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Abstract

The article proposes an improved method of auxiliary mixture sampling for
count data, binomial data and multinomial data. In constrast to previously
proposed samplers the method uses a limited number of latent variables per
observation, independent of the intensity of the underlying Poisson process
in the case of count data, or of the number of experiments in the case of bi-
nomial and multinomial data. The smaller number of latent variables results
in a more general error distribution, which is a negative log-Gamma distribu-
tion with arbitray integer shape parameter. The required approximations of
these distributions by Gaussian mixtures have been computed. Overall, the
improvement leads to a substantial increase in efficiency of auxiliary mixture
sampling for highly structured models. The method is illustrated on two epi-
demiological case studies.

1 Introduction

During the past years, auxiliary mixture sampling has turned out to be a useful
tool for the Bayesian analysis of hierarchical and parameter-driven models of non-
Gaussian data. The method has been used first by Shephard (1994) for stochastic
volatility models and has been applied in this context by a couple of authors (Kim
et al., 1998; Chib et al., 2002; Omori et al., 2004). Recently, auxiliary mixture sam-
pling has been extended to rather general hierarchical models for non-Gaussian data
like state-space and random-effects models (Frühwirth-Schnatter and Wagner, 2005,
2006; Frühwirth-Schnatter and Frühwirth, 2007). For each dependent observation
yi latent variables are introduced the expectation of which depends on the unknown
parameters in a linear way. The error distribution follows a type I extreme value
distribution, which is then approximated by a Gaussian mixture distribution.

The number of these latent variables differs for the various distribution families.
For binary data the (univariate) utility of choosing category 1 is introduced, whereas
for data with m + 1 categories the utilities of choosing any category but one have
dimension m. For data from the Poisson distribution, yi + 1 interarrival times are
introduced for every observation yi; thus their number is increasing with the under-
lying intensity. For data from a binomial distribution with repetition parameter Ni

a latent utility is introduced for each of Ni binary experiments, leading to dimen-
sion Ni. A similar method is applied for multinomial data, where the dimension is
equal to mNi, leading in both cases to an increasing number of latent variables with
increasing number of repetitions.

In this note we propose an improved method of auxiliary mixture sampling that
utilizes a limited number of latent variables per observation, namely at most two
instead of yi + 1 for Poisson data, one instead of Ni for binomial data, and m − 1
instead of (m − 1)Ni for multinomial data. This leads to a substantial increase in
efficiency of auxiliary mixture sampling for highly structured models like random-
effects models or other hierarchical models for repeated measurements and for state
space modelling of non-Gaussian time series.
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The latent variables of the improved method aggregate the latent variables used
in Frühwirth-Schnatter and Wagner (2006) and Frühwirth-Schnatter and Frühwirth
(2007) in such a way that their expectation is still a linear function of the unknown
parameters. The deviation from the expectation, however, follows a more general
distribution, namely the distribution of the negative logarithm of a Gamma random
variable with integer shape parameter ν and unit scale. The shape parameter is
equal to yi for Poisson data and to Ni for data from the binomial and the multi-
nomial distribution. For each latent variable this distribution is approximated by
a Gaussian mixture distribution, and the component indicator is introduced as a
further auxiliary variable. We discuss the computation of the Gaussian mixture
distributions for arbitrary integer values of the shape parameter. Due to the Cen-
tral Limit Theorem the number of required mixture components drops with rising
ν. From the computational point of view, a larger intensity (in the case of count
data) or a larger repetition number (in the case of binomial or multinomial data) is
therefore an additional advantage, in contrast to the previously proposed sampler.

The modified sampler is applied to two epidemiological case studies, namely
disease mapping and analyzing incidence cases of cervical cancer.

2 Auxiliary Mixture Sampling for Count Data

We present details for the following model. Let y = (y1, . . . , yN) be a sequence of
count data, and assume that yi|λi is Poisson distributed with parameter λi, where
λi depends on covariates Zi = (Zα

i , Zβ
i ) through fixed coefficients α and varying

coefficients βi:

yi|λi ∼ Po(λi), λi = exp((Zα
i )T α + (Zβ

i )T βi). (1)

The precise model for βi is left unspecified at this stage; it could be a spatial, a
temporal, or a spatio-temporal model, for example. We only assume that the joint
distribution p(α,β1, . . . , βN |θ) is a normal distribution, indexed by some unknown
parameter θ. Furthermore we assume that, conditional on knowing α,β1, . . . , βN ,
yi and yj are mutually independent. In the application presented below the prior
model is a Gaussian Markov random field (Rue and Held, 2005).

2.1 Improved Auxiliary Mixture Sampling

2.1.1 Data augmentation

For each i, the distribution of yi|λi is regarded as the distribution of the number
of jumps of an unobserved Poisson process with intensity λi, having occurred in
the time interval 0 ≤ t ≤ 1. In Frühwirth-Schnatter and Wagner (2006), the first
step of data augmentation creates such a Poisson process for each yi and introduces
the (yi + 1) interarrival times of this Poisson process as latent variables, yielding a
total of 2(N +

∑N
i=1 yi) latent variables once the mixture approximation has been

applied. This kind of auxiliary mixture sampling seems to be infeasible for high
intensity data or panels of count data with a high number of total observations.

A more efficient method may be derived in the following way. First note that for
any observation with yi > 0 the arrival time of the last jump before t = 1, denoted
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by τ ?
i2, follows a Ga(yi, λi) distribution:

τ ?
i2 =

ξi2

λi

, ξi2 ∼ Ga(yi, 1). (2)

The Ga(a, b) distribution is defined as in Bernardo and Smith (1994), with den-
sity fG(y; a, b) = baya−1e−by/Γ(a). Second, the interarrival time between the last
jump before and the first jump after t = 1, denoted by τ ?

i1, follows an exponential
distribution:

τ ?
i1 =

ξi1

λi

, ξi1 ∼ Ex(1). (3)

Equations (2) and (3) may be reformulated in the following way:

− log τ ?
i1 = log λi + εi1, (4)

− log τ ?
i2 = log λi + εi2, (5)

where εi1 = − log ξi1 with ξi1 ∼ Ex(1) = Ga(1, 1) and εi2 = − log ξi2 with ξi2 ∼
Ga(yi, 1). For yi = 0 we are dealing only with equation (4).

The first step of improved auxiliary mixture sampling introduces the bivariate
latent variable τi = (τ ?

i1, τ
?
i2) for each nonzero observation yi and the single latent

variable τi = τ ?
i1 for zero observations. In the second step the densities of εi1 and

εi2 in (4) and (5) are approximated by Gaussian mixtures, and for both mixture
distributions the latent component indicators ri = (ri1, ri2) are introduced as missing
data. For a zero observation this is done only for (4), so that ri = ri1 in this case.

For the distribution of εi1 the same mixture approximation is used as in Frühwirth-
Schnatter and Wagner (2006). Finding a mixture approximation for εi2 is more
challenging because this is a negative log-Gamma distribution with integer shape
parameter ν equal to yi. In Subsection 2.3 such an approximation is derived for
arbitrary integer shape parameters ν,

pε(ε; ν) =
exp(−νε− e−ε)

Γ(ν)
≈

R(ν)∑
r=1

wr(ν)fN(ε; mr(ν), s2
r(ν)), (6)

where fN(ε; mr(ν), s2
r(ν)) denotes a normal density. The number of components

R(ν) depends on ν, as do the weights wr(ν), the means mr(ν) and the variances
s2

r(ν). Note that for ν = 1 (6) is identical with the mixture approximation derived
in Frühwirth-Schnatter and Frühwirth (2007).

Conditional on τ = {τ1, . . . , τN} and S = {r1, . . . , rN}, the nonlinear non-
Gaussian model (1) reduces to a linear Gaussian model where the mean of the
observation equation is linear in α,β1, . . . , βN and the error term follows a normal
distribution:

− log τ ?
i1 = log λi + mri1

(1) + εi1, εi1|ri1 ∼ N(0, s2
ri1

(1)),
− log τ ?

i2 = log λi + mri2
(yi) + εi2, εi2|ri2 ∼ N(0, s2

ri2
(yi)),

with log λi = (Zα
i )T α + (Zβ

i )T βi. For yi = 0 we are dealing only with the first
equation. Consequently, the conditional posterior p(α, β1, . . . , βN |θ, τ ,S,y) is pro-
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portional to a multivariate normal density:

p(α,β1, . . . , βN |θ, τ ,S,y) ∝ (7)

p(α,β1, . . . , βN |θ)
N∏

i=1

fN(− log τ ?
i1; log λi + mri1

(1), s2
ri1

(1))

N∏

i=1,yi 6=0

fN(− log τ ?
i2; log λi + mri2

(yi), s
2
ri1

(yi)).

2.1.2 The sampling scheme

Select starting values for τ and S and repeat the following steps.

(1) Sample α, β = {β1, . . . , βN} and θ, conditional on τ , S, and y.

(2) Sample the interarrival times τ and the component indicators S conditional
on α,β,θ and y by running the following steps, for i = 1, . . . , N .

(a) Sample ξi ∼ Ex(λi). If yi = 0, set τ ?
i1 = 1 + ξi. If yi > 0, sample τ ?

i2 from
a Beta (yi, 1)-distribution and set τ ?

i1 = 1− τ ?
i2 + ξi.

(b) Sample the component indicator ri1 from the following discrete distribu-
tion where k = 1, . . . , R(1):

pr{ri1 = k|τi1,θ,βi, α} ∝
wk(1)

sk(1)
exp

{
−1

2

(− log τi1 − log λi −mk(1)

sk(1)

)2
}

.

If yi > 0, sample the component indicators ri2 from the following discrete
distribution where k = 1, . . . , R(yi):

pr{ri2 = k|τi2, θ, βi,α, yi} ∝
wk(yi)

sk(yi)
exp

{
−1

2

(− log τi2 − log λi −mk(yi)

sk(yi)

)2
}

.

Step 1 is model dependent, but standard for many models, as we are dealing with a
Gaussian model once we condition on τ and S. For model (1), for instance, we may
implement a Gibbs type move, by first sampling (α, β) conditional on θ from the
multivariate normal distribution (7), and then sampling θ conditional on (α,β).

To speed up convergence, it may be necessary to implement a joint move which
updates θ and (α, β) jointly (Knorr-Held and Rue, 2002). We use the following
construction. First, propose a new value for θ, say θ′, using for example the simple
proposal θ′ ∼ q(θ′|θ). Then, conditioned on θ′, sample a new proposal (α′, β′) from
the full (Gaussian) conditional for (α, β). Finally, accept/reject (α′,β′,θ′) jointly.
The rationale for such a construction is to break the strong dependency between
θ and (α,β), and is discussed in great detail by Rue and Held (2005, Sec. 4.1).
Since the full conditional for (α,β) is Gaussian, this joint step updates θ using
the proposal q(θ′|θ) from the joint posterior where the latent Gaussians (α,β) are
integrated out (Rue and Held, 2005, p. 141).
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Step 2 is an appropriate modification of the corresponding step in Frühwirth-
Schnatter and Wagner (2006, Subsection 3.1), based on decomposing the joint pos-
terior of (τ ,S) as

p(τ ,S|y,θ,α, β) = p(S|τ , y, θ, α,β) · p(τ |y,θ,α, β).

We first sample the arrival times τ1, . . . , τN from the density p(τi|yi,θ,α,β) as they
are independent for different time points i, given β, θ, α and y. For any i with
yi > 0 the joint distribution of (τ ?

i1, τ
?
i2) factorizes as

p(τ ?
i1, τ

?
i2|yi,θ,α, β) = p(τ ?

i1|yi,θ,α,β, τ ?
i2) · p(τ ?

i2|yi).

Conditionally on yi, only yi jumps occur in [0, 1], whereas the (yi +1)th jump occurs
after t = 1. By well-known properties of a Poisson process, the arrival time τ ?

i2 of the
yith jump is the maximum of yi Un [0, 1] random variables and follows a Beta (yi, 1)-
distribution, see Robert and Casella (1999, p.47). As a result of the zero-memory
property of the exponential distribution, the waiting time until the first jump after
t = 1 is distributed as Ex(λi), and therefore τ ?

i1 = 1 − τ ?
i2 + ξi, where ξi ∼ Ex(λi).

This justifies Step 2(a).
To sample the indicators S from p(S|τ ,y,θ,α, β), we use the fact that all

indicators are conditionally independent given y, θ, α,β and τ :

p(S|τ , y, θ,α,β) =
N∏

i=1

min(yi+1,2)∏
j=1

p(rij|τij,θ,βi, α,y).

Thus for each i = 1, . . . , N , the indicators ri1 and, if yi > 0, ri2, are sampled
independently from p(ri1|τij,θ,βi, α, yi) and p(ri2|τij,θ,βi,α, yi) which obviously
are equal to the discrete densities given in step 2(b).

Starting values for τ and S are obtained in the following way. The component
indicator ri1 is drawn uniformly from 1 to R(1), and, if yi > 0, the component
indicator ri2 is drawn uniformly from 1 to R(yi). Step 2(a) is used to sample starting
values for τ ?

i2. To obtain a starting value for τ ?
i1, we sample ξi from Ex(λi) with

λi = yi, if yi > 0. For all i where yi = 0, λi is set to a small value; in our examples
we used λi = 0.1.

2.1.3 Adding a rejection step

A rejection step could be added as in Frühwirth-Schnatter and Wagner (2006, Sub-
section 3.2) to evaluate the accuracy of auxiliary mixture sampling. We have com-
puted the acceptance rate of the improved auxiliary mixture sampler for the simple
example discussed there, namely Bayesian inference for N independent observations
y1, . . . , yN from the Po(λ) distribution under the prior λ ∼ Ga(a0, b0), in which case
λ|y ∼ Ga(a0 + Ny, b0 + N), with y being the sample mean.

Note that for the auxiliary mixture sampler of Frühwirth-Schnatter and Wagner
(2006) on average N(1+λ) mixture approximations take place, whereas for the new
sampler this number is equal to N(2−e−λ). For λ = 10 and N = 1000, for instance,
the expected number of approximations is equal to 2000 instead of 11000.

Table 1 demonstrates that the approximation error of the new sampler is even
smaller than the approximation error the sampler of Frühwirth-Schnatter and Wag-
ner (2006), in particular for large values of λ.
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Table 1: Expected acceptance rate (%), for a Metropolis-Hastings algorithm based
on the old (left) and the new (right) method of auxiliary mixture sampling for N
observations from the Po(λ) distribution

N λ=1 λ=3 λ=10
1 99.71 99.84 99.71

10 99.5 99.59 99.18
100 99.34 99.14 99.44

1000 99.48 99.33 99.15

N λ=1 λ=3 λ=10
1 99.88 99.93 99.93

10 99.74 99.71 99.54
100 99.53 99.36 99.51

1000 99.56 99.41 99.42

2.2 Application to disease mapping

Bayesian hierarchical models with Poisson observations often arise in epidemiological
applications. A typical example is the area of disease mapping, where a commonly
used formulation assumes that the observed disease counts yi in district i = 1, . . . , N
are conditionally independent Poisson with mean ei exp(ηi), where ei are known
expected counts and ηi are the unknown log relative risk parameters. The model
proposed in Besag et al. (1991) now decomposes the log relative risk into spatially
structured and unstructured heterogeneity. More specifically, in the first stage of
the hierarchical model responses yi are conditionally independent Poisson with mean
ei exp(ηi), in the second stage η = (η1, . . . , ηN)T is multivariate Gaussian with mean
u = (u1, . . . , uN)T and diagonal precision matrix λI, and in the third stage u follows
an intrinsic Gaussian Markov random field (GMRF)

π(u|κ) ∝ κ
N−1

2 exp(−κ

2

∑
i∼j

(ui − uj)
2), (8)

see Rue and Held (2005). In (8), i ∼ j denotes all pairs of adjacent districts i and
j. This prior leaves the overall level of the GMRF unspecified, as only differences
of log relative risk parameters enter in (8). For the unknown precision parameter λ
and κ we adopt the usual (independent) Gamma hyperpriors, say λ ∼ G(a, b) and
κ ∼ G(c, d), we have used a = c = 1.0 and b = d = 0.01.

Statistical inference via MCMC in this highly parametrized model is difficult,
especially if the data are sparse. Joint block updating of η and u, as proposed in
Knorr-Held and Rue (2002), is based on the GMRF approximation as described in
detail in Rue and Held (2005, Subsection 4.4.1). Basically a GMRF Metropolis-
Hastings proposal is computed based on a quadratic Taylor approximation to the
Poisson likelihood. This can be combined with updates of the two precision parame-
ters to a joint Metropolis-Hastings proposal for all unknown parameters. Knorr-Held
and Rue (2002) use a specific proposal, multiplying the current value of the preci-
sion parameter with a random variable z proportional to 1 + 1/z on [1/f, f ], where
f > 1 is a constant scaling parameter. This specific choice has the advantage that
the proposal ratio in the Metropolis-Hastings acceptance probability equals one.
The proposal is used for both κ and λ. Subsequently η and u are sampled based
on the GMRF approximation, as described above. Finally, all updated parameters
are accepted or rejected in a joint Metropolis-Hastings step. For further details see
Knorr-Held and Rue (2002).
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Alternatively, the proposed auxiliary variable approach can be implemented in
this setting. This has the distinct advantage that the conditional distribution of η
and u is already a GMRF, so no approximation is necessary and η and u can be
updated with a Gibbs step. In the joint update, this Gibbs proposal will replace the
GMRF approximation.

We now report results from an empirical comparison of both algorithms based
on two datasets. The first one gives the number of cases of Insulin dependent
Diabetes Mellitus (IDDM) in Sardinia (N = 366), as analyzed in Knorr-Held and
Rue (2002). The second one gives the number of deaths of oral cavity cancer in
Germany (N = 544), as analyzed in Knorr-Held and Raßer (2000). The first disease
is sparse with a total of 619 cases (median of 1 per district), while the second is
more common with a total of 12,835 cases (median of 15).

Table 2 and 3 summarize the results for the Sardinia and Germany data re-
spectively: reported is the effective sample size (ESS) (Kass et al., 1998) and the
effective sample size per second for the two precision parameters λ and κ (both
on a log scale) and the posterior deviance D, defined for example in Spiegelhalter
et al. (2002). Also given is the acceptance rate of the two algorithms for different
choices of the scaling factor f . For simplicity, we have used the same factor for both
precision parameters, although this could be changed easily. ESS is an estimate of
the number of independent samples which would be required to obtain a parameter
estimate with the same precision as the MCMC estimate based on n dependent
samples (here we used n = 2, 000 samples obtained by storing every fifth iteration
of the MCMC algorithm). The effective sample size of a parameter is calculated
as the number of samples n used from the Markov chain divided by the empirical
autocorrelation time

τ = 1 + 2 ·
v∑

s=1

ρ(s),

where ρ(s) is the empirical autocorrelation at lag s. The initial monotone sequence
estimator by Geyer (1992) is used to determine v based on the sum of adjacent pairs
of empirical autocorrelations

Φ(s) = ρ(2 · s) + ρ(2 · s + 1).

Let k be the largest integer so that Φ(s) > 0 and Φ(s) is monotone for s = 1, . . . , k,
then v is defined as v = 2 · k + 1.

First commenting on Table 2 we note that the auxiliary mixture sampling (AMS)
is nearly four times as fast as the GMRF approximation, despite the large number
of additional auxiliary variables. However, for the same values of the scaling param-
eters, the acceptance rates for the auxiliary mixture sampling are generally lower
than the ones based on the GMRF approximation. At first sight this is surprising
as — without the update of the precision parameters — auxiliary mixture sampling
yields acceptance rates equal to unity, whereas the GMRF approximation has ac-
ceptance rates of approximately 70% for these data (Knorr-Held and Rue, 2002).
However, the auxiliary mixture sampler conditions on a particular mixture compo-
nent, so the target distribution has smaller variance and lower acceptance rates are
possible. The effective sample size is somewhat better for the GMRF approxima-
tion, since the samples are less autocorrelated. However, adjusting for computation
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Table 2: Empirical comparison of the GMRF approximation and auxiliary mixture
sampling (AMS) for the Sardinia data

Scaling Method Speed Acc. Parameter ESS ESS
factor (it/sec) rate per sec
2.0 GMRF 42.3 61.1 λ 388.2 1.6

κ 166.0 0.7
D 459.3 1.9

AMS 159.3 50.1 λ 200.1 3.2
κ 164.5 2.6
D 201.7 3.2

3.0 GMRF 43.0 46.4 λ 670.9 2.9
κ 361.1 1.6
D 709.8 3.0

AMS 159.4 31.1 λ 334.5 5.3
κ 150.6 2.4
D 250.1 4.0

5.0 GMRF 42.7 29.8 λ 840.3 3.6
κ 537.4 2.3
D 914.4 3.9

AMS 163.4 15.8 λ 370.8 6.1
κ 134.5 2.2
D 145.8 2.4

time, the order is reversed and the auxiliary variable method is roughly twice as
good in terms of ESS per second, if the acceptance rates are not too low.

For the Germany data, see Table 3, the results are even more in favour of the
auxiliary mixture sampler with up to four times as large effective sample sizes per
second. Interestingly, the acceptance rates are now higher for the auxiliary mix-
ture sampler, except for the third case where the scaling parameter is quite large.
Presumably, for larger counts, the mixture approximation will be dominated by one
component, so the reduction of the conditional variance, compared to the GMRF
approximation, will be minor.

2.3 Approximation of the Negative Log-Gamma
Distribution by Gaussian Mixtures

2.3.1 The negative log-Gamma distribution

Assume that x is Gamma-distributed with integer shape parameter ν and unit scale,
x ∼ Ga(ν, 1). This distribution is the convolution of ν exponential distributions with
mean equal to one. Then y = − log x ist distributed according to the negative of a
log-Gamma distribution, with the probability density function

g(y; ν) =
exp

(−νy − e−y
)

Γ(ν)
,
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Table 3: Empirical comparison of the GMRF approximation and auxiliary mixture
sampling (AMS) for the Germany data

Scaling Method Speed Acc. Parameter ESS ESS
factor (it/sec) rate per sec
1.5 GMRF 27.9 33.4 λ 220.3 0.6

κ 609.6 1.7
D 1036.8 2.9

AMS 102.5 41.9 λ 271.5 2.8
κ 760.2 7.8
D 1176.8 12.1

2.0 GMRF 27.7 19.9 λ 323.7 0.9
κ 671.9 1.9
D 837.1 2.3

AMS 105.6 21.5 λ 415.4 4.4
κ 529.2 5.6
D 607.8 6.4

3.0 GMRF 28.1 10.3 λ 347.8 1.0
κ 403.6 1.1
D 274.8 0.8

AMS 104.2 9.2 λ 282.2 2.9
κ 426.0 4.4
D 272.3 2.8

and the characteristic function

ϕ(t; ν) = −Γ(it + ν)

Γ(ν)
.

The moments can be computed explicitely in terms of polygamma functions. In
particular, the expectation µ and the variance σ2 are given by

µ(ν) = −ψ(ν), σ2(ν) = ψ′(ν),

where ψ(·) is the digamma function, and ψ′(·) is the trigamma function. In the
following, only the standardized variate u = (y−µ)/σ will be used, with the density

f(u; ν) =
σ(ν) · exp

{
−ν[σ(ν)u + µ(ν)]− e−[σ(ν)u+µ(ν)]

}

Γ(ν)
.

This has the advantage that the effective support of the distribution is almost inde-
pendent of ν. Still, for small values of ν there is a noticeable tail to the right, so that
the interval S = [−6, 10] has been used as the support for all values of ν. For large ν,
the distribution of u approaches the standard normal distribution. Approximation
by Gaussian mixtures therefore requires less components for increasing ν.

2.3.2 Approximation by Gaussian mixtures

The approximating Gaussian mixtures were estimated by minimizing the Kullback-
Leibler divergence dKL plus a penalty term that forces the sum of the weights to
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one:

D(w,m, s2) =

∫

S
f(u; ν) log

f(u; ν)

fN(u, w(ν),m(ν), s2(ν))
du (9)

+ λ

(
R(ν)∑
r=1

wr − 1

)2

,

where fN(u, w(ν),m(ν), s2(ν)) is the density of a Gaussian mixture with R(ν) com-
ponents, weights wr(ν), means mr(ν), and variances s2

r(ν). The penalty factor was
set to λ = 109. Note that dKL is invariant under affine transformations and in par-
ticular under standardization. The integral in (9) was computed by the trapezoidal
rule on a grid of size 32000.

As the component weights wr are constrained to the interval (0, 1) and the vari-
ances s2

r have to be positive, the mixture was rewritten in terms of the unconstrained
transformed parameters

w′
r = log(wr)− log(1− wr), (s′r)

2 = log s2
r.

The modified objective function was minimized using the function fminsearch in
the optimization toolbox of Matlab (Version 7.0.1). This function implements a
direct search method, the Nelder-Mead simplex algorithm (Nelder and Mead, 1965).

The starting point was the 10-component approximation of the log-exponential
distribution, corresponding to ν = 1, described in Frühwirth-Schnatter and Frühwirth
(2007). Approximating mixtures were computed for the following values of ν:

ν = {2, 3, . . . , 100, 102, . . . , 150, 155, . . . , 200, 220, . . . , 300,

320, 340, . . . , 500, 550, . . . , 1000, 1100, . . . , 2000,

2200, 2400, . . . , 5000, 5500, . . . , 10000, 11000, . . . , 20000,

22000, 24000, . . . , 30000, 35000, . . . , 100000}.

An approximation was accepted only if the Kullback-Leibler divergence dKL of the
mixture density from the target density was below a threshold tKL and if the maxi-
mum absolute difference dmax between the two densities was below a threshold tmax.
We chose tKL = 10−5 and tmax = 5 · 10−4. At the same time, we tried to find the
smallest number of components required. The mixture approximation for ν = νi

was therefore computed in the following way:

(1) Take the parameters of the mixture for ν = νi−1 as starting values and mini-
mize the objective function for ν = νi. If necessary, restart the minimization
until dKL ≤ tKL and dmax ≤ tmax.

(2) Save the estimated parameters.

(3) Reduce the number of components by 1.

(4) Compute new starting values by merging the smallest component with its
smallest neighbour.

(5) Minimize the objective function.
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(6) If dKL ≤ tKL and dmax ≤ tmax, go to step 2.

(7) Otherwise, store the saved parameters.

In order to achieve optimal precision for small values of ν, at least nine components
were kept for ν < 20. Figure 1 shows the Kullback-Leibler divergence dKL in the
range 1 ≤ ν ≤ 100000. For ν > 30000 a single Gaussian passes the acceptance
criteria.
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Figure 1: Kullback-Leibler divergence of the estimated mixtures from the standard-
ized negative log-Gamma distribution as a function of the shape parameter ν, for
1 ≤ ν ≤ 100000. R(ν) is the number of components in the mixtures.

2.3.3 Parametrization of the mixtures

For small values of ν the mixture parameters change substantially when ν is in-
creased. The parameters are therefore stored individually for 1 ≤ ν ≤ 19. For
ν ≥ 20 it is possible to parametrize the mixtures as a function of ν without sacrific-
ing the accuracy of the approximation. This allows a more compact representation
of the mixture parameters as well as the computation of mixtures that have not
been estimated explicitely, including approximations to log-Gamma distributions
with non-integer shape parameter.

The parametrization was performed separately in the five ranges of ν summarized
in Table 4. A second-order polynomial was fitted to the mixture weights, and a
rational function with quadratic numerator and linear denominator to the means and
variances. Figure 2 shows the Kullback-Leibler divergence of the parametrized and
of the original estimated mixtures from the respective target distributions. It can
be seen that there is virtually no loss in accuracy when using the parametrization.
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A Matlab implementation is available from the authors; an implementation in C
is included in the GMRFLib library (Rue and Held, 2005, Appendix).

Table 4: The five ranges of parametrization of the mixtures

range νmin νmax components
1 20 49 4
2 50 439 3
3 440 1599 2
4 1600 10000 2
5 10000 30000 2
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Figure 2: Kullback-Leibler divergence of the estimated and of the parametrized
mixtures from the standardized negative log-Gamma distribution as a function of
the shape parameter ν, for 20 ≤ ν ≤ 100000. R(ν) is the number of components in
the mixtures.
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3 Auxiliary Mixture Sampling for Binomial

and Multinomial Data

3.1 Dealing with Binomial Data

We present details for the following model. Let y = (y1, . . . , yN) be a sequence of
data from a binomial distribution and assume that

yi|πi ∼ Bino (Ni, πi) , (10)

log
πi

1− πi

= log λi = (Zα
i )T α + (Zβ

i )T βi,

with Ni being known. The precise model for βi is left unspecified at this stage; we
only assume that the joint distribution p(α,β1, . . . , βN |θ) is a normal distribution,
indexed by some unknown parameter θ. Furthermore we assume that conditional
on knowing α,β1, . . . , βN , yi and yj are mutually independent.

3.1.1 Data augmentation

For each i, the distribution of yi|πi is regarded as the distribution of the number of
successes in Ni independent binary experiments with success probability πi. As in
Frühwirth-Schnatter and Frühwirth (2007), we recover the full binary experiment,
involving the repeated binary measurements zni, where

zni =

{
1, 1 ≤ n ≤ yi,
0, yi < n ≤ Ni,

and zni follows a binary logit model with the same log odds ratio as (10):

pr{zni = 1|πi} = πi =
λi

1 + λi

.

The first step of data augmentation in Frühwirth-Schnatter and Frühwirth (2007)
introduces for each binary observation zni the utility yu

ni of choosing category 1 as
latent variable, leading to a total of 2(

∑N
i=1 Ni) latent variables once the mixture

approximation has been applied. This kind of auxiliary mixture sampling seems to
be infeasible for data with a high number of total repetitions

∑N
i=1 Ni.

A more efficient method may be derived in the following way. First note that
for any utility yu

ni the following holds for n = 1, . . . , Ni:

exp(−yu
ni) =

1

λi

exp(−εni),

where εni follows a type I extreme value distribution and therefore the random
variable exp(−εni) follows a standard exponential distribution. If we consider the
sum over all n we obtain:

Ni∑
n=1

exp(−yu
ni) =

1

λi

ξi, ξi =

Ni∑
n=1

exp(−εni). (11)
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Due to the independence of the binary experiments ξi follows a Ga(Ni, 1) distribu-
tion. By taking the negative logarithm in (11) we obtain:

y?
i = log λi + εi, (12)

where εi = − log ξi with ξi ∼ Ga(Ni, 1), and y?
i is the following aggregated utility:

y?
i = − log

Ni∑
n=1

exp(−yu
ni). (13)

The first step of improved auxiliary mixture sampling introduces for each binomial
observation yi the (univariate) aggregated utility y?

i as a latent variable, rather than
the entire vector of Ni individual utilities yu

1i, . . . , y
u
Nii

. The second step is exactly
the same as for Poisson data. For every i, the density of εi in (12), which follows a
negative log-Gamma distribution with integer shape parameter Ni, is approximated
by a mixture of normal distributions. The indicator ri of this finite mixture is
introduced as an additional latent variable. This leads to a total of 2N rather than
2(

∑N
i=1 Ni) latent variables.

Conditional on y? = {y?
1, . . . , y

?
N} and S = {r1, . . . , rN}, the nonlinear non-

Gaussian model (10) reduces to a linear Gaussian model where the mean of the
observation equation is linear in α,β1, . . . , βN and the error term follows a normal
distribution:

y?
i = log λi + mri

(Ni) + εi, εi|ri ∼ N(0, s2
ri
(Ni)),

with log λi = (Zα
i )T α + (Zβ

i )T βi. Consequently, the conditional posterior
p(α,β1, . . . , βN |θ,y?,S, y) is multivariate normal:

p(α,β1, . . . , βN |θ,y?,S,y) ∝

p(α, β1, . . . , βN |θ)
N∏

i=1

fN(y?
i ; log λi + mri

(Ni), s
2
ri
(Ni)).

If Ni ≡ 1, model (10) reduces to a binary logit model, and the improved method
introduced in this section reduces to the one described for binary data in Frühwirth-
Schnatter and Frühwirth (2007).

3.1.2 The sampling scheme

Select starting values for y? and S and repeat the following steps.

(1) Sample α, β = {β1, . . . , βN}, and θ, conditional on y?, S, and y.

(2) Sample the aggregated utilities y? and the indicators S conditional on α,β,θ
and y, by running the following steps, for i = 1, . . . , N .

(a) Sample the aggregated utility y?
i conditional on λi and yi as

y?
i = − log

(
Ui

1 + λi

+
Vi

λi

)
, (14)

where Ui ∼ Ga(Ni, 1), and Vi ∼ Ga(Ni− yi, 1), independently, if yi < Ni,
whereas Vi = 0 if yi = Ni.
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(b) Sample the component indicator ri from the following discrete distribu-
tion where j = 1, . . . , R(Ni):

pr{ri = j|y?
i , θ,βi,α, yi} ∝ (15)

wj(Ni)

sj(Ni)
exp

{
−1

2

(
y?

i − log λi −mj(Ni)

sj(Ni)

)2
}

.

Again step 1 is model dependent, but standard for many models, as we are dealing
with a Gaussian model, once we condition on y? and S. Step 2 is a modification of
the corresponding step in Frühwirth-Schnatter and Frühwirth (2007, Subsection 2.2).

To justify sampling of the aggregated utility y?
i as in (14), we use (13) and

draw the individual utilities yu
ni from the posterior distribution p(yu

ni|yi,θ,α, β) as
in Frühwirth-Schnatter and Frühwirth (2007):

yu
ni = − log

(
− log Uni

1 + λi

− log Vni

λi

I{zni=0}

)
,

where Uni and Vni are independent uniform random numbers. This yields:

y?
i = − log

Ni∑
n=1

exp(−yu
ni)

= − log

(∑Ni

n=1(− log Uni)

1 + λi

+

∑Ni

n=yi+1(− log Vni)

λi

)
.

Step 2(a) is justified by the facts that

Ni∑
n=1

(− log Uni) ∼ Ga(Ni, 1),

yi < Ni =⇒
Ni∑

n=yi+1

(− log Vni) ∼ Ga(Ni − yi, 1).

Evidently, the indicators ri have to be sampled from the discrete density p(ri|y?
i ,θ,βi,α, yi)

given in (15). Starting values for the component indicator ri are drawn uniformly
from 1 to R(Ni); to obtain a starting value for y?

i we use (14) with λi = 1.

3.2 Application to cancer incidence data

We have reanalyzed Example 4.3.5 from Rue and Held (2005) with the auxiliary
mixture sampler described in Subsection 3.1. The data analyzed are all incidence
cases of cervical cancer in the former East German Republic (GDR) from 1979,
stratified by district and age group. Each of the N = 6 690 cases has been classified
into either a premalignant (3755 cases) or a malignant (2935 cases) stage. It is of
interest to estimate the spatial variation of the incidence ratio of premalignant to
malignant cases in the 216 districts, after adjusting for age effects. Age was catego-
rized into J = 15 age groups. For more background information and motivation see
Knorr-Held et al. (2000).
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Let yi = 1 denote a premalignant case and yi = 0 a malignant case. Rue and
Held (2005) assume a logistic binary regression model yi ∼ Bino (1, πi), i = 1, . . . , N
with

logit(πi) = α + βj(i) + γk(i),

where j(i) and k(i) denote age group and district of case i, respectively. The age
group effects β are assumed to follow a random walk of second order,

π(β|κ�) ∝ κ
N−2

2
� exp(−κ�

2

J−1∑
j=2

(βj−1 − 2βj + βj+1)
2),

see Rue and Held (2005, Section 3.4.1) for more details. For the spatial effect γ
we assume that it is the sum of an IGMRF model plus additional unstructured
variation:

γk = uk + vk.

Here, u follows the IGMRF model (8) with precision κu and v is normal with zero
mean and diagonal precision matrix with entries κv. This model for the spatial
effects is just a reparametrization of the one described in Subsection 2.2. For the
corresponding precision parameters we assume a Ga(1.0, 0.01) for both κu and κv
and a Ga(1.0, 0.0005) for κ�. A diffuse prior is assumed for the overall mean α, and
sum-to-zero constraints are placed both on β and u.

Let κ = (κ�, κu, κv)
T denote the vector of all precision parameters in the model.

Following Holmes and Held (2006), Rue and Held (2005) used auxiliary variables
based on the representation of the logistic distribution by a scale-mixture of Gaus-
sians. Due to the nature of the Holmes and Held (2006) algorithm, they had to
introduce two auxiliary variables for each binary observation. They grouped all
variables into two subblocks and updated all variables in one subblock conditional
on the rest. The first subblock consists of (α, β,u,v,κ), while the auxiliary vari-
ables (w,λ) form the other block. Updating the first block was performed with
a joint Metropolis-Hastings step as described in Subsection 2.2, where a common
scaling factor f was used for all three precision parameters κ. Subsequently α,
β, u and v are sampled from their joint multivariate normal full conditional dis-
tribution. Finally, all parameters in this block are accepted or rejected in a joint
Metropolis-Hastings step. The second block was updated with a simple Gibbs step.

We have now reanalyzed these data with the auxiliary mixture sampler. Aggre-
gation of the binary to binomial observations was possible, with a moderate decrease
in the number of observations (2578 binomial rather than 6690 binary observations).
The blocking strategy was chosen just as above, replacing the auxiliary variables with
the auxiliary mixture variables. The auxiliary mixture sampler was slightly faster
(roughly 9%) in terms of pure computing time. Slightly lower acceptance rates have
been observed for the auxiliary mixture sampler using the same scaling factor for the
precision parameters as in the original algorithm. For example, for a scaling factor
of 1.5, the acceptance rate was 42% rather than 53%. Slightly higher autocorre-
lation have been observed for some of the precision parameters, which sometimes
outweighed the increase in computational speed.
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3.3 Dealing with Multinomial Data

A similar method may be applied to data from a multinomial distribution which
will be illustrated by the following model. Let y = (y1, . . . , yN) be a sequence of
data arising from a multinomial distribution with m + 1 categories:

yi|πi ∼ MulNom (Ni, π0i, π1i, . . . , πmi) , (16)

πki =
λki

1 +
∑m

l=1 λli

,

log λki = (Zα
i )T αk + (Zβ

i )T βki, k = 1, . . . , m,

with known repetition parameters Ni. Each observation is a discrete vector, yi =
(y1i, . . . , ymi), where yki counts the number of times category k is observed on occa-
sion i.

The precise model for βki is left unspecified at this stage; we only assume that
the joint distribution p(α,β11, . . . , βmN |θ) is a normal distribution, indexed by some
unknown parameter θ. Furthermore we assume that conditional on knowing πi and
πj, yi and yj are mutually independent.

3.3.1 Data augmentation

First, the random variable yki is regarded for each i as the number of times category
k is observed when drawing Ni independent categorical random variables zni from
the probability distribution

πi = (π0i, π1i, . . . , πmi), pr{zni = k|πi} = πki.

We recover zni for n = 1, . . . , Ni as

zni =

{
k,

∑k−1
l=1 yli < n ≤ ∑k

l=1 yli,
0,

∑m
l=1 yli < n ≤ Ni.

The first step of data augmentation in Frühwirth-Schnatter and Frühwirth (2007)
introduces for each categorical observation zni the utilities yu

1ni, . . . , y
u
mni of choosing

categories 1 to m as latent variables. This leads to a total of 2m(
∑N

i=1 Ni) latent
variables.

A more efficient method may be derived by extending the improved auxiliary
mixture sampler introduced in Subsection 3.1 for data from the binomial distribution
in the following way. For any utility yu

kni, k = 1, . . . , m the following holds for
n = 1, . . . , Ni:

exp(−yu
kni) =

1

λki

exp(−εkni),

where exp(−εkni) ∼ Ex(1). If we sum over all n = 1, . . . , Ni as in Subsection 3.1
and define for each category the following aggregated utility y?

ki:

y?
ki = − log

Ni∑
n=1

exp(−yu
kni), (17)
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we obtain

y?
ki = log λki + εki, (18)

where εki = − log ξki, with ξki =
∑Ni

n=1 exp(−εkni) ∼ Ga(Ni, 1).
The first step of improved auxiliary mixture sampling introduces for each obser-

vation yi the m aggregated utilities y?
i = (y?

1i, . . . , y
?
mi) as latent variables, rather

than the entire sequence of mNi individual utilities yu
11i, . . . , y

u
mNii

. The second step
is exactly the same as for data from the Poisson and the binomial distribution. The
densities of εki in (18) are approximated by Gaussian mixtures, and the indicators
rki are introduced as additional latent variables. This leads to a total of 2mN rather
than 2m(

∑N
i=1 Ni) latent variables.

Conditional on y? = {y?
1, . . . , y

?
N} and S = {r1, . . . , rN}, where ri = (r1i, . . . , rmi),

the nonlinear non-Gaussian model (16) reduces to a linear Gaussian model where
the mean of the observation equation is linear in α and β11, . . . , βmN and the error
term follows a normal distribution:

y?
1i = log λ1i + mr1i

(Ni) + ε1i, ε1i|r1i ∼ N(0, s2
r1i

(Ni)),
...
y?

mi = log λmi + mrmi
(Ni) + εmi, εmi|rmi ∼ N(0, s2

rmi
(Ni)),

with log λki = (Zα
i )T αk + (Zβ

i )T βki. Consequently, the conditional posterior
p(α,β11, . . . , βmN |θ,y?,S,y) is multivariate normal.

If Ni ≡ 1, model (16) reduces to a multinomial logit model, and the improved
method introduced in this subsection reduces to the one described for categorical
data in Frühwirth-Schnatter and Frühwirth (2007).

3.3.2 The sampling scheme

Select starting values for y?, S and θ, and repeat the following steps.

(1) Sample α, β = {β1, . . . , βN}, and θ, conditional on y?, S, and y.

(2) Sample the aggregated utilities y? and the indicators S conditional on α,β,θ
and y, by running the following steps, for i = 1, . . . , N .

(a) Sample the aggregated utility y?
i = (y?

1i, . . . , y
?
mi) as:

y?
ki = − log

(
Ui

1 +
∑m

l=1 λli

+
Vki

λki

)
, (19)

where Ui ∼ Ga(Ni, 1) and, for k = 1, . . . , m, Vki ∼ Ga(Ni − yki, 1), if
yki < Ni, with all random variables being independent, and Vki = 0 if
yki = Ni.

(b) Sample the component indicators rki from the following discrete distri-
bution where j = 1, . . . , R(Ni):

pr{rki = j|y?
ki, θ,βki,α,y} ∝ (20)

wj(Ni)

sj(Ni)
exp

{
−1

2

(
y?

ki − log λki −mj(Ni)

sj(Ni)

)2
}

.
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Again step 1 is model dependent, but standard for many models, as we are dealing
with a Gaussian model once we condition on y? and S. Step 2 is a modification of the
corresponding step in Frühwirth-Schnatter and Frühwirth (2007, Subsection 3.2). To
justify sampling of y?

ki as in (19) we use (17) and sample the individual utilities yu
ni =

(yu
1ni, . . . , y

u
mni) from the posterior distribution p(yu

ni|yi,θ,α, β) as in Frühwirth-
Schnatter and Frühwirth (2007):

yu
kni = − log

(
− log Uni

1 +
∑m

l=1 λli

− log Vkni

λki

I{zni 6=k}

)
, (21)

using independent uniform random numbers Uni, V1ni, . . . , Vmni. This yields

y?
ki = − log

Ni∑
n=1

exp(−yu
kni)

= − log

(∑Ni

n=1(− log Uni)

1 +
∑m

l=1 λli

+

∑
n:zni 6=k(− log Vkni)

λki

)
.

Step 2(a) is justified by the facts that

Ni∑
n=1

(− log Uni) ∼ Ga(Ni, 1),

yki < Ni =⇒
∑

n:zni 6=k

(− log Vkni) ∼ Ga(Ni − yki, 1).

Evidently, rki has to be sampled independently from the discrete density p(rki|y?
i ,θ,βi, α,y)

given in (20). Starting values for the component indicator rki are drawn uniformly
from 1 to R(Ni); to obtain a starting value for y?

ki, we use (19) with λki = 1.

4 Concluding Remarks

In this paper we have developed auxiliary mixture sampling algorithms for hierar-
chical models of Poisson, binomial, or multinomial data. In contrast to methods
previously suggested in the literature, the number of auxiliary variables is indepen-
dent of the number of counts yi in the Poisson and of the number of repetitions
Ni in the binomial and multinomial case. This is a clear improvement compared
with the auxiliary mixture sampling algorithms proposed in Frühwirth-Schnatter
and Wagner (2006) and Frühwirth-Schnatter and Frühwirth (2007).

In our two case studies, auxiliary mixture sampling allowed us to approach fairly
large models using joint updates of the hyperparameters and the latent Gaussian
field. In the first study, we found that auxiliary mixture sampling is comparable
if not better than a Gaussian approximation to the non-normal likelihood. In the
second study we found similar efficiency in terms of the effective sample size as
the Holmes and Held (2006) algorithm for binary logistic regression. Presumably
the advantage of the auxiliary mixture sampler over the Holmes and Held (2006)
algorithm would become more apparent in an example where stronger aggregation
to binomial counts is possible.
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The main motivation for the development of auxiliary mixture sampling has not
been to yield a uniformly better algorithm, but to simplify the implementation and
to improve the computational performance of MCMC algorithms for non-Gaussian
hierarchical models. In particular, auxiliary mixture sampling allows to construct
good samplers with reasonable acceptance rates for block-updating a large or very
large number of parameters, as in the spatial and spatio-temporal analysis of sev-
eral health outcomes (Held et al., 2005, 2006), where count and binomial data are
commonplace.

Furthermore, auxiliary mixture sampling allows simple implementation of Bayesian
model selection for a broad class of non-Gaussian models like random-effect mod-
els and state space models. Frühwirth-Schnatter and Wagner (2007) investigate
the computation of marginal likelihoods using auxiliary mixture sampling, while
Tüchler (2006) suggests a simple stochastic variable selection scheme based on aux-
iliary mixture sampling for covariate and covariance selection in logistic regression
and random-effects models.
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Frühwirth-Schnatter, S., and Wagner H. (2005), “Data augmentation and Gibbs
sampling for regression models of small counts,” Student , 5, 207–220.

Frühwirth-Schnatter, S., and Wagner H. (2006), “Auxiliary mixture sampling for
parameter-driven models of time series of small counts with applications to state
space modelling,” Biometrika, 93, 827–841.
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