marginal likelihood equation. It is evaluated at a high
density point ϑ∗k to obtain an estimator of p(y|Mk):

p̂CH(y|Mk) =
p(y|ϑ∗k)p(ϑ∗k)

p̂(ϑ∗k|y)
. (3)
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As for many non-Gaussian fixed parameter models both the prior ordinate p(ϑk)
and the likelihood p(y|ϑk) are easy to calculate, the application of Chib’s estimator
requires only an estimate p̂(ϑ∗k|y) of the posterior ordinate at the point ϑ∗k. Chib
(1995) demonstrates how the posterior ordinate p̂(ϑ∗k|y) may be estimated easily,
if the model is estimated by a Markov chain Monte Carlo (MCMC) method which
combines data augmentation and Gibbs sampling. For non-Gaussian models such a
simple MCMC scheme has been available only for probit regression models whereas
for other non-Gaussian models the Metropolis-Hastings algorithm is used and the
posterior ordinate is estimated as in Chib and Jeliazkov (2001).

Only recently, auxiliary mixture sampling became available which provides a
simple MCMC scheme based on data augmentation and Gibbs sampling for a much
broader class of complex non-Gaussian models, like models for count data (Frühwirth-
Schnatter and Wagner, 2006) and models for binary and multinomial data (Frühwirth-
Schnatter and Frühwirth, 2007). The idea of auxiliary mixture sampling is to intro-
duce a set of auxiliary variables zk, which allow the implementation of a two step
Gibbs sampler for fixed parameter models:

(a) Sample ϑk from p(ϑk|zk,y);

(b) sample zk from p(zk|ϑk,y).

In this scheme, the augmented density p(ϑk|zk,y) is of the same closed form as it
would be for a model based on the normal distribution. On the other hand, the
density p(zk|ϑk,y) takes a simple form which is easy to sample from.

The MCMC output of auxiliary mixture sampling is used to estimate the pos-
terior ordinate p̂(ϑ∗k|y) in Chib’s estimator (3). If z

(m)
k , m = 1, . . . , M denotes the

draws from auxiliary mixture sampling, an appropriate estimator is

p̂(ϑ∗k|y) =
1

M

M∑
m=1

p(ϑ∗k|z(m)
k ,y),

where p(ϑ∗k|z(m)
k ,y) is the closed form conditional density appearing in step (a) of

auxiliary mixture sampling and therefore easily evaluated.
The resulting combination of Chib’s estimator with auxiliary mixture sampling

provides a new estimator of the marginal likelihood p(y|Mk) for a non-Gaussian
fixed parameter model which is much easier to implement than the Metropolis-
Hastings based estimator of Chib and Jeliazkov (2001).

2.1.2 Importance Sampling

An alternative approximation of the marginal likelihood is obtained by applying
importance sampling to the integral (1):

p̂IS(y|Mk) =
1

L

L∑

l=1

p(y|ϑ(l)
k )p(ϑ

(l)
k )

q(ϑ
(l)
k )

, (4)

where ϑ
(l)
k , l = 1, . . . , L denote iid draws from an importance density q(ϑk).

3



Importance sampling may be combined with auxiliary mixture sampling in the
following way. The MCMC scheme underlying auxiliary mixture sampling provides
a useful way to construct the importance density in an unsupervised manner as
in Frühwirth-Schnatter (1995, 2004), by considering following mixture density con-
structed from a subsequence of the posterior draws:

q(ϑk) =
1

S

S∑

m′=1

p(ϑk|z(m′)
k ,y). (5)

Again, p(ϑk|z(m′)
k ,y) is the closed form conditional density appearing in step (a) of

auxiliary mixture sampling and therefore easily evaluated. This mixture importance
density automatically has high mass in regions of high posterior probability, because
q(ϑk) converges to the posterior density p(ϑk|y) as S →∞. On the other hand, the

evaluation of q(ϑk) requires S density evaluations for each draw ϑ
(l)
k and is more

expensive than standard importance sampling where the importance density q(ϑk)
is obtained from fitting an appropriate density like a Gaussian or a t-density to the
posteriors draws ϑ

(1)
k , . . . , ϑ

(M)
k obtained from auxiliary mixture sampling.

2.2 Application to Binary Logit Regression

2.2.1 Data and Modelling

For illustration we reanalyze the prostatic nodal involvement data considered in Chib
(1995), see also Collett (1991). The data were collected on N = 53 patients with
cancer of the prostate. The binary response variable yi, i = 1, . . . , N is coded 1, if the
cancer has spread to the surrounding lymph nodes and 0 otherwise. Explanatory
variables are the age of the patient at time of diagnosis (x1), level of serum acid
phosphate (x2), the outcome of an X-ray examination (x3), taking the value 1 if
positive and 0 otherwise, the size of the tumor (x4), coded 0 if small and 1 if large;
and the pathological grade of the tumor (x5), coded 0 if less serious and 1 if more
serious.

To demonstrate the computation of the marginal likelihood, we consider the
same models as in Chib (1995), however, substitute the probit by the logit link used
originally by Collett (1991):

Pr(yi = 1|αk,Mk) =
exp(xikαk)

1 + exp(xikαk)
, (6)

where αk is an unknown regression parameter and xik is a row vector containing
the regressors relevant for model Mk, including 1 for the intercept.

To pursue a Bayesian approach, we assume that apriori αk follows a normal dis-
tribution, N (a0,A0). Since the parameters in a probit model should be multiplied
by 1.6 to compare with them with the parameters in a logit model, we transform
the prior used in Chib (1995) to the logit scale, i.e. the mean of each parameter is
equal to 1.2 and the standard deviation is equal to 8.
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2.2.2 Auxiliary Mixture Sampling

Following Frühwirth-Schnatter and Frühwirth (2007) estimation of model (6) using
auxiliary mixture sampling is obtained in the following way1. Define for each i =
1, . . . , N , a latent utility ui such that

ui = xiα + εi, (7)

yi = 1, iff ui > ξi0,

where exp(−εi) and exp(−ξi0) are standard exponential random variables. Accord-
ing to McFadden (1974), model (7) is equivalent to the logit model (6), see also
Scott (2005). The distribution of εi is then approximated by a mixture of normal
distributions,

pε(εi) = exp{−εi − e−εi} ≈
10∑

ri=1

wri
fN(εi; mri

, s2
ri
). (8)

The quantities (wj,mj, s
2
j), j = 1, . . . , 10 are the parameters of the finite mixture

approximation tabulated in Frühwirth-Schnatter and Frühwirth (2007, Table 1).
Auxiliary mixture sampling is based on data augmentation by introducing the

auxiliary variables z = (z1, . . . , zN), where zi = (ui, ri). It is defined through fol-
lowing complete conditional densities

(a) Sample α from p(α|z,y) ∼ N (aN ,AN)-distribution, where

aN = AN

(
N∑

i=1

x
′
i(ui −mri

)/s2
ri

+ A−1
0 a0

)
, A−1

N = A−1
0 +

N∑
i=1

x
′
ixi/s

2
ri
.

(9)

(b) Sample the latent utility ui conditional on λi = exp(xiα) and yi as

ui = − log

(
− log(Ui)

1 + λi

− log(Vi)

λi

I{yi=0}

)
, (10)

where Ui and Vi are two independent uniform random numbers. Sample the
component indicator ri conditional on ui and λi from the following discrete
density:

Pr(ri = j|ui,α) ∝ wj

sj

exp

{
−1

2

(
ui − log λi −mj

sj

)2
}

. (11)

2.2.3 Marginal Likelihoods

We select the same combination of covariates as Chib (1995) yielding nine differ-
ent models, see also Table 1. For each model Mk, auxiliary mixture sampling was
run for M = 20000 draws after a burn-in of 5000 draws, yielding a sequence of

1The model index k is suppressed to simplify notation

5



Table 1: Marginal likelihoods for nodal involvement data based on the logit model
in comparison to the probit model (Chib, 1995)

k Model Mk log p̂CH(y|Mk) log p̂IS,1(y|Mk) log p̂IS,2(y|Mk) probit
1 c -37.60(.032) -37.61(.0003) -37.61(.0003) -38.503(.005)

-37.62(.034) -37.61(.0008) -37.61(.0008)
-37.57(.033) -37.61(.0005) -37.61(.0005)

2 c, x1 -41.412(.048) -41.443(.0005) -41.445(.0005) -43.175(.007)
-41.499(.048) -41.443(.0006) -41.443(.0006)
-41.444(.047) -41.445(.0009) -41.444(.0008)

3 c, log(x2) -35.806(.064) -35.829(.0013) -35.831(.0013) -37.916(.007)
-35.809(.062) -35.830(.0008) -35.829(.0008)
-35.807(.067) -35.827(.0013) -35.826(.0015)

4 c, x3 -33.459(.068) -33.512(.0013) -33.509(.0014) -35.323(.009)
-33.664(.062) -33.508(.0037) -33.510(.0013)
-33.703(.060) -33.510(.0021) -33.512(.0013)

5 c, x4 -35.435(.061) -35.476(.0012) -35.473(.0012) -37.234(.009)
-35.615(.063) -35.474(.0010) -35.473(.0011)
-35.487(.064) -35.473(.0010) -35.472(.0010)

6 c, x5 -37.212(.060) -37.229(.0012) -37.227(.0012) -39.075(.007)
-37.236(.059) -37.230(.0008) -37.229(.0009)
-37.164(.061) -37.228(.0011) -37.229(.0011)

7 c, log(x2), x4 -33.210(.105) -33.224(.0026) -33.222(.0030) -36.140(.013)
-33.225(.117) -33.227(.0015) -33.227(.0013)
-33.211(.121) -33.228(.0022) -33.228(.0019)

8 c, log(x2), x3, -30.946(.190) -30.720(.0045) -30.719(.0059) -34.553(.020)
x4 -30.622(.213) -30.730(.0023) -30.730(.0023)

-30.687(.207) -30.726(.0022) -30.729(.0019)
9 c, log(x2), x3, -31.316(.361) -31.440(.0022) -31.438(.0022) -36.233(.024)

x4, x5 -31.623(.372) -31.438(.0026) -31.432(.0036)
-32.073(.497) -31.437(.0022) -31.435(.0028)
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Figure 1: Posterior draws (including burn-in) obtained for the various components
of α = (α1, . . . , α4) for model M8

draws α
(1)
k , . . . , α

(M)
k for the unknown regression parameters. For illustration, Fig-

ure 1 shows for model M8 that the sampler is converging quickly to the stationary
distribution and mixing is pretty good.

To implement Chib’s estimator p̂CH(y|Mk), α∗
k is chosen as the average of all

draws α
(1)
k , . . . , α

(M)
k . The estimate of p(α∗

k|y) is

p̂(α∗
k|y) =

1

M

M∑
m=1

fN(α∗
k; a

(m)
N ,A

(m)
N ),

where a
(m)
N and A

(m)
N are the moments of the conditional normal distribution given

in (9).
To implement importance sampling, two different importance functions q(ϑk)

were considered. First, a multivariate normal distribution was fitted to the MCMC
draws of α

(m)
k . Second, an importance density based on the mixture approximation

(5) was chosen with S = 100 components yielding the estimators p̂IS,1(y|Mk) and
p̂IS,2(y|Mk). Importance sampling is based on 20000 draws from the importance
density.

Table 1 compares the different estimators of the marginal likelihood for the
various logit models. For each estimator, numerical standard errors where computed
as in Chib (1995). Additionally, estimation was carried out for three independent
runs to check stability. For both importance densities, importance sampling is very
accurate and more precise than Chib’s estimator, which tends to have quite large
standard errors for the larger models. Among all logit models considered, the same
combination of explanatory variables is chosen as in Chib (1995), namely log(x2), x3

and x4. A comparison with the marginal likelihood obtained for the probit model
in Chib (1995) yields that the Bayes factor favors the logit link over the probit link
quite clearly for each model.
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3 Non-Gaussian Latent Variable Models

Latent variable models provide a very flexible way of modelling complex data and
encompass important examples as random effects models (Verbeke and Molenberghs,
2000) and state space models (Durbin and Koopman, 2001). Computing marginal
likelihoods for latent variable models is a challenging task as it involves integration
over the latent variable βk and the model parameters ϑk, i.e. a high-dimensional
integration:

p(y|Mk) =

∫
p(y|βk,ϑk,Mk)p(βk|ϑk,Mk)p(ϑk|Mk)d(βk,ϑk). (12)

3.1 Auxiliary Mixture Sampling

Recently, auxiliary mixture sampling has been developed for MCMC estimation of
non-Gaussian models involving latent variables in Frühwirth-Schnatter and Wagner
(2006) for count data and in Frühwirth-Schnatter and Frühwirth (2007) for binary
and multinomial data. A set of auxiliary variables zk is introduced which allows the
implementation of a three step Gibbs sampler for many latent variable models:

(a) sample βk from p(βk|ϑk, zk,y);

(b) sample ϑk from p(ϑk|βk, zk,y);

(c) sample zk from p(zk|βk,ϑk,y);

where the augmented densities p(βk|ϑk, zk,y) and p(ϑk|βk, zk,y) are of the same
closed form as they would be for a model based on a normal rather than on a non-
Gaussian distribution. Again, the density p(zk|βk,ϑk,y) takes a very simple form.
As in Section 2 the output from auxiliary mixture sampling is used to estimate the
marginal likelihood.

3.2 Estimating the Marginal Likelihood

3.2.1 Chib’s Estimator

As for fixed parameter models, Chib’s estimator is based on identity (2):

p̂CH(y|Mk) =
p(y|ϑ∗k)p(ϑ∗k)

p̂(ϑ∗k|y)
. (13)

In the context of latent variable models, however, (13) is called the integrated
marginal likelihood equation because p(y|ϑk) is the likelihood function where the
latent variables βk are integrated out:

p(y|ϑk) =

∫
p(y|βk, ϑk,Mk)p(βk|ϑk,Mk)dβk. (14)

If a numerical value for p(y|ϑ∗k) is available, then (13) may be implemented as in
Subsection 2.1, by estimating p̂(ϑ∗k|y) by means of the draws obtained from auxiliary
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mixture sampling:

p̂(ϑ∗k|y) =
1

M

M∑
m=1

p(ϑ∗k|β(m)
k , z

(m)
k ,y), (15)

where p(ϑ∗k|β(m)
k , z

(m)
k ,y) is the conditional density appearing in step (b) of auxiliary

mixture sampling.
In general, the latent variables βk can analytically be integrated out in (14)

only for models which are based on the normal distribution. For non Gaussian
latent variable models, however, analytical integration is usually not feasible and
some numerical technique is required to determine the likelihood value p(y|ϑ∗k).
For models where the latent variables are conditionally independent given ϑk, like
random effect models, techniques like GH-integration (Frühwirth-Schnatter, 1997)
or importance sampling may be applied, see Subsection 3.3. For state space models
an approximation to p(y|ϑ∗k) is obtained by particle filtering as in Chib, Nardari, and
Shephard (2002) who face the same problem in the context of stochastic volatility
models, see Subsection 3.4.

3.2.2 The Complete-data Likelihood Estimator

To avoid the use of particle filtering or other sampling techniques to approximate
the integrated likelihood p(y|ϑ∗k), one might use a representation of the marginal
likelihood which is based on the complete data likelihood p(y|ϑk,βk):

p̂CDL(y|Mk) =
p(y|ϑ∗k,β∗k) p(β∗k|ϑ∗k)p(ϑ∗k)

p̂(ϑ∗k,β
∗
k|y)

. (16)

In contrast to the integrated likelihood p(y|ϑ∗k) appearing in (13), the complete-data
likelihood value p(y|ϑ∗k,β∗k) can be easily computed from the observation equation
of the latent variable model. In the context of latent variable models, (16) is called
the complete-data marginal likelihood equation.

The complete-data likelihood estimator p̂CDL(y|Mk) is easily implemented us-
ing auxiliary mixture sampling. By writing the joint posterior as p(ϑ∗k, β

∗
k|y) =

p(β∗k|ϑ∗k,y)p(ϑ∗k|y), (16) may be written as:

p̂CDL(y|Mk) =

(
p(y|ϑ∗k,β∗k) p(β∗k|ϑ∗k)

p̂(β∗k|ϑ∗k,y)

)
p(ϑ∗k)

p̂(ϑ∗k|y)
. (17)

The marginal posterior ordinate p̂(ϑ∗k|y) is estimated from the output of auxiliary
mixture sampling as in Subsection 3.2.1. To approximate the conditional posterior
ordinate p̂(β∗k|ϑ∗k,y) of the latent variables β∗k given ϑ∗k, reduced auxiliary mixture
sampling is performed with holding ϑk fixed at ϑ∗k:

(a’) Sample βk from p(βk|ϑ∗k, zk,y);

(c’) sample zk from p(zk|βk,ϑ
∗
k,y).

Reduced auxiliary mixture sampling leads to the following approximation of p̂(β∗k|ϑ∗k,y):

p̂(β∗k|ϑ∗k,y) =
1

M

M∑
m=1

p(β∗k|ϑ∗k, z(m)
k ,y). (18)
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While implementation of the complete-data likelihood estimator is straightforward,
the case studies in Subsection 3.3 and 3.4 demonstrate that this estimator is ex-
tremely inaccurate. By comparing (17) with (13), we find that the complete-data
likelihood estimator as that special case of Chib’s estimator (13) where the inte-
grated likelihood p(y|ϑ∗k) is represented by another marginal likelihood equation,
namely

p̂(y|ϑ∗k) =
p(y|ϑ∗k,βk) p(βk|ϑ∗k)

p̂(βk|ϑ∗k,y)
,

which is evaluated at the point β∗k. It turns out that this estimator of the inte-
grated likelihood p̂(y|ϑ∗k) is extremely unstable, causing high standard errors of the
complete-data likelihood estimator of the marginal likelihood.

3.2.3 Blocked Estimators

Both estimators can be extended to the case, where in step (b) of auxiliary mixture
sampling more than one block is needed to sample the model parameter. Assume
that in step (b) ϑ is divided in G blocks, ϑ = (ϑ1, . . . , ϑG), and in each block Gibbs
sampling of ϑg conditional on the remaining parameters is possible.2 In this case
the posterior ordinate p(ϑ∗|y) in (13) or (17) can be decomposed as in Chib (1995):

p(ϑ∗|y) = p(ϑ∗1|y)p(ϑ∗2|y, ϑ∗1) . . . p(ϑ∗G|y,ϑ∗1, . . . , ϑ
∗
G−1). (19)

Each term p(ϑ∗g|y,ϑ∗1, . . . , ϑ
∗
g−1) can estimated from the output of a separate re-

duced auxiliary mixture sampler, where the value of ϑi, i < g is set to ϑ∗i . If

(ϑ
(m)
g+1, . . . , ϑ

(m)
G , z(m)) denotes the draws from reduced auxiliary mixture sampling,

the estimate is

p̂(ϑ∗g|y,ϑ∗1, . . . , ϑ
∗
g−1) =

1

M

M∑
m=1

p(ϑ∗g|y,ϑ∗1, . . . , ϑ
∗
g−1,ϑ

(m)
g+1, . . . , ϑ

(m)
G , z(m)).

3.2.4 Importance Sampling and Bridge Sampling

A sampling based approximation to the marginal likelihood is obtained by applying
importance sampling to the integral (12). This method requires the choice of an
importance density q(βk, ϑk) which turns out to be quite a challenge. One way to
fit such a density is to separate the latent variables βk from the model parameters ϑk,
by selecting q(βk, ϑk) = q(βk)q(ϑk). The importance density q(βk) for the latent
variables βk is obtained by fitting an appropriate density to the MCMC draws

β
(1)
k , . . . , β

(M)
k obtained by auxiliary mixture sampling. Similarly, an appropriate

density could be fitted to the MCMC draws ϑ
(1)
k , . . . , ϑ

(M)
k of the model parameter.

Alternatively, the importance density q(ϑk) may be constructed in an unsupervised
manner from the conditional densities appearing in step (b).

Importance sampling may be unstable if the ratio of the nonnormalized posterior
density over the importance density is unbounded (Geweke, 1989). To reduce sensi-
tivity to the choice of the importance density, bridge sampling may be implemented

2Again, the model index k is suppressed to simplify notation
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(Meng and Wong, 1996; Frühwirth-Schnatter, 2004). Like importance sampling,
bridge sampling is based on an i.i.d. sample from an importance density, however,
this sample is combined with the MCMC draws from the posterior density in an
appropriate way. An important advantage of bridge sampling is that the variance
of the resulting estimator depends on a ratio that is bounded regardless of the tail
behavior of the underlying importance density (Frühwirth-Schnatter, 2004). This
allows far more flexibility in the construction of the importance density. For more
details on the practical implementation of bridge sampling we refer to Frühwirth-
Schnatter (2006, Section 5.4).

3.3 Application to Logit Regression with Random Effects

3.3.1 Data and Modelling

In this example, we reconsider the data given by Crowder (1978, Table 3) reporting
the number Yi of seeds that germinated among Ti seeds in N = 21 plates covered
with a certain root extract. Covariates are the type of root extract, x1 (bean or
cucumber) and the type of seed, x2 and the interaction term x1x2.

The data are modelled as in Breslow and Clayton (1993) and Gamerman (1997),
assuming that Yi is generated by a binomial distribution, where the dependence of
the success probability on the covariates xi is modelled through a logit transform:

Yi ∼ BiNom (Ti, πi) , (20)

log
πi

1− πi

= xikαk + γi, γi ∼ N (0, Q) .

αk is an unknown regression parameter and xik is a row vector containing the re-
gressors relevant for model Mk, including 1 for the intercept. The random intercept
γi has been added in Breslow and Clayton (1993) to capture overdispersion. In this
model, ϑk = (αk, Q) are unknown model parameters, whereas βk = (γ1, . . . , γN) are
the unknown latent variables.

Gamerman (1997) used a Metropolis-Hastings algorithm to estimate model (20)
and used the estimated posterior densities to explore significance of the various
covariates and the presence of unobserved heterogeneity. Here, we use marginal
likelihoods to perform covariate selection and testing for unobserved heterogeneity.
To make model comparison through marginal likelihoods feasible, the improper prior
p(αk, Q) ∝ 1/

√
Q used by Gamerman (1997) is substituted by the proper priors

αk ∼ N (a0,A0) and Q ∼ G−1 (c0, C0) where a0 = 0, A0 = I, c0 = 0.5 and
C0 = 0.2275.

3.3.2 Auxiliary Mixture Sampling

The binomial model (20) is estimated using auxiliary mixture sampling as in Frühwirth-
Schnatter and Frühwirth (2007)3. Any observation Yi from model (20) is equivalent
with observing Ti repeated measurements yit from a binary model with random
effects,

Pr(yit = 1|α) =
exp(xiα + γi)

1 + exp(xiα + γi)
, (21)

3Again, the model index k is suppressed to simplify notation

11



where

yit =

{
1, 1 ≤ t ≤ Yi,
0, Yi < t ≤ Ti.

Introducing for each i = 1, . . . , N and each t = 1, . . . , Ti, a latent utility uit such
that

uit = xiα + γi + εit, (22)

yit = 1, iff uit > ξit0,

where exp(−εit) and exp(−ξit0) are standard exponential random variables, is equiv-
alent to model (21) (McFadden, 1974). The distribution of εit is then approxi-
mated by a mixture of normal distributions as in (8) and the auxiliary variables
z = (z11, . . . , zN,TN

), where zit = (uit, rit), are introduced.
Auxiliary mixture sampling is defined through the following conditional densities

(Frühwirth-Schnatter and Frühwirth, 2007, Section 4.2):

(a) Sample γi for each i = 1, . . . , N from N (bi, Bi) where

bi = Bi

Ti∑
t=1

uit − xiα−mrit

s2
rit

, Bi = Q

(
1 + Q

Ti∑
t=1

1/s2
rit

)−1

. (23)

(b1) Sample Q from G−1
(
c0 + N/2, C0 + 1/2

∑N
i=1 γ2

i

)
;

(b2) Sample α from N (aN ,AN)-distribution, where

A−1
N = A−1

0 +
N∑

i=1

X
′
iV

−1
i Xi, aN = AN

(
A−1

0 a0 +
N∑

i=1

X
′
iV

−1
i (ui −mi)

)
,

V−1
i = Diag (f i)−Bif if

′
i,

and the Ti rows of Xi are equal to xi, ui = (ui1, . . . , ui,Ti
)
′
, mi = (mri1

, . . . , mri,Ti
)
′
,

and f i = (1/s2
ri1

, . . . , 1/s2
ri,Ti

)
′
.

(c) Sample the latent utility uit conditional on λi = exp(xiα + γi) and yit as

uit = − log

(
− log(Uit)

1 + λi

− log(Vit)

λi

I{yit=0}

)
, (24)

where Uit and Vit are two independent uniform random numbers. Sample the
component indicator rit conditional on uit and λi from the following discrete
density:

Pr(rit = j|uit,α) ∝ wj

sj

exp

{
−1

2

(
uit − log λi −mj

sj

)2
}

. (25)
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Figure 2: Posterior draws (including burn-in) obtained for Q for model M6

Table 2: Marginal likelihoods for the seed data

logit including unobserved heterogeneity
k Mk logit log p̂CH(y|Mk) log p̂CDL(y|Mk) log p̂IS(y|Mk) log p̂BS(y|Mk)
1 c -578.50 -555.77(0.016) -530.21(0.853) -555.85(0.041) -555.78(0.020)

-555.77(0.017) -526.44(0.536) -555.82(0.071) -555.80(0.020)
-555.76(0.017) -522.37(0.705) -555.81(0.076) -555.74(0.021)

2 c, x1 -553.11 -551.31(0.024) -538.47(0.948) -551.26(0.213) -551.35(0.024)
-551.31(0.023) -538.72(0.997) -551.47(0.060) -551.37(0.023)
-551.37(0.023) -542.20(0.996) -551.45(0.042) -551.37(0.025)

3 c, x2 -579.18 -556.06(0.017) -530.58(0.889) -556.17(0.104) -556.11(0.030)
-556.10(0.017) -543.53(0.998) -556.30(0.077) -556.15(0.031)
-556.09(0.015) -531.53(0.656) -555.89(0.337) -556.11(0.029)

4 c, x1x2 -580.05 -556.72(0.018) -539.36(0.998) -556.79(0.104) -556.77(0.032)
-556.80(0.017) -548.10(0.998) -556.96(0.053) -556.82(0.031)
-556.70(0.017) -531.37(0.985) -556.94(0.065) -556.76(0.031)

5 c, x1, x2 -553.46 -551.64(0.023) -537.41(0.799) -551.58(0.098) -551.58(0.029)
-551.57(0.023) -557.34(0.997) -551.66(0.067) -551.60(0.028)
-551.57(0.023) -535.94(0.619) -551.39(0.242) -551.59(0.028)

6 c, x1, x1x2 -550.58 -550.40(0.023) -532.42(0.860) -550.42(0.127) -550.32(0.025)
-550.38(0.024) -536.22(0.574) -550.47(0.069) -550.41(0.026)
-550.37(0.024) -538.20(0.991) -550.50(0.056) -550.37(0.026)

7 c, x2, -578.47 -556.54(0.018) -529.22(0.999) -556.83(0.076) -556.59(0.038)
x1x2 -556.56(0.018) -539.26(0.977) -556.78(0.080) -556.57(0.036)

-556.56(0.018) -526.47(0.966) -556.75(0.156) -556.56(0.035)
8 c, x1, x2, -552.06 -551.48(0.025) -536.60(0.988) -551.54(0.097) -551.49(0.031)

x1x2 -551.47(0.025) -536.39(0.905) -551.51(0.082) -551.47(0.033)
-551.50(0.025) -538.28(0.950) -551.57(0.065) -551.51(0.029)
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3.3.3 Marginal Likelihoods

For each model Mk, auxiliary mixture sampling was run for M = 20000 draws after
a burn-in of 5000 draws, yielding a sequence of draws (α

(m)
k , Q(m)) for the unknown

parameter. For illustration, Figure 2 shows for model M6 that the sampler is
converging quickly to the stationary distribution and mixing is pretty good also for
Q(m) which is a parameter that is often slowly mixing.

For Chib’s estimator (13) as well as for the complete-data likelihood estimator
(16), the posterior ordinate p̂(ϑ∗k|y) = p̂(α∗

k|Q∗,y)p̂(Q∗|y) is estimated in two steps.
First, Q∗ is chosen as the average of Q(1), . . . , Q(M) and p̂(Q∗|y) is estimated by

p̂(Q∗|y) =
1

M

M∑
m=1

p(Q∗|γ(m)
1 , . . . , γ

(m)
N ,Mk),

where the conditional densities are equal to the inverted Gamma distribution given in
step (b1) of auxiliary mixture sampling. Then a reduced auxiliary mixture sampler
is run where Q is fixed at Q∗ and step (b1) is omitted. The average of the draws

α
(m)
k of this reduced sampler define α∗

k while the draws z
(m)
k are used to estimate

the posterior ordinate p(α∗
k|Q∗,y):

p(α∗
k|Q∗,y) =

1

M

M∑
m=1

p(α∗
k|Q∗, z(m)

k ,y),

where the conditional densities are equal to the multivariate normal distribution
given in step (b2) of auxiliary mixture sampling.

To implement Chib’s estimator (13), the integrated likelihood p(y|ϑ∗k) is approx-
imated by importance sampling:

p̂(y|ϑ∗k) =
1

L

L∑

l=1

p(y|α∗
k, γ

(l)
1 , . . . , γ

(l)
N )p(γ

(l)
1 , . . . , γ

(l)
N )|Q∗)

q(γ
(l)
1 , . . . , γ

(l)
N )

, (26)

where q(γ1, . . . , γN) =
∏N

i=1 q(γi) and a univariate normal distribution is fitted to

the MCMC draws γ
(m)
i to obtain q(γi) for each i = 1, . . . , N .

To implement the complete-data likelihood estimator (16), a further run of re-
duced auxiliary mixture sampling is added, where (αk, Q) is fixed at (α∗

k, Q
∗).

This sampler consists only of the steps (a) and (c). The average of the MCMC

draws (γ
(m)
1 , . . . , γ

(m)
N ) defines β∗k = (γ∗1 , . . . , γ

∗
N) while the draws z

(m)
k are used to

estimate the posterior ordinate p̂(β∗k|ϑ∗k,y) as in (18). The conditional density

p(β∗k|ϑ∗k, z(m)
k ,y) =

∏N
i=1 p(γ∗i |ϑ∗k, z(m)

k ,y) is simply the product of the N univariate
normal densities appearing in step (a).

To implement importance sampling and bridge sampling, the importance density
q(βk,ϑk) = q(αk)q(Q)

∏N
i=1 q(γi) is considered. A univariate normal distribution

is fitted to the MCMC draws γ
(m)
i to obtain q(γi) for each i = 1, . . . , N . The

importance densities q(αk) and q(Q) are constructed in an unsupervised manner as
mixture densities with S = 200 components, based on step (b1) and (b2) of auxiliary

14



mixture sampling:

q(αk) =
1

S

S∑
m=1

p(αk|y, Q(m), z
(m)
k ), (27)

q(Q) =
1

S

S∑
m=1

p(Q|γ(m)
1 , . . . , γ

(m)
N ).

Table 2 compares the different estimators of the (log) marginal likelihood of the
various logit models including a random intercept. Each estimator is computed
three times to evaluate accuracy and stability. Additionally, numerical standard
errors were computed as in Chib (1995).

Chib’s estimator p̂CH(y|Mk) which is based on the importance sampling ap-
proximation (26) of the integrated likelihood p̂(y|ϑ∗k) is very precise. On the other
hand, the complete-data likelihood estimator p̂CDL(y|Mk) which avoids the direct
computation of p̂(y|ϑ∗k) is extremely imprecise. The inaccuracy of this estimator
is even larger than the standard errors would indicate and in comparison to the
other estimators an upwards bias seems to be present. Furthermore, the estimator
is very unstable, see for instance the repeated estimation of the marginal likelihoods
of model M1 or M4.

The importance sampling estimator p̂IS(y|Mk) tends to be much more inac-
curate than Chib’s estimator, see in particular the standard errors of the third
estimator for model M3 or M5. This indicates considerable sensitivity to the unsu-
pervised importance density (27). In contrast to that, the bridge sampling estimator
p̂BS(y|Mk) is stable over repeated estimation and the standard errors are compa-
rable to that of Chib’s estimator. This indicates robustness to the unsupervised
importance density (27) as observed earlier in Frühwirth-Schnatter (2004).

The marginal likelihoods of a logit model without heterogeneity, based on im-
portance sampling as in Subsection 2.2, were added to Table 2. Among all models
considered, the model including x1 (the root extract), the interaction term x1x2

between the seed and the root extract, and a random intercept has the largest
marginal likelihood. Evidence in favor of this model compared to a model with the
same predictors, but no random intercept, however, is pretty weak.

3.4 Application to State Space Modelling of Count Data

3.4.1 Data and Modelling

For further illustration, we consider two time series of counts. First, we reanalyze a
time series of reported cases of purse snatching yt in the Hyde park neighborhood
in Chicago, taken from Harvey (1989). The data cover the period from January
1968 to September 1973 and are 28 days apart, see also Figure 3. We assume that
yt ∼ P (λt) where the intensity λt is time-varying:

log(λt) = µt, (28)

and µt is a stochastic trend, following a random walk with drift at−1:

µt = µt−1 + at−1 + w1t, w1t ∼ N (0, θ1) , (29)
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Figure 4: Children data

and µ0 ∼ N (0, 1). In its most general form, the model assumes that the drift
changes over time and itself follows a random walk:

at = at−1 + w2t, w2t ∼ N (0, θ2) , (30)

where a0 ∼ N (0, 1). In the context of state space models, at is often called the
slope, as it determines the expected increase in the level of µt+1 compared to µt.

The second time series consists of monthly counts of killed or injured pedestrians,
aged 6-10, from 1987-2005 in Linz, which is the third largest town in Austria.4 The
observations are a series of small counts not exceeding 5, see also Figure 4. A new
law intended to increase road safety came into force in Austria on October 1, 1994,
since when pedestrians who want to use a pedestrian crossing have to be allowed
to cross. Of interest is the effect of this law on the (monthly) risk of being killed
or seriously injured in a road accident as a child living in Linz. For these data,
a basic structural model with intervention effect for Poisson counts as in Durbin
and Koopman (2000) and Frühwirth-Schnatter and Wagner (2006) is fitted to the
number yt of persons killed or seriously injured in time period t, yt ∼ P (etλt), where
et is the number of children living in Linz. λt is a very small intensity, assumed to

4A shorter version of this time series ranging from 1987-2002 was analyzed in Frühwirth-
Schnatter and Wagner (2006).
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have a multiplicative trend as well as a multiplicative seasonal component:

log(λt) = µt + st. (31)

µt is a stochastic trend as in (29), however µ0 ∼ N (log(y1/e1), 1). To capture the
intervention effect, equation (29) is slightly modified by including a level shift δ at
the time point t = tint, when the legal amendments became effective:

µt = µt−1 + at−1 + δ + w1t. (32)

exp(st) is a monthly multiplicative seasonal component generated by

st = −st−1 − · · · − st−11 + w3t, w3t ∼ N (0, θ3) , (33)

where
∑11

j=0 s−j = 0, and s0 = (s−1, . . . , s−11)
′ is an unknown initial pattern fol-

lowing the prior N (0, I). As MCMC did not converge for this formulation of the
seasonal component, we use a reparametrization where the seasonal component is
non-centered:

log(λt) = µt + st = µt + Zts0 + θ4
st − Zts0

θ4

= µt + Zts0 + θ4s̃t, (34)

where θ4 = ±√θ3. Here the initial seasonal pattern s0 is introduced as fixed effect
and Zt is a row vector selecting the appropriate initial value according to the season
of time point t. For t being a multiple of 12, Zt is a row vector of -1, otherwise all
elements of Zt are 0, apart from the element in the column corresponding to the
actual season, which takes the value 1.

Model selection within the basic structural model amounts to determining which
of the components, level µt, drift at and seasonal st should be included, and whether
these are stochastic or not. Additionally, for the road safety data, we have to test
for the presence of an intervention effect.

For an unrestricted model, the parameters θ1, θ2 and θ4 appearing in (29), (30)
and (34) are unknown and estimated under the conditionally conjugate priors θi ∼
G−1 (c0, C0) , i = 1, 2 and θ4 ∼ N (0, 1). The model simplifies considerably, if some of
these variances are equal to zero. The stochastic trend, for instance, reduces to a log-
linear deterministic trend with intercept µ0 and slope a0, if both variances θ1 and θ2

are zero. Choosing θ4 = 0 leads to a fixed seasonal pattern over the whole observation
period, whereas θ4 6= 0 allows a smooth change in this pattern. If all variances are
equal to zero, then the basic structural model reduces to a Poisson regression model
with log-linear trend, fixed seasonal pattern, and intervention effect:

yt ∼ P (etλt) , λt = exp(µ0 + ta0 + Zts0 + I{t≥tint}δ). (35)

Otherwise, the basic structural model is regarded as a state space or dynamic gen-
eralized linear model for discrete observations, see e.g. West, Harrison, and Migon
(1985) with state vector equals βt = (µt, at, s̃t, . . . , s̃t−10, δ). The state evolution in
this state space model follows a first order Markov chain,

βt = Ftβt−1 + ωt, ωt ∼ N (0,Q) , (36)
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where the matrices Ft and Q are obtained from (29) to (34). The observation
equation reads:

yt ∼ P (etλt) , λt = exp(µt + Zts0 + θ4s̃t).

The starting values β0 = (µ0, a0) are added to the latent variables, βk = (β0, β1, . . . , βT ),
while ϑk = (θ1, θ2, θ4, s0). Note that the starting values for the non-centered sea-
sonal component are equal to 0, (s̃−1, . . . , s̃−11)

′ = 0. If any of the variances θ1, θ2 or
θ2
4 is equal to 0, or if no seasonal component is included, a reduced model parameter

ϑk results.

3.4.2 Auxiliary Mixture Sampling

Auxiliary mixture sampling is implemented as in Frühwirth-Schnatter and Wagner
(2006). For each t, the distribution of yt|λt is regarded as the distribution of the
number of jumps of an unobserved Poisson process with intensity etλt, having oc-
curred in the time interval [0,1]. The first step of data augmentation creates such a
Poisson process for each yt, t = 1, . . . , T , and introduces the inter-arrival times τtj,
j = 1, . . . , (yt + 1) of this Poisson process as missing data. Since each τtj ∼ E (etλt)
we have

− log τtj = log et + log λt + εtj, (37)

where εtj = − log ξtj with ξtj ∼ E (1). The distribution of εtj is then approximated
by a mixture of normal distributions as in (8) with component indicator rtj and
the auxiliary variables z = (z1, . . . , zT ), where zt = (τtj, rtj, j = 1, . . . , yt + 1), are
introduced.

Auxiliary mixture sampling is defined through the following conditional densities
(Frühwirth-Schnatter and Wagner, 2006, Section 3.3):

(a) Sample β = (β0, . . . , βT ) from p(β|ϑ, z,y) by forward-filtering backward sam-
pling as in Frühwirth-Schnatter (1994), Carter and Kohn (1994), or De Jong
and Shephard (1995) for a conditionally Gaussian state space model being
defined for each t = 1, . . . , T by state equation (36) and yt + 1 independent
observation equations:

− log τtj −mrtj
− log et = µt + Zts0 + θ4s̃t + εtj, εtj ∼ N

(
0, s2

rtj

)
,(38)

j = 1, . . . , yt + 1.

(b1) Sample θ1 (if unknown) and θ2 (if unknown) independently from following
inverted Gamma densities:

θ1 ∼ G−1

(
c0 + T/2, C0 + 1/2

T∑
t=1

(µt − µt−1 − at−1 − δI{t=tint})
2

)
,(39)

θ2 ∼ G−1

(
c0 + T/2, C0 + 1/2

T∑
t=1

(at − at−1)
2

)
. (40)
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(b2) Sample s0 (if a seasonal component is included) and θ4 (if the seasonal compo-
nent is stochastic) jointly from a normal distribution, obtained by combining
all observation equations (38) which are regarded as a normal heteroscedastic
linear regression model in the unknown parameters with a standard normal
prior. Because the sign of θ4 and s̃t is not defined uniquely from (38), a ran-
dom sign switch is performed. With probability 0.5, θ4 and s̃t are unchanged,
whereas with probability 0.5 the signs of θ4 and s̃t, t = 1, . . . , T are changed.

(c) For each t = 1, . . . , T , sample the inter-arrival times {τtj, j = 1, . . . , yt + 1}.
If yt > 0, sample the order statistics ut,(1), . . . , ut,(n) of n = yt U [0, 1] random
variables, see Robert and Casella (1999, p.47) for details, and define the inter-
arrival times τtj as their increments: τtj = ut,(j) − ut,(j−1), j = 1, . . . , n, where
ui,(0) := 0. Sample the final arrival time as τt,n+1 = 1 −∑n

j=1 τtj + ξt, where
ξt ∼ E (λt). Sample the component indicator rtj conditional on τtj and λt from
the following discrete density:

Pr(rtj = l|τtj, λt) ∝ wl

sl

exp

{
−1

2

(− log τtj − log et − log λt −ml

sl

)2
}

. (41)

An improved version of auxiliary mixture sampling where the maximum dimen-
sion of zt is equal to 4 rather than 2(yt + 1) is discussed in Frühwirth-Schnatter,
Frühwirth, Held, and Rue (2007).

3.4.3 Marginal Likelihoods

Both for Chib’s estimator (13) as well as for the complete-data likelihood estimator
(16), the posterior ordinate p̂(ϑ∗k|y) can be estimated in one step. θ∗1, θ∗2, and s∗0 are
estimated as the average of the corresponding MCMC draws. θ∗4 is estimated as the
positive square root of θ∗3, i.e. θ∗4 = +

√
θ∗3, where θ∗3 is the average of the MCMC

draws θ
(m)
3 = (θ

(m)
4 )2. The posterior ordinate p̂(ϑ∗k|y) is given by:

p̂(ϑ∗k|y) =
1

M

M∑
m=1

p(θ∗1|β(m)
k )p(θ∗2|β(m)

k )p(s∗0, θ
∗
4|β(m)

k , z
(m)
k ), (42)

where p(θ∗i |β(m)
k ) and p(s∗0, θ

∗
4|β(m)

k , z
(m)
k ) are equal to the inverted Gamma density

in step (b1) and the multivariate normal density in step (b2), respectively.
To implement Chib’s estimator, the integrated likelihood p(y|ϑ∗k) is approxi-

mated by particle filtering (Pitt and Shephard, 1999) as in Chib et al. (2002) and
Omori, Chib, Shephard, and Nakajima (2007).

To implement the complete-data likelihood estimator, another run of reduced
auxiliary mixture sampling is added, where ϑk is fixed at ϑ∗k. This sampler consists

only of the steps (a) and (c). The average of the MCMC draws (β
(m)
0 , . . . , β

(m)
T )

defines β∗k and p̂(β∗k|ϑ∗k,y) is estimated as in (18). The evaluation of the conditional

density p(β∗k|ϑ∗k, z(m)
k ,y) where z

(m)
k = (τ

(m)
k , r

(m)
k ) is feasible through:

p(β∗k|ϑ∗k, z(m)
k ,y) =

p(− log τ
(m)
k |r(m)

k , β∗k,ϑ
∗
k)p(β∗k|ϑ∗k)

p(− log τ
(m)
k |r(m)

k , ϑ∗k)
, (43)

19



0 0.5 1 1.5 2 2.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2 2.5

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 5: Purse snatching data; MCMC draws for θ1 (left) and θ2 (right) based on
auxiliary mixture sampling

Table 3: Marginal likelihoods for the Purse snatching data
Model Mk log p̂CH(y|Mk) log p̂CDL(y|Mk)
iid Poisson -291.18 (0.0057) —
Poisson regression with deterministic trend -292.47(0.0093) —
local level -230.76(0.0095) -230.30(0.4557)
local trend -252.09(0.0193) -251.31(0.4107)
local trend with θ2 = 0 -234.72(0.0105) -238.60(0.4383)
local trend with θ1 = 0 -239.96(0.0295) -230.49(0.5083)

where the numerator is the product of T +
∑T

t=1 yt univariate normal densities and
T multivariate normal densities and the denominator is a by-product of running
Kalman-filtering.

3.4.4 Application to Purse Snatching Data

For the purse snatching data we consider two fixed parameter models, namely a
standard Poisson distribution with unknown intensity and a Poisson regression
model with deterministic trend model, and four different state space models: a
local level model, a local trend model, and two restricted local trend models with
θ1 = 0 and θ2 = 0, respectively. Model selection is carried out under the priors
θi ∼ G−1 (0.5, 0.2275) , i = 1, 2.5

Auxiliary mixture sampling was run for M = 20000 draws after a burn-in of
10000 draws. For illustration, Figure 5 shows for a local trend model with θ1 > 0
and θ2 > 0 that the sampler is converging quickly to the stationary distribution and
mixing is pretty good.

Chib’s estimator p̂CH(y|Mk), the complete-data likelihood estimator p̂CDL(y|Mk)
and their standard errors are displayed for each model in Table 3. All models but
the local level model have a posterior probability of practically zero. Again, the
estimator based on the complete-data likelihood has very high standard errors for

5For the local trend model with θ1 = 0 we used the prior G−1 (2.5, 0.001), because the sampler
did not converge for the priors G−1 (0.5, 0.2275), G−1 (2.5, 0.05) and G−1 (2.5, 0.005).
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Figure 6: MCMC draws for θ1 (left), θ2 (middle) and θ4 = ±√θ3 (right) for a basic
structural model with intervention effect

all models. Chib’s estimator, which is based on approximating the integrated like-
lihood by particle filtering, is very precise both for the fixed parameter models and
the state space model. It should, however, be noted that uncertainty of estimating
the integrated likelihood by particle filtering is not taken into account.

3.4.5 Application to the Road Safety Data

For the road safety data, we consider six different state space models: the basic
structural model with and without intervention effect (δ = 0), the local trend model
with fixed seasonal pattern (θ3 = 0) and the local level model with fixed seasonal
pattern (θ2 = 0, θ3 = 0) with and without intervention effect respectively. Model
selection is carried out under the priors θi ∼ G−1 (2.5, 0.05) , i = 1, 2.

Auxiliary mixture sampling was run for M = 20000 draws after a burn-in of
10000 draws. Introducing the non-centered state vector βt = (µt, at, s̃t, . . . , s̃t−10, δ)
led to a Gibbs sampler with rather quick convergence to the stationary distribution,
see Figure 6 for illustration.

Chib’s estimator p̂CH(y|Mk), the complete-data likelihood estimator p̂CDL(y|Mk)
and their standard errors are displayed for each model in Table 4. The complete-
data likelihood estimator has extreme standard errors for all models but the simple
local level model. Also Chib’s estimator based on the integrated likelihood is rather
imprecise for this case study.

The local level model is clearly dominating the other state space models, however,
the local level model with and without intervention are not well discriminated with
regard to their marginal likelihoods. This becomes clear from Figure 7 indicating
that the estimated level contains a smooth intervention effect, even if no explicit
intervention effect is included, making model discrimination between these models
difficult.

The estimated level of a local level model with intervention shown in Figure 7
suggest that before and after the intervention the level hardly changed and a re-
gression model might fit the data equally well. For this reason, we added several
Poisson regression models with a seasonal pattern based on dummy variables, with
and without an intervention effect, and a model with a holiday effect (a dummy
variable taking the value 1 in the months July and August). As the Poisson regres-
sion model results as the limiting form of a state space model, where the process
variances θ1, θ2 and θ3 are 0, we use the same prior for the regression coefficients as
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Table 4: Marginal likelihoods for the road safety data

Model Mk log p̂CH(y|Mk) log p̂CDL(y|Mk) log p̂BS(y|Mk)
loc. level – fixed seas., no int. -377.72(0.407) -376.40(0.651)
loc. level – fixed seas., int. -378.68(0.636) -379.18(0.905)
loc. trend – fixed seas., no int. -414.18(0.351) -404.96(9.1 · 1028)
loc. trend – fixed seas., int. -415.71(0.261) -403.00(3.7 · 1030)
basic struct. model – no int. -418.93(0.451) -405.80(2.4 · 1027)
basic struct. model – int. -420.32(0.565) -407.40(8.9 · 1030)

Poisson reg. – seas., no int. -373.90(0.503) -374.89(0.091)
Poisson reg. – seas., int. -368.72(0.349) -371.37(0.100)
Poisson reg. – holiday, no int. -364.20(0.029) -364.25(0.006)
Poisson reg. – holiday, int. -360.23(0.037) -360.26(0.008)

we used for µ0, s0 and δ in the state space model.
The marginal likelihoods of the various Poisson regression models reported in

Table 4 are estimated using Chib’s estimator p̂CH(y|Mk). As in Subsection 2.2,
Chib’s estimator tends to be rather imprecise for a Poisson regression model with
seasonal dummy variables, where the dimension of the regression parameter is equal
to 12 and 13, respectively, while it is very precise for a Poisson regression model with
holiday effect, where the dimension of the regression parameter is equal to 2 and 3,
respectively. For comparison, we add a bridge sampling estimator of the marginal
likelihood, based on unsupervised construction of a mixture importance density as in
(5) with S = 100 components. The conditional densities are obtained from auxiliary
mixture sampling and are multivariate normal densities as in Subsection 2.2. Again,
bridge sampling yields rather precise estimators of the marginal likelihoods even for
the larger regression models.

When comparing all marginal likelihoods, we find that the simple Poisson regres-
sion model is dominating all state space models in terms of marginal likelihoods.
The intervention effect is significant and the monthly seasonal pattern reduces to a
holiday effect.

4 Concluding remarks

We investigated different estimators of the marginal likelihood for complex non-
Gaussian models which makes use of of a simple MCMC method for estimating a
broad class of non-Gaussian models called auxiliary mixture sampling (Frühwirth-
Schnatter and Wagner, 2006; Frühwirth-Schnatter and Frühwirth, 2007).

For a fixed parameter model, Chib’s estimator (Chib, 1995) is directly available
from the output of auxiliary mixture sampling. An application to modelling nodal
involvement data (Chib, 1995) through a logistic regression model and road safety
data (Frühwirth-Schnatter and Wagner, 2006) through a Poisson regression model
indicate that the combination of Chib’s estimator with auxiliary mixture sampling
yields precise estimators of the marginal likelihood if the dimension of the regression
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Figure 7: Counts of killed and injured children with estimated level for the local
level model with intervention (full line) and without intervention (dashed)

parameter is not too high.
For latent variable models, the combination of Chib’s estimator with auxiliary

mixture sampling requires some additional method of determining the integrated
likelihood p(y|ϑk), like importance sampling for random effects models and particle
filtering for state space models. This estimator turned out to be rather precise when
modelling the seed data (Gamerman, 1997) and the purse snatching data (Harvey,
1989), while the marginal likelihood of the various state space models of the road
safety data (Frühwirth-Schnatter and Wagner, 2006) were quite imprecise.

We also investigated an estimator based on the complete-data likelihood p(y|ϑk,βk)
which avoids the explicit computation of the integrated likelihood p(y|ϑk). We
showed that this estimator is based on estimating the integrated likelihood p(y|ϑk)
by the application of the marginal likelihood equation to a latent model with fixed
model parameters ϑ∗k. While this estimator is easily implemented by running re-
duced auxiliary mixture sampling, its performance turned out to be very disappoint-
ing for all of our case studies, yielding unstable and very imprecise results. Thus its
application is not to be recommended.

Finally, importance and bridge sampling estimators have been combined with
auxiliary mixture sampling. Auxiliary mixture sampling allows the unsupervised
construction of an importance density as in Frühwirth-Schnatter (1995, 2004). While
importance sampling turned out to be somewhat sensitive to this unsupervised
importance density, bridge sampling yielded precise and stable estimators of the
marginal likelihood.

Both Chib’s estimator as well as the bridge sampling estimator can be accom-
modated to a wide range of further complex non-Gaussian models using auxiliary
mixture sampling. It is, however, strongly recommended to evaluate the accuracy
of these estimators carefully by computing standard errors as in Chib (1995) and
by repeating marginal likelihood estimation several times to check the stability and
reliability of the ensuing Bayesian model selection procedure.
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Frühwirth-Schnatter, S. and R. Frühwirth (2007). Auxiliary mixture sampling with
applications to logistic models. Computational Statistics and Data Analysis 51,
3509–3528.
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