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Abstract

Output from computer simulation experiments are often approximated as reali-
sations of correlated random fields. Consequently, the corresponding optimal design
questions (cf. Sacks et al., 1989 or Steinberg and Bursztyn, 2006) must cope with
the existence and detection of an error correlation structure, issues largely unac-
counted for by traditional optimal design theory. Unfortunately, many of the nice
features of well established design techniques, like additivity of information matrix,
convexity of design criteria, etc., do not carry over to the setting of interest. This
may lead to unexpected, counter-intuitive even paradoxical effects in the design
(e.g. Müller and Stehĺık, 2004) as well as the analysis (e.g. Smit, 1961) stage of
computer simulation experiments. In the paper we intend to give an overview and
some simple but illuminating examples for this behaviour.

KEY WORDS: Optimum experimental design, computer experiment, D-optimality,
efficiency, equidistant design, parameterized covariance functions, Smit’s paradox.

Introduction

Many physical processes are difficult or even impossible to study by classical experimental
methodology. As computer power has increased, it is possible to model some of these
problems by sophisticated computer code. As in a real experiment one can vary the
inputs to the code and observe how the process output is affected. Such studies are called
computer (simulation) experiments (for recent comprehensive reviews of related statistical
methodology see Santner et al. (2003) and Fang et al. (2005)).

Since the seminal paper by Sacks et al. (1989) it is customary to employ random
fields and corresponding estimation and prediction techniques (kriging) for modeling and
analysis of computer simulation data. In this paper we will for the sake of conciseness
restrict the attention to isotropic stationary linear processes or random fields of the form

Y (x) = η(x, β) + ε(x) = β0 + β1x + ε (x) , (1)

with design points (inputs for the code) ξn = {x1, ..., xn} taken from a compact design
space X . The trend parameters β are unknown and the variance-covariance structure of
the errors depends on another set of unknown parameters θ.

We assume that the errors ε(x) are correlated and the correlation between two mea-
surements depends on the distance d between pairs of particular design points through ei-
ther the so-called triangular covariance (which was introduced by Müller and Stehĺık (2004)
as the modification of a structure studied in Example 6.4 by Näther (1985))

cov(Y (x), Y (x + d)) =

{
σ2(1− d

θ1
), for d < θ1,

0, otherwise,
(2)

or the the so called Matérn model family, which is more and more frequently employed
for its flexibility due to a smoothness parameter θ2. It is given by

cov(Y (x), Y (x + d)) = σ2 ·
{

1

2θ2−1Γ(θ2)

(
d

θ1

)θ2

Kθ2

(
d

θ1

)}
, (3)
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where Kθ2 denotes a modified Bessel function of order θ2. A recent review of its history
and properties can be found in Guttorp and Gneiting (2006). It encompasses a number
of widely used models, e.g. by setting θ2 = 1/2 the so called exponential

cov(Y (x), Y (x + d)) = σ2e
− d

θ1 . (4)

If we further assume that the errors are Gaussian, we obtain a parametrized Slepian
process in the case of (2) when θ1 = 1 and a special case of an Ornstein-Uhlenbeck process
when the covariance is exponential. The Slepian process S on [0, 1] was first studied
in Slepian (1961) and Watson (1961) and appears in numerous theoretical and applied
probabilistic models, e.g. models for structural damage and strong ground motion. The
relation of the triangular covariance to the so called geometric covariogram is discussed
in Stehĺık (2005).

The main purpose of statistical analysis is estimation of parameters β, θ and prediction
of Y based upon the parametric models. Having estimated the spatial trend by a linear
response a universal kriging estimator is typically used (see e.g. Müller (2007)). Universal
kriging can be viewed as a two stage procedure involving GLS estimation of the trend
surface and best linear prediction, as pointed out by Fedorov (1989). For a reverse two-
stage interpretation see Cressie (1993).

The related optimum design question, which will be the core problem of the present
paper is then how to select the inputs such, that we gain the maximum available informa-
tion from the experiment. In this context, however for the simplistic i.i.d. error case, this
question was first raised in the 1960’s, see Naylor et al. (1967) for an early review. That
this is an issue of high relevance may be gathered from the following simple example.

Example 0 Assume that in (1) with X = [−1, 1] we have β0 = 0 (no intercept regression)
and the errors being i.i.d. (which is the special case unifying (2) with θ1 = 0 and (4) with
θ1 = 0 including a nugget effect, see section 8). Then let us study the behaviour of two
natural estimators for β1, namely the average of the slopes, i.e. β̃1 = 1

n

∑n
i=1

yi

xi
or the best

linear unbiased estimate β̂1 =
Pn

i=1 xiyiPn
i=1 x2

i
(see example 10.4 in Casella and Berger (2002) for

further inspiration). It is clear that Var(β̃1) ≥ Var(β̂1) always holds, but let us investigate
their relationships for different designs. It is clear that both variances are minimized,
when all the n observations are taken at or close to either of the endpoints of the design
region x = ±1 (the optimum design). Contrast this with a regular n-point design (with
even n) ξn = {−1,−1 + 1

2n−1
, . . . , 1}. Under this design and for growing n the variance

Var(β̃1) > σ2π
4

is bounded below (see also Appendix), whereas under the optimum design it

tends to zero (as does Var(β̂1) for both designs). Moreover, the efficiency of the uniform
design for β̂1 tends to two third of that under the optimum design. One can thus clearly
see the beneficial effect of proper choice of inputs for both designs.

In the following we will define optimality of a design always strictly in the tradition of
Kiefer (see e.g. Kiefer, 1975), where the inputs are selected such, that a prespecified de-
sign criterion (e.g. the variance, see above; or for multiple parameters the determinant of
their variance-covariance matrix, so-called D-optimality) is optimized. The classic Fisher

information Mρ = E(∂ ln f(x,ρ)
∂ρ

)2 usually serves as the basis for many of the optimality
criteria. Here differentiability of likelihood ratio with respect to the parameter ρ is as-
sumed, which opens a problem of interpretation of the formally defined (e.g. by one-sided
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limits) information matrix for such values, see Stehĺık (2004a). Still, the classic Fisher
information can be well defined over some open set. In the proposed model we have the
Fisher information matrix

Mβ(n) = F T C−1F,

where F = (f(x1), . . . , f(xn))T , f(xi) = (1, xi).
It is traditional practice that the covariance parameters are estimated in a separate

stage. However, if one is willing to make distributional assumptions, it is natural to
employ likelihood based estimation techniques. In the following we will thus assume that
the errors in our random field model (1) follow a stationary Gaussian process.

In particular one could now either assume that the trend is known and fixed (e.g.
η ≡ 0) and maximize (full ML)

2L(θ) = −n log(2π)− log det C(θ)− yT C−1(θ)y (5)

or that one employs say OLS-detrending ε̂ = Y − η(β̂) and maximizes (REML)

2L(θ) =−n log(2π)− log det C(θ)− log det F T C−1F

−ε̂T{C−1(θ)− C−1(θ)F [F T C−1(θ)F ]−1F T C−1(θ)}ε̂.
Let us in the following concentrate on (5), since both approaches differ only little

with respect to design issues (cf. Zimmerman (2006)). It is now natural to base a design
criterion on the information matrix associated with the corresponding estimate of the
parameter θ, which is given by (note that it depends upon the design ξ via C)

Mθ(n)jj′ =
1

2
tr

{
C−1(θ)

∂C(θ)

∂θj

C−1(θ)
∂C(θ)

∂θj′

}
, (6)

where the ∂C(θ)
∂θj

are n × n matrices with entries ∂cov(Y (x),Y (x+d))
∂θj

, x, x + d ∈ X . Designs

maximizing the determinant of Mθ have been suggested by Zhu and Stein (2005) (they
also employ a minimax and Bayesian criterion to avoid undesirable effects due to the lin-
earizations) and Zimmerman (2006), who calls them CP-(covariance parameter-)optimal.
Both demonstrate their behaviour for numerous artificial and real examples.

Since both paremeters are independent one can use (see Pázman (2004) and Xia,

Miranda and Gelfand (2006)) Mβ,θ =

(
Mβ(n) 0

0 Mθ(n)

)
. Thus the full D-optimality

criterion has the form Φ(Mθ,β) = det Mθ det Mβ. Such a function Φ is also called design-
or information criterion, see Pukelsheim (1993). Note that there exists a well developed
theory for standard i.i.d. regression based on Kiefer’s (1959) concept of design measures,
cf. Atkinson et al.(2007) for a recent textbook.

The other widely used criterion is defined via minimization of the mean squared er-
ror (MSE) (see e.g. Crary (2002)). The kriging variance can be interpreted as the un-
conditional mean squared prediction error for the best linear unbiased predictor. Thus
frequently direct minimization of it respectively its weighted average over the area, i.e.

min
ξ

∫

x∈X
E[(ŷ(x|ξ)− y(x))2]w(x)dx (7)

is attempted. Resulting designs are sometimes also termed minimum AMSE (average
mean squared error) designs and are - despite the computational complexities in their
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generation - widely used in computer simulation experiments. Note, that in the corre-
lated setup we do not have such a nice correspondence between estimation and prediction
oriented designs (as given by the celebrated equivalence theorem by Kiefer and Wolfowitz,
1961) and therefore require separate optimization techniques for these purposes. Espe-
cially for (7) the respective computational burden can be high, but may be reduced by
sequential updating of the designs as is shown in Pardo-Igúzquiza and Dowd (2005).

In the remainder of the paper we will now address peculiarities of the computer simu-
lation setup, which are not covered by regular design theory and devise possible remedies
for them. Thereby we will mainly concentrate on the goal of parameter estimation (for
other relevant questions related to prediction see the Appendix). Some of the following
issues are seemingly trivial, but their review in accordance with others may shed new
light on some phenomena. We will especially learn that we are not to trust our intuition
that we may attempt to carry over from the uncorrelated error setting.

1 Asymptotic Unidentifiability of Covariance Param-

eters

One can find applications of various criteria of design optimality for covariance param-
eter estimation in the literature. Here we consider D-optimality, which corresponds to
the maximization of a criterion function Φ(Mθ) = det Mθ, the determinant of a standard
Fisher information matrix. This method, ”plucked” from the widely developed uncor-
related setup, is offering considerable potential for automatic implementation, although
further development is needed before it can be applied routinely in practice.

Note specifically, that the validity of this approach much depends on the ability of the
inverse information matrix to serve as a good approximation of the mean square error
matrix of the ML-estimator for θ. The main argument in favour of this ability is that
by using standard increasing domain asymptotics they converge to each other, however
- as pointed out by Zhang and Zimmerman (2005) in this context - infill (fixed domain)
asymptotics may be more reasonable. Zhang (2004) showed (extending Ying (1993) and
Abt and Welch (1998)) that not all covariance parameters in the Matérn model (3) can
be estimated consistently.

Example 1 Abt and Welch (1998) considered a design space X = [0, 1] with the correla-
tion function of the form (4). They showed that on the one hand
limn→+∞ (M−1(θ1, σ

2))1,1 = 0 but on the other hand limn→+∞ n (M−1(θ1, σ
2))1,1 = 2(σ2/θ1)

2.
These results obtained from the information matrix coincide with the variance of the
asymptotic distribution of

√
n(σ̂2/θ̂1 − σ2/θ1) found in Ying (1993) based on approxima-

tions of the log-likelihood function.

As a certain remedy, Zhang (2004) also demonstrated that the quantity σ2θ−2θ2
1 can be

estimated consistently and he gives small sample simulations to further back up this ra-
tio. Furthermore, extending the results from Stein (1990), he argues that, if the ultimate
goal of the analysis is prediction (see below) then it is much more useful to estimate this
rather than its separate components for being the identifying quantity in characterizing
compatible covariance functions (such that yield asymptotically equivalent interpolations).
Therefore in Zhu and Zhang (2006) the authors suggest a corresponding reparametriza-
tion and the consequent optimization of only a subset of the information matrix Mθ. For
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more references on the Fisher information as the basis of a design criterion in the corre-
lated setup see Stehĺık (2007), where the structure of the Fisher’s information matrices
for stationary processes is studied. Therein it is shown that under mild conditions given
on covariance structures the lower bound for Mθ is an increasing function of the distances
between the design points.

A different justification for the use of the information matrix Mθ is provided by
Pázman (2004), who shows that the approximation holds well in exponential families
of distributions as long as the errors are relatively small. In any case, even if Mθ is
not a good approximation - say for small sample sizes - its usefulness for design pur-
poses is unharmed as long as it orders designs in the same way, i.e. we can observe a
monotone relationship between these matrices in this respect. This fact is supported by
various simulation experiments under Gaussian random field and Matérn covariance) in
Zhu and Stein (2005) and Zimmerman (2006).

2 Nonreplicability

A more basic issues arises from the fact that in computer simulations experiments due
to the deterministic code the same inputs always yield exactly the same outputs, thus
rendering replications in the experiments useless. Note, that due to the random field
model (1) anyway replicability of the entire field only would be admissable.

As a simple, rather brute force remedy, one can employ numerical design optimization
algorithms that directly generate so-called replication-free designs. The basic version of
such an algorithm is due to Fedorov (1972) and consists of a simple exchange of points
from the two sets Sξs and X̄s \ Sξs at every iteration s, namely

ξs+1 =

{
ξs \

{
x−s ,

1

ns

}}
∪

{
x+

s ,
1

ns

}
,

where
x+

s , x−s = arg max
x∈Xs\Sξs ,x∈Sξs

Φ(x, ξs).

The set Xs now carries a subscript to indicate the possibility of changing the discretization
of X at every iteration.

Example 2 As an example consider D-optimum design for a two-dimensional linear re-
gression on the unit-square, i.e. we assume f(x) = (1, x[1], x[2]); −1 ≤ x[1], x[2] ≤ 1;
Φ(M) = ln det M, where [i] in the index denotes the coordinate. A 20× 20 point grid was
used to approximate the design space. On this grid only 100 observations (without replica-
tions) were allowed. The supporting points of the resulting design are all points outside a
circle as given in Figure 1. This design was constructed by a simplified Fedorov-exchange
algorithm after only 200 iterations.

A generalization of this algorithm to exchanges of more than one point at every step is
straightforward (cf. Royle (2002)). Note that nonconvexity is also an issue here. Some au-
thors have therefore employed simulated annealing (eg. van Groeningen and Stein (1998))
or branch and bound type algorithms (eg. Rasch et al. (1997)), however, even by simple
exchange type procedures considerable gains in the criteria can be achieved (for a specif-
ically tuned algorithm see Müller and Pázman (1998)). For the general correlated case
first suggestions of an algorithm can be found in Brimkulov et al. (1980).
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Figure 1: A replication-free optimum design for linear regression.

3 Non-additivity of the Information Matrix

Perhaps the decisive reason why optimal design principles are not very frequently applied
in gathering data from computer simulation experiments is that the information matrix
does not share all of the desirable properties of its analogue in the standard regression
setting, which allow the construction of more sophisticated numerical design algorithms.
In particular it is not additive and thus information from different design points can no
longer be separated as nicely as in standard theory.

Example 3 Here we consider the exponential covariance (4) with σ2 = 1 and a linear
model without slope (i.e. β1 = 0). It is shown in Kiseľák and Stehĺık (2007), that for
n-point designs with equal interdistances d = xi+1 − xi < 0.5 (so called uniform designs)

the Fisher information matrix can be written as Mβ0(n) = 2−n+ned/θ1

1+ed/θ1
. Then we clearly

have Mβ0(5) 6= Mβ0(2)+Mβ0(3), although such a 5-point design unifies such 2 and 3-point
uniform designs by simply “adding” one edge connecting two neighboring points.

As a remedy for this nonseparability of information contributions through designs
a different interpretation of design measures as amount of signal or noise suppression
(Müller and Pázman (1998) with extensions in Müller and Pázman (2003) and for covari-
ance paremeters Pázman and Laca (2007)) has been suggested. By adding virtual noise
to the process they extend the classical information matrix Mβ to give

M
(ε)
β,κ(ξ) =

∑

x,x′∈ξ

f(x)[C(ξ) + W (ε)
κ (ξ)]−1

x,x′f
T (x′),

where W
(ε)
κ (ξ) is a diagonal matrix with entries like

[W (ε)
κ (ξ)]x,x = ε (ξ(x)− κ)2 /ξ(x)
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and respective modifications for Mθ and Mβ,θ.
Another remedy for this issue would of course be to change the model. By approx-

imate the random field by a random coefficient model through Mercers expansion (see
Fedorov and Müller (2007)) additivity of the information matrix is restored and the de-
sign problem is thus again embedded into classical design theory.

Note the special role that is played by uniform designs in this setup. If only trend pa-
rameters are of interest, designs covering uniformly the whole design space - such as the one
used in Example 2 - are very efficient. Dette et al. (2007) have proved that if θ1 → +∞,
then any exact n-point D-optimal design in the linear regression model with exponen-
tial semivariogram converges to the equally spaced design. In Kisělák and Stehĺık (2007)
a thorough study of small sample and asymptotical comparisons of the efficiencies of
equidistant designs with taking into account both the parameter of trend β0, as well as
the parameter of the covariance function θ1 is provided. If only the trend parameter β0 is
of interest, the designs covering more-less uniformly the whole design space are rather ef-
ficient. They are also showing that for all possible combinations of parameters of interest,
i.e. {β0}, {θ1} and {β0, θ1}, the interval over which observations are to be made should
be extended as far as possible. They have also shown that infill asymptotics substantially
differs for the covariance and trend parameter and proved that a n-point equidistant de-
sign for parameter β0 is D-optimal. A recurring topic in the recent literature is that
uniform designs perform well in terms of model-robustness when a Bayesian approach is
adopted, when the maximum bias is to be minimized or when the minimum power of the
lack-of-fit test is to be maximized (see Goos, Kobilinsky, O’Brien and Vandebroek (2005)
and for more general results Bischoff and Miller (2006)). The concept of uniform designs
has been introduced by Fang (1978) and has now gained popularity and proven to be very
successful in industrial applications (see Pham (2006), Chapter 13).

4 Unintuitive effects in gaining information

Unfortunately, when one wants to analyze correlated data stemming from a process as
given in (1), one must be cautious in utilizing intuition gained from the i.i.d. case.
Specifically, when the process is observable on the interval X = [−T, T ], the mean β0 may
be estimated by the unbiased estimators

Ȳn+1 :=
1

n + 1

n∑
i=0

Y

(
Ti

2n
− T

)

or

m = 1/2T

∫ T

−T

Y (t)dt.

One might be inclined to expect that V ar(m) ≤ V ar(Ȳn+1), since the estimator m utilizes
the whole realization rather than a finite number of points. However, there are equidistant
designs ξn for which V ar(Ȳn+1) < V ar(m). This disturbing situation is what is known
in the literature as Smit’s paradox (see Smit (1961)) and is explained by the fact that in
general m is not the best linear unbiased estimator for β0.

Example 4 (see Näther (1985)) Here we consider X = [−1, 1] and covariance function
(4) with θ1 = σ2

1 = 1. Let us consider the design

ξ5 = {−1,−0.5, 0, 0.5, 1}.
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We have V ar(Ȳ5) = 0.529 and V ar(m) = 0.568. Furthermore, the variance of Ȳ can
increase by use of additional observations. Consider e.g. design

ξ9 = {−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1}.
We now have V ar(Ȳ9) = 0.542, which is less than V ar(Ȳ5). The BLUE-variance is 0.5.

Although every observation possesses non-zero variance it is even possible to estimate
parameters with variance zero (see Näther (1985)). Such examples touch the case of
singular processes (see Ibragimov and Rozanov (1978)).

5 Unintuitive effects in design

Similar as in the estimation stage, paradoxical effects can arise in the respective design
phase. Näther (1985) provided such a case for the situation when the regression function
is generated linearly by the covariance function, i.e.

f(x) =
∑

x′∈ξ∗
c(x, x′)g(x′), ∀x ∈ X , (8)

where g(x) ∈ Rm are given vectors and ξ∗ is some finite set representing the support of
an optimum design (for a simple proof see Müller and Pázman (2003)).

Example 5 Näther (1985) showed that for a linear model (1) with a triangular covari-
ance function (2) with θ1 = 1 the design {−1, 0, 1} fulfills (8) and is thus a uniformly
optimal design for (β0, β1), which paradoxically cannot be improved by addition of fur-
ther experimental points. It is instructional to see whether this ‘deficiency’ holds over a
wider range for θ1. E.g. Müller and Stehĺık (2004) show, that when 0 < θ1 < 2 (both
correlated and uncorrelated observations are possible) we obtain two equivalent 3-point
D-optimal designs {−1,±(1 − θ1), 1} which can but be improved (see Stehĺık (2005)) for
θ1 6= 1 by addition of a further experimental point, e.g. by putting ξ4 = {−1,−1 + θ1, 1−
θ1, 1}. The amount of this improvement (the so-called efficiency function, i.e. the ratio
max Φ(M3)/Φ(M(ξ4))) is displayed in Figure (5), from which it can be seen that the saving
of one observation has dramatic impact only for low correlations.

There is no quick remedy for either of the effects described in sections 4 and 5. The
lesson to be learned is rather that one must very carefully investigated correlated cases
“situation by situtaion”.

6 The Impact of Dependence on Information

Concerning this issue one might be misled in thinking that the impact of dependence in
the data is always negative, since it implies redundancy in information. However, this is
not at all the case and it very much depends upon what is estimated, so that dependence
could actually be an advantage (which is very transparent in the case of estimating the
slope of a linear regression from two design points only).

For a further discussion consider X = [−1, 1] and covariance structure (2). Now, when
both the slope and intercept are our parameters of interest (θ1 is fixed), then the larger
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Figure 2: The efficiency of the 4-th point.

covariance is, the more information about the parameters D-optimal design gains, (for
θ1 ≤ 2 we gain the same information, because here independent observations are possible).
When θ1 is treated as parameter of interest, then for θ1 > 2 information decreases with in-
creasing of θ1, for every θ1 ≤ 2 approximate D-optimal design gains the same information
(see also Figure 3). Thus, when θ1 is fixed, then information increases with correlation
(for θ1 ≤ 2 is information constant (independent observations are possible)). When θ1 is
a parameter of interest, then for θ1 > 2 information decrease with increasing of θ1, for
θ1 ≤ 2 approximate D-optimal design gains the same information. When the intercept is
the only parameter of interest the information is decreasing with correlation. When only
the slope is the parameter of interest, the information is increasing with correlation (see
Stehĺık (2004a)).

Example 6 When θ1 > 2 and θ1 is not parameter of interest, then 3-point DOD gives

for (β0, β1) the same value of Φ as the 2-point one, i.e. max Φ(M2) = max Φ(M3) =
θ2
1

θ1−1
.

When θ1 > 2 and θ1 is parameter of interest, then 2-point DOD gives a smaller value of
Φ as the 3-point one and we have (for a proof see Stehĺık (2005))

Φ(M3) =

[
2− 1

1 + (θ1 − 1)2

]
Φ(M2).

That is, the ratio Φ(M3)/Φ(M2) is an increasing function of θ1 (the larger the correlation
the larger is the ratio). Notice, that Φ(M3)/Φ(M2) > 1.5.

7 The Choice of the Dependence Structure

Misspecifications in the covariance function may lead to disturbing contradictions. E.g.
for the exponential function the optimal design collapses into one point and does thus not
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Figure 3: The minimum of the criterion function for the intercept (θ1 fixed (left) and
estimable (right).

convey information under say the triangular function (see Stehĺık et al. (2007)). As is
pointed out in Näther (1985), one of the fundamental assumptions, the knowledge of the
covariance function, is in most cases almost unrealistic. ”It seems to be artificial, that the
first moment E(Y (x)) is assumed to be unknown whereas the more complicated second
one is assumed to be known...”

Example 7 When the exponential covariance structure holds and we use the linear one,
then we obtain the information loss displayed in Table 1. When the covariance structure is
exponential and we use the D-optimal design for the linear one, we measure only 15.48%
of the maximal information about θ1 for a two-point D-optimal design with the design
space length equal to 2 (see also Figure 4). The two-point optimal design for covariance

Figure 4: The relative information gain, in %,

parameter θ1 under covariance (2) with σ2 = 1 is the maximal distant. Let θ1 = 1. When
the covariance structure is linear and we use the DOD for exponential one, we measure
almost none of the maximal information about θ1.
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Table 1: The information loss

design 2-point design 3-point design 4-point design 5-point design
loss 0% 9.23% 11.52% 12.38%

It is notable, that two point optimal design for covariance parameter θ1 under ex-
ponential covariance structure is collapsing. A similar effect has been studied and illus-
trated by Crary (2001) for AMSE-based criteria. This collapsing effect holds also for the
pair (β0, θ1). Kisělák and Stehĺık (2007) have proved (see Theorem 2) that the 3-point
D-optimal equidistant design for (β0, θ1) is also collapsing, however for more points the
D-optimal equidistant design is not collapsing anymore.

8 The Role of a Nugget Effect

The so-called nugget effect is usually employed to model local disturbances in the random
field (cf. Cressie (1993)). It is an important practical extension of covariance functions to
capture micro-scale variation. Furthermore, as will be seen below, it acts as an important
regulatory tool to make many designs feasible.

Example 8 Let us consider the exponential covariance (4) with σ2 = 1. Let θ1 be the
parameter of interest and let us consider 2-point design. In Stehĺık (2007) we can find

that Mθ(2) = d2 e
− 2d

θ1 (e
− 2d

θ1 +1)

(e
− 2d

θ1 −1)2 θ4
1

Thus the maximal Fisher information is obtained for d = 0,

in other words, the 2-point design is collapsing into a 1-point design.

To avoid such ‘inconvenient’ behavior, Stehĺık (2004b) suggested to decrease the non-
diagonal elements by multiplying with a factor α, 0 < α < 1. By this we include a nugget
effect of the form 1 − α. In Stehĺık et al. (2007) it is further proved, that the distance d
of the optimal design is an increasing function of the nugget 1− α. Thus the distance of
the two point D-optimal design for covariance parameter r of exponential covariance can
be tuned by the nugget

τ 2 = lim
d→0

1

2
V ar(Y (x + d)− Y (x)).

Process Y (x) with non-zero nugget effect is not L2-continuous. The effect of the multi-
plicative perturbation of the triangular covariance structure is studied in Stehĺık (2004b)
and the impact of the nugget effect in the example of lung’s retention of radioactive
particles in Stehĺık et al. (2007).

Appendix

A digression into prediction

It is frequently the ultimate goal of a spatial study to predict the random field at given
sites or over a continuous region as precise as possible. If the covariance parameters must
be estimated from the same dataset, it is evident that the additional uncertainty alters
the kriging variance and thus requires adaptations in the AMSE based design criteria.

11



Specifically the mean squared error in for a specific location x0 must now be separated
into

E[(ŷ(x0; θ̂)− y(x0))
2] = Var[ŷ(x0)] + E[ŷ(x0; θ̂)− ŷ(x0)],

i.e. the traditional kriging variance plus a term that can be approximated by the trace
tr

{
M−1

θ Var[∂ŷ(x0)/∂θ]
}
, cf. Harville and Jeske (1992) and Zimmerman and Cressie (1992).

Consequently, Zimmerman (2006) uses

max
x∈X

{
Var[ŷ(x)] + tr

{
M−1

θ Var[∂ŷ(x)/∂θ]
}}

(9)

(with the maximum over X rather than the integral) as a design criterion, which he terms
EK-(empirical kriging-)optimality. He points out that the criterion naturally combines
quality measures on prediction as well as parameter estimation. He then demonstrates
by various examples that the respective designs somehow balance the space-filling as well
as the clustering characteristic that are so typical for these purposes.

One step further is taken by Zhu and Stein (2006), who argue that one not only wants
to precisely predict the random field, but also wants to efficiently quantify the quality of
these predictions. Accordingly they supplement the criterion (9) by an approximation of
the variance of the mean square error

Var[E[(ŷ(x0; θ̂)− y(x0))
2]] '

(
∂Var[ŷ(x0)]

∂θ

)T

M−1
θ

(
∂Var[ŷ(x0)]

∂θ

)
.

Note that this - defined on a center point x0 of a design region - is used as the primary
criterion by Lark (2002).

The integral over a linear combination

∫

x∈X
Var[ŷ(x)]+tr

{
M ′′−1(θ)Var[∂ŷ(x)/∂θ]

}
+

(
∂Var[ŷ(x)]

∂θ

)T
M ′′−1(θ)

2Var[ŷ(x)]

(
∂Var[ŷ(x)]

∂θ

)
dx

is called the estimation adjusted (EA-)criterion by Zhu and Stein (2006). In their ex-
amples they find that EA yields designs that assign only 3-10% of their observations to
estimation rather than prediction, but thereby gaining a reasonable advantage over solely
prediction based designs. Zhu and Zhang (2006) modify the criterion making it more
effective for asymptotically unidentifiable covariance parameters.

More on the Slepian process

In distribution S(t) = W (t + 1) −W (t), where W (t) is the Brownian motion. For small
deviations and other references on Slepian process see Nikitin (2005). The eigenvalues of
the kernel cov(x, z) of Slepian process cannot be found explicitly. However, it was proved
by Nikitin and Orsingher (2004) that the spectrum consists of two series of eigenvalues.
The first of them are numbers λk = (2π(k − 1/2)2)−1, k = 1, 2, .., the second series of
eigenvalues are the roots rn of the transcendental equation tan(1/

√
2r) =

√
2r, r > 0.

The Example 0 related computations in Mathematica

ClearClearClear
<< Statistics̀<< Statistics̀<< Statistics̀
<< Graphics̀<< Graphics̀<< Graphics̀
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Clear
Clear[k]Clear[k]Clear[k]
var1[k ] = 1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]);var1[k ] = 1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]);var1[k ] = 1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]);
var2[k ] = 2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2;var2[k ] = 2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2;var2[k ] = 2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2;
k = 1000; (var1[k − 1]) ∗ k//Nk = 1000; (var1[k − 1]) ∗ k//Nk = 1000; (var1[k − 1]) ∗ k//N
1.5

a1 = ListPlot[Table[1/var1[k − 1]/(k), {k, 2, 10}], Frame → True, Axes → None,a1 = ListPlot[Table[1/var1[k − 1]/(k), {k, 2, 10}], Frame → True, Axes → None,a1 = ListPlot[Table[1/var1[k − 1]/(k), {k, 2, 10}], Frame → True, Axes → None,
PlotJoined → True, PlotStyle → Hue[.6],PlotJoined → True, PlotStyle → Hue[.6],PlotJoined → True, PlotStyle → Hue[.6],

PlotRange → {0, 1}]PlotRange → {0, 1}]PlotRange → {0, 1}]
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0.8

1

−Graphics−
a2 = ListPlot[Table[var1[k − 1]/var2[k − 1], {k, 2, 10}], Frame → True, Axes → None,a2 = ListPlot[Table[var1[k − 1]/var2[k − 1], {k, 2, 10}], Frame → True, Axes → None,a2 = ListPlot[Table[var1[k − 1]/var2[k − 1], {k, 2, 10}], Frame → True, Axes → None,
PlotJoined → True, PlotStyle → Hue[.9],PlotJoined → True, PlotStyle → Hue[.9],PlotJoined → True, PlotStyle → Hue[.9],
PlotRange → {0, 1}PlotRange → {0, 1}PlotRange → {0, 1}

2 4 6 8

0.2

0.4

0.6

0.8

1

−Graphics−
Show[{a1, a2}]Show[{a1, a2}]Show[{a1, a2}]
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1

−Graphics−
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Plot[{1/(2k), 2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2, }]Plot[{1/(2k), 2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2, }]Plot[{1/(2k), 2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2, }]
Plot[1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}])]Plot[1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}])]Plot[1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}])]
{k, 2, 15}, PlotPoints → 7{k, 2, 15}, PlotPoints → 7{k, 2, 15}, PlotPoints → 7

2 4 6 8 10 12 14

0.5

1

1.5

2

−Graphics−
Limit[2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2, k → Infinity]//NLimit[2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2, k → Infinity]//NLimit[2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2, k → Infinity]//N
2.4674
Clear[k]Clear[k]Clear[k] Plot[{(2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2)/(1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]))},Plot[{(2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2)/(1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]))},Plot[{(2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2)/(1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]))},
{k, 2, 15}]{k, 2, 15}]{k, 2, 15}]

2 4 6 8 10 12 14

5

10

15

20

−Graphics−
Plot[{(1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]) ∗ (2k))}, {k, 2, 15}]Plot[{(1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]) ∗ (2k))}, {k, 2, 15}]Plot[{(1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]) ∗ (2k))}, {k, 2, 15}]

2 4 6 8 10 12 14

3

4

5

6

7

−Graphics−
Plot[{(2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2)/(2k)}, {k, 2, 15}]Plot[{(2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2)/(2k)}, {k, 2, 15}]Plot[{(2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2)/(2k)}, {k, 2, 15}]
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2 4 6 8 10 12 14

0.15

0.2

0.25

0.3

−Graphics− vt[k ] = 2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2//Nvt[k ] = 2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2//Nvt[k ] = 2 ∗ Sum[1/i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}]/(2k)∧2//N
1
k2

(
0.5

(
1.2337(−1. + 2.k)2 − 0.25(1.− 2.k)2PolyGamma

[
1, 1.5 + Floor

[
0.5(−1. + 2.k)

(
1.− 1.

−1.+2.k

)]]))

Plot[1/(vt[k] ∗ 2 ∗ k), {k, 1, 15}]Plot[1/(vt[k] ∗ 2 ∗ k), {k, 1, 15}]Plot[1/(vt[k] ∗ 2 ∗ k), {k, 1, 15}]

2 4 6 8 10 12 14
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0.3

0.4

0.5
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−Graphics−
vh[k ] = 1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}])vh[k ] = 1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}])vh[k ] = 1/(2 ∗ Sum[i∧2, {i, 1/(2k − 1), 1, 2/(2k − 1)}])
�
3(−1 + 2k)2

�
/
�
2
�
1 + Floor

h
1
2 (−1 + 2k)

�
1− 1

−1+2k

�i� �
1 + 2Floor

h
1
2 (−1 + 2k)

�
1− 1

−1+2k

�i� �
3 + 2Floor

h
1
2 (−1 + 2k)

�
1− 1

−1+2k

�i��

Plot[{1/(vt[k] ∗ 2 ∗ k), 1/(vhn[k] ∗ 2 ∗ k)}, {k, 1, 15}]Plot[{1/(vt[k] ∗ 2 ∗ k), 1/(vhn[k] ∗ 2 ∗ k)}, {k, 1, 15}]Plot[{1/(vt[k] ∗ 2 ∗ k), 1/(vhn[k] ∗ 2 ∗ k)}, {k, 1, 15}]
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−Graphics−
vt[3]vt[3]vt[3]
1.59877
vhn[k ] = (2 ∗ k − 1)∧2/(2 ∗ Sum[(i∧2), {i, 1, 2 ∗ k − 1, 2}])vhn[k ] = (2 ∗ k − 1)∧2/(2 ∗ Sum[(i∧2), {i, 1, 2 ∗ k − 1, 2}])vhn[k ] = (2 ∗ k − 1)∧2/(2 ∗ Sum[(i∧2), {i, 1, 2 ∗ k − 1, 2}])
(3(−1 + 2k)2) /

(
2
(
1 + Floor

[
1
2
(−2 + 2k)

]) (
1 + 2Floor

[
1
2
(−2 + 2k)

]) (
3 + 2Floor

[
1
2
(−2 + 2k)

]))
Limit[vhn[k], k → Infinity]//NLimit[vhn[k], k → Infinity]//NLimit[vhn[k], k → Infinity]//N
∞
20/16//N20/16//N20/16//N
1.25
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Plot[{2 ∗ k, (vt[k]/vhn[k])∧(1/k)}, {k, 1, 30}]Plot[{2 ∗ k, (vt[k]/vhn[k])∧(1/k)}, {k, 1, 30}]Plot[{2 ∗ k, (vt[k]/vhn[k])∧(1/k)}, {k, 1, 30}]
Plot::plnr :

(
vt[k]

vhn[k]

)1/k

is not a machine-size real number at k = 1.0000012083333334̀. Mehr. . .

Plot::plnr :
(

vt[k]
vhn[k]

)1/k

is not a machine-size real number at k = 2.1764427556145582̀. Mehr. . .

Plot::plnr :
(

vt[k]
vhn[k]

)1/k

is not a machine-size real number at k = 3.4594551959218367̀. Mehr. . .

General::stop : Further output of Plot::plnr will be suppressed during this calculation. Mehr. . .
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−Graphics−
xy = Table[{x, 2x + Random[NormalDistribution[0, 1]]}, {x,−1, 1, 2/9}];xy = Table[{x, 2x + Random[NormalDistribution[0, 1]]}, {x,−1, 1, 2/9}];xy = Table[{x, 2x + Random[NormalDistribution[0, 1]]}, {x,−1, 1, 2/9}];
g0 = ListPlot[xy, Frame → True, Axes → None, PlotStyle → PointSize[0.02]]g0 = ListPlot[xy, Frame → True, Axes → None, PlotStyle → PointSize[0.02]]g0 = ListPlot[xy, Frame → True, Axes → None, PlotStyle → PointSize[0.02]]
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1
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−Graphics−
yx = Transpose[xy]; y = yx[[2]]; x = yx[[1]]; b1 = Dot[x, y]/Dot[x, x]; b2 = Mean[y/x]yx = Transpose[xy]; y = yx[[2]]; x = yx[[1]]; b1 = Dot[x, y]/Dot[x, x]; b2 = Mean[y/x]yx = Transpose[xy]; y = yx[[2]]; x = yx[[1]]; b1 = Dot[x, y]/Dot[x, x]; b2 = Mean[y/x]
2.13785
g1 = ListPlot[Table[{x, b1 ∗ x}, {x,−1, 1, 2/9}], Frame → True,Axes → None,PlotJoined → True,PlotStyle → Hue[.6]];g1 = ListPlot[Table[{x, b1 ∗ x}, {x,−1, 1, 2/9}],Frame → True,Axes → None, PlotJoined → True, PlotStyle → Hue[.6]];g1 = ListPlot[Table[{x, b1 ∗ x}, {x,−1, 1, 2/9}],Frame → True, Axes → None, PlotJoined → True, PlotStyle → Hue[.6]];
g2 = ListPlot[Table[{x, b2 ∗ x}, {x,−1, 1, 2/9}], Frame → True,Axes → None,PlotJoined → True,PlotStyle → Hue[.9]];g2 = ListPlot[Table[{x, b2 ∗ x}, {x,−1, 1, 2/9}],Frame → True,Axes → None, PlotJoined → True, PlotStyle → Hue[.9]];g2 = ListPlot[Table[{x, b2 ∗ x}, {x,−1, 1, 2/9}],Frame → True, Axes → None, PlotJoined → True, PlotStyle → Hue[.9]];
Show[{g1, g2, g0}]Show[{g1, g2, g0}]Show[{g1, g2, g0}]

-1 -0.5 0 0.5 1

-3

-2

-1

0

1

2

16



−Graphics−

7.75134
3.14/63.14/63.14/6
0.523333
NLimit[Sum[1/i∧2, {i, 1, n, 2}], n → Infinity]NLimit[Sum[1/i∧2, {i, 1, n, 2}], n → Infinity]NLimit[Sum[1/i∧2, {i, 1, n, 2}], n → Infinity]

NLimit
[

π2

8
− 1

4
PolyGamma

[
1, 3

2
+ Floor

[
1
2
(−1 + n)

]]
, n →∞

]

3.14∧2/8 ∗ 23.14∧2/8 ∗ 23.14∧2/8 ∗ 2
2.4649
Plot[x∧2/9, {x,−1, 1}]Plot[x∧2/9, {x,−1, 1}]Plot[x∧2/9, {x,−1, 1}]
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−Graphics−
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