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First version October 2007
Final version: November 2008

Published in: Communications in Dependability
and Quality Management, 11 (2008), 5–25

aDepartment of Economics and Finance, Institute for Advanced Studies, A-1060
Vienna, Austria; e-mail address: soegner@ihs.ac.at



Abstract

In this article we investigate a multi-factor version of the Heston (1993)
stochastic volatility model. First, we provide explicit expressions for excess
kurtosis and autocorrelation of squared returns and show that excess kurtosis
is smaller than three and squared autocorrelations are smaller than 0.2 even
for a multi-factor model. Then we discuss a fully Bayesian analysis based
on Markov chain Monte Carlo (MCMC) estimation and data augmentation
and improve the performance of MCMC estimation by using a partially cen-
tered parametrization of the model. Finally, we apply the multi-factor Heston
stochastic volatility model to simulated as well as to exchange rate data.

Keywords: excess kurtosis, MCMC, parameterization, stochastic volatil-
ity, volatility clustering

1 Introduction

Modern option pricing theory often uses models where a closed form expression
for the price of a European call option is available. A first yardstick when consid-
ering option pricing theory is the Black and Scholes (1973) model, however, this
model fails to reproduce important stylized features of financial time series such as
excess kurtosis and volatility clustering. To capture such stylized features stochastic
volatility models have been introduced such as Gaussian Ornstein-Uhlenbeck pro-
cesses for the volatility (Stein and Stein, 1991) or for the log volatility (Jacquier,
Polson, and Rossi, 1994; Andersen and Lund, 1997; Hull and White, 1987), constant
elasticity models (Heston, 1993; Meddahi and Renault, 2000), jump diffusion type
models (Duffie, Pan, and Singleton, 2000; Bollerslev and Zhou, 2002), or Ornstein-
Uhlenbeck processes driven by a Lévy process (Barndorff-Nielsen and Shephard,
2001).

To account for volatility clustering and excess kurtosis in a more flexible way,
several authors (Barndorff-Nielsen and Shephard, 2001; Bai, Russell, and Tiao, 2003;
Chernov, Gallant, Ghyseks, and Tauchen, 2003) demand for multi-factor stochastic
volatility models because a one factor model often fails to fit periods of high volatility.
In this paper we investigate a multi-factor version of the Heston (1993) stochastic
volatility model. We derive explicit expressions for excess kurtosis and volatility
clustering in the marginal distribution of the returns generated by this model. We
show that in contrast to other multi-factor stochastic volatility models the scope for
volatility clustering and excess kurtosis is limited for a Heston stochastic volatility
model and does not increase when adding additional factors.

As for other stochastic volatility models, see, for instance, Aı̈t-Sahalia (2007) for
a recent review, parameter estimation turns out to be a challenge for the multi-factor
Heston stochastic volatility. Following the seminal paper by Jacquier et al. (1994) we
pursue a Bayesian approach as many other authors did for related models, see e.g.
Elerian, Chib, and Shephard (2001), Eraker (2001), Jones (2003), Jacquier, Polson,
and Rossi (2004), Roberts, Papaspiliopoulos, and Dellaportas (2004), Griffin and
Steel (2006), Bates (2006), Kalogeropoulos (2007), Frühwirth-Schnatter and Sögner
(2008), Golightly and Wilkinson (2008), and Strickland, Martin, and Forbes (2008).
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Alternative estimation methods that have been or could be applied include simu-
lations (Gallant and Tauchen, 1996), generalized methods of moments (Barndorff-
Nielsen and Shephard, 2002; Bollerslev and Zhou, 2002), efficient method of moments
(Chernov et al., 2003), spectral GMM (Singleton, 2001; Chacko and Viceira, 2003),
non-parametric techniques (Stanton, 1997) and methods based on approximation of
the transition densities of the stochastic differential equation (Aı̈t-Sahalia, 2002).
In comparison to these approaches Bayesian estimation provides us with a lot of
extra information like posterior estimates of the instantaneous volatilities and the
increases in integrated volatility.

Bayesian inference for stochastic volatility models is carried out using data
augmentation and Markov chain Monte Carlo (MCMC) sampling. Usually, intra-
observations times are introduced between each pair of discrete observations and a
first order Euler scheme is applied to approximate the underlying transition density.
In the present paper we consider for the Heston stochastic volatility model alter-
native latent processes as missing data, namely the instantaneous and integrated
volatilities. When implementing our Metropolis-Hastings algorithm we provide a
new solution to the problem that the transition density, in this case the joint den-
sity of instantaneous and integrated volatility, is not available in closed form. Since
the characteristic function of the transition density is known in closed form, we use
a normal approximation of this bivariate density where the first two moments are
derived from the characteristic function.

It is well known that the convergence behavior of MCMC sampling crucially
depends on the parameterization of the latent process, see, for instance, Papaspili-
opoulos, Roberts, and Skold (2003), Roberts et al. (2004), Kalogeropoulos (2007),
Frühwirth-Schnatter and Sögner (2008), Golightly and Wilkinson (2008), and Strick-
land et al. (2008). Also for the Heston model a centered parameterization based on
the instantaneous and integrated volatilities leads to a very poor performance of the
corresponding MCMC sampling. To make MCMC estimation feasible we consider a
partially centered version of the latent process in the spirit of Papaspiliopoulos et al.
(2003) and show that the performance of the resulting MCMC sampler improves
considerably.

The rest of the paper is organized as follows. In Section 2 we study the multi-
factor Heston stochastic volatility model. Section 3 deals with Bayesian estimation
using data augmentation and MCMC. Finally in Section 4 we discuss an application
to simulated and to exchange rate data.

2 The Multi-factor Heston Stochastic Volatility

Model

2.1 Model Formulation

We investigate the following multi-factor stochastic volatility model based on Heston
(1993):

dy?(t) = (µ + βσ2(t)) dt + σ(t) dW0(t) , (1)
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where the actual volatility σ2(t) is given by a superposition of k independent square
root processes:

σ2(t) =
k∑

i=1

σ2
i (t) , (2)

dσ2
i (t) = λi(αi − σ2

i (t)) dt + τiσi(t) dWi(t), (3)

with Wi(t), i = 0, 1, . . . , k being independent Brownian motions.
We focus on the case, where the parameters α = (α1, . . . , αk)

′, λ = (λ1, . . . , λk)
′,

and τ = (τ1, . . . , τk)
′ are unknown and have to be inferred from the data. The

parameters µ and β will not be estimated and set to zero. The parameter αi is the
mean of the instantaneous volatility process σ2

i (t) and τi is the volatility of volatility
parameter. The parameter λi is often interpreted as the speed of mean reversion.

If the parameters satisfy λi > 0 and 2λiαi/τ
2
i ≥ 1 (Feller condition), then a

stationary law of σ2
i (t) exists, given by the Gam(ai, bi)-distribution with bi = 2λi/τ

2
i

and ai = biαi, hence E(σ2
i (t)) = αi, and σ2

i (t) > 0 with probability one. The Feller
condition implies τ 2

i /(2λi) ≤ αi which restricts the volatility of the volatility in the
following way: var(σ2

i (t)) = αiτ
2
i /(2λi) ≤ α2

i . We show in the next subsection that
this restricts the moments of the distribution of aggregate returns, in particular the
kurtosis as well as the autocorrelation of the squared returns in an unexpected way.

2.2 Excess Kurtosis and Volatility Clustering

The need for multi-factor models has been motivated by the fact that one-factor
models poorly capture excess kurtosis and volatility clustering (Bai et al., 2003;
Chernov et al., 2003). To evaluate the multi-factor Heston stochastic volatility
model in this respect we derive explicit expressions for the implied excess kurtosis
and volatility clustering of returns observed at regular time points tn = n∆. First,
we define the integrated volatility:

σ2?(t) =
k∑

i=1

σ2?
i (t), σ2?

i (t) =

∫ t

0

σ2
i (u) du ,

and the increases in integrated volatility hn from tn−1 = (n− 1)∆ to tn = n∆,

hn =
k∑

i=1

hi,n, hi,n = σ2?
i (tn)− σ2?

i (tn−1).

One has to distinguish between the conditional and the marginal distribution of the
returns yn. Conditionally on hn the returns are normally distributed,

yn|hn ∼ N (0, hn), (4)

while the marginal distribution of yn where hn is integrated out is nonnormal. It is
possible to derive the moments of this distribution as well as the autocorrelation of
yn and y2

n from the moments of hn, see Appendix B. The first three moments are
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given by:

E(yn) = E(y3
n) = 0, (5)

var(yn) = E(y2
n) = E(hn) = ∆

k∑
i=1

αi. (6)

The kurtosis coefficient kur(yn) is given by, see (34):

kur(yn) = 3 + 3
var(hn)

E(hn)2
. (7)

The process yn is uncorrelated, while y2
n is correlated, see (35):

corr(y2
n, y2

n−s) =
cov(hn, hn−s)

3 var(hn) + 2 E(hn)2
. (8)

From (7) and (8) it is evident that the Heston model allows for excess kurtosis and
volatility clustering, however, the range of these features is rather limited. As shown
in Appendix B, equation (27), the coefficient of variation of hn is bounded:

var(hn)

E(hn)2
≤ 1, (9)

which implies an upper bound both for excess kurtosis and volatility clustering. It
follows immediately from (7) that the kurtosis coefficient lies in the interval [3,6]
and excess kurtosis is limited by 3 even for a multi-factor model. Furthermore, the
bound (9) implies E(hn)2 ≥ var(hn) and therefore:

corr(y2
n, y2

n−s) ≤
cov(hn, hn−s)

3 var(hn) + 2 var(hn)
=

1

5
corr(hn, hn−s). (10)

Thus the autocorrelation function of the squared returns is limited by 1/5.
In contrast to other multi-factor stochastic volatility models like the model

suggested in Barndorff-Nielsen and Shephard (2001), where a multi-factor model
increases the flexibility of the marginal distribution of the returns significantly, the
ability of the Heston model to capture properties of empirical times series does not
increase when using multifactor models, since the upper bounds on the kurtosis coef-
ficient and the autocorrelation of the squared returns are independent of the number
k of factors. This result implies that the multi-factor Heston stochastic volatility
model is likely to be too restrictive for time series that are typically observed in
financial markets. It has been observed earlier in the empirical studies by Boller-
slev and Zhou (2002) and Jones (2003) that the Heston model is inferior to other
stochastic volatility models such as the CEV model and the two-gamma model.

3 Bayesian Estimation of the Heston Model

Let y = {yn}N
1 denote a sequence of N returns observed at regular intervals within

the time span [0, T ], where T = N∆. The same time grid is applied to the instan-
taneous volatilities σ2

i (t). Thus {σ2
i,n}N

0 are N + 1 instantaneous volatilities in the
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time span [0, T ] observed at equidistant intervals ∆, whereas σ2
n =

∑k
i=1 σ2

i,n is the
actual volatility, see (2). The whole vector of unknown parameters is abbreviated
by θ, whereas θi = (αi, λi, τi)

′ refers to the parameters of factor i. The goal of
this section is to describe how the model parameters θ can be estimated from the
observed returns y by a Bayesian approach using data augmentation and MCMC
estimation.

3.1 Parameterization of the latent volatility processes

Bayesian estimation of θ given y is based on data augmentation by introducing a
latent processes X which together with θ constitites our set of unknown quantities
that need to be inferred from the data. An MCMC scheme is then constructed based
on sampling alternatively from p(X|θ, y) and p(θ|X, y).

It is a well known that the appropriate choice of the latent process X may cru-
cially influence the convergence behavior of the resulting MCMC sampler. Papaspi-
liopoulos et al. (2003) and Roberts et al. (2004) found that a non-centered parameter-
ization based on choosing latents processes X that are independent of the unknown
model parameters θ often exhibits superior sampling properties. Refinements and
applications of this concept are provided in Kalogeropoulos (2007), Frühwirth-
Schnatter and Sögner (2008), Golightly and Wilkinson (2008), and Strickland et al.
(2008).

In the context of the Heston stochastic volatility model natural candidates for
the latent processes are the integrated volatilities and the instantaneous volatilities,
suggesting to choose X = (h1, . . . , hN , σ2

0, . . . , σ
2
N), where hn = (h1,n, . . . , hk,n)′

and σ2
n = (σ2

1,n, . . . , σ2
k,n)′, respectively. However, as expected from Papaspiliopoulos

et al. (2003) such a centered parameterization leads to a very poor performance of
the resulting MCMC scheme.

One could define a non-centered parameterization in the spirit of Roberts et al.
(2004) by considering following standardized random variables hi,n,NC and σ2

i,n,NC :

hi,n,NC =
hi,n − ai

Ai

, σ2
i,n,NC =

σ2
i,n − bi

Bi

, (11)

where ai = αi∆ and bi = αi are the expected values of hi,n and σ2
i,n and Bi =

var(σ2
i,n)1/2, where var(σ2

i,n) = αiτ
2
i /(2λi), while Ai = ∆Bi approximates the stan-

dard deviation of hi,n. However, also a non-centered parameterization based on
choosing hi,n,NC and σ2

i,n,NC as latent variables leads to a very poor performance of
the resulting MCMC scheme. Also Papaspiliopoulos et al. (2003) found examples of
normal hierarchical models where the non-centered parameterization did not lead to
good sampling properties. For the normal hierarchical model the convergence rate
of either parameterization depends on the proportion of volatility in the observation
equation and in the latent equation, respectively. This motivated Papaspiliopoulos
et al. (2003) to construct a partially centered parameterization.

In this paper we follow their approach and propose a partially centered parame-
terization with respect both to the mean and the variance.1 Partially centering of a

1In a prior version of this paper Frühwirth-Schnatter and Sögner (2002) developed another
partially centered parameterization with respect to location. In this approach the dimension of
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stochastic volatility model is based on subtracting from σ2
i,n the fraction νibi, where

νi ∈ [0, 1], and dividing the resulting variable by the fractional power Bγi

i , where
γi ∈ [0, 1]. Similar considerations apply to the increases in integrated volatility hi,n.
This leads to following partially centered volatilities:

hi,n,PC =
hi,n − νiai

Aγi

i

, σ2
i,n,PC =

σ2
i,n − νibi

Bγi

i

. (12)

For νi = γi = 0 this degenerates to the centered parameterization, while the non-
centered parameterization (11) results with νi = γi = 1.

A certain drawback of the parameterization (12) is that the domain of (σ2
i,n,PC ,

hi,n,PC) is <2, while σ2
i,n and hi,n are strictly larger than zero. To ensure that for a

certain configuration of (σ2
i,n,PC , hi,n,PC) and (αi, τi, λi) the implied values of σ2

i,n and
hi,n are positive, the MCMC sampler rejects draws for which this is not the case.

Let us relate our approach to the current literature. As regards centering with
respect to volatility, Roberts and Stramer (2001) propose a transformation to obtain
a constant variance setting for non-linear diffusions. We do not apply this transfor-
mation for the following reasons: first, the transformation of Roberts and Stramer
(2001) is path dependent, while we obtain another square root process when mul-
tiplying the centered square root process with the constant 1/Bγi

i . Second, it
turned out that working with γi = 1 results in MCMC samples with downward
biased volatilities of volatilities. Kalogeropoulos (2007) extended the methodology
of Roberts and Stramer (2001) to multivariate diffusions and apply this concept also
to the Heston model, with the result that the autocorrelations of the MCMC paths
decrease, however the state-space equation becomes highly non-linear. In this paper
we construct an affine transformation, leading to similar serial correlation in the
MCMC samples.

Golightly and Wilkinson (2008) propose a methodology for non-linear diffusions
observed with noise to break down the dependence structure between the diffusion
coefficient and the quadratic variation. By applying the Euler scheme, the latent
process is transformed in such a way that sampling from diffusion bridges becomes
possible. Strickland et al. (2008) develop non-centering with respect to mean and
scale for a Heston type stochastic volatility model and apply affine transformations
different from those used in this paper to the volatility process.

3.2 Prior Distributions

Instead of α = (α1, . . . , αk)
′, we consider a different parameterization where α̃ =

(
∑k

i=1 αi, α2, . . . , αk)
′. We use the following prior distribution:

p(θ) ∝ p(α̃)
k∏

i=1

p(λi|τi)p(τi)1{2λiαi/τ2
i ≥1} , (13)

where τi ∼ Gam(d0, D0)-distribution and λi|τi ∼ Gam(l0/τi, L0). We set d0 = 0.2,
D0 = 0.2, l0 = 0.05, and L0 = 2 in our applications. The indicator function in (13)
accounts for the Feller condition

the parameters space has been enlarged. This is not the case with the approach developed in this
article.
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For α2, . . . , αk we use independent non-informative truncated normal priors, αi ∼
N (1, 1000)1(αi>0), i = 2, . . . , k. We assume

∑k
i=1 αi|α2, . . . , αk ∼ N (a0, A0)1(α1>0),

where a0 =
∑N

n=1 y2
n/(N∆) is a moment estimator of

∑k
i=1 αi and the prior is

comparatively informative with A0 = a00.025. a0 is obtained by estimating the
quadratic variation by

∑N
n=1 y2

n, and using the fact that the expected integrated

volatility on [0, N∆] is equal to N∆
∑k

i=1 αi.
Finally, for the instantaneous volatility process at t = 0, we assume σ2

0,i ∼
Gam(s0, S0), where s0 = 1/10000 and S0 = 1/1000.

3.3 MCMC Estimation

In the partially centered parameterization introduced in Subsection 3.1, the latent
process equals X = (h1,PC , . . . , hN,PC ,σ2

0,σ
2
1,PC , . . . , σ2

N,PC) where hn,PC = (h1,n,PC ,
. . . , hk,n,PC)′ and σ2

n,PC = (σ2
1,n,PC , . . . , σ2

k,n,PC)′. By Bayes theorem, the joint pos-
terior distribution of X and θ is given by

p(X,θ|y) ∝ p(y|X,θ)p(X|θ)p(θ),

where p(θ) is the prior distribution discussed in Subsection 3.2.
The complete data likelihood p(y|X, θ) is easily obtained from (4) as the product

of N densities from a normal distribution, where by the definition of the partially
centered parameterization hi,n = Aγi

i hi,n,PC + νiai.
The density p(X|θ) is given by

p(X|θ) =
k∏

i=1

(
p(σ2

i,0|θi)
N∏

n=1

p(hi,n,PC , σ2
i,n,PC |σ2

i,n−1,θi)

)
, (14)

where σ2
i,n = Bγi

i σ2
i,n,PC + νibi. The choice of the prior distributions p(σ2

i,0|θi) has
been discussed in Subsection 3.2. The transition density of the partially centered
volatilities is related to the transition density of the original stochastic volatility
model by the density transformation formula:

p(hi,n,PC , σ2
i,n,PC |σ2

i,n−1, θi) = p(hi,n, σ
2
i,n|σ2

i,n−1, θi)(AiBi)
γi .

The transition density p(hi,n, σ
2
i,n|σ2

i,n−1,θi) cannot be derived analytically, but the
Fourier transform φ(u, v|σ2

i,n−1,θi) is available in closed form, see Appendix A. The
inversion formula (see e.g. Klenke (2008))

p(hi,n, σ
2
i,n|σ2

i,n−1,θi) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−ı(uhi,n+vσ2

i,n)φ(u, v|σ2
i,n−1, θi) du dv

could be applied to compute the functional value p(hi,n, σ
2
i,n|σ2

i,n−1,θi), however, since
integration cannot be performed analytically, bivariate numerical integration has to
be applied for each i = 1, . . . , k and n = 1, . . . , N , to obtain p(X|θ). This renders the
application of a Metropolis Hastings algorithm to sample from p(X,θ|y) extremely
slow. Therefore, we approximate each transition density p(hi,n, σ

2
i,n|σ2

i,n−1,θi) by a
bivariate normal density, where we use the characteristic function φ(u, v|σ2

i,n−1,θi)
to match the first two moments, see Appendix D for more details.
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To sample X and θ from the posterior distribution p(X,θ|y), a Markov chain
Monte Carlo sampler is constructed which samples from the following conditional
densities using a Metropolis Hastings (MH) algorithm:

Step 1: Sample α̃ from p(α̃|y,X,λ, τ ).

Step 2: For i = 1, . . . , k, sample (λi, τi) from p(λi, τi|y,X, α,λ−i, τ−i).

Step 3: Sample X from p(X|y,θ).

In the first step, we update α̃ = (
∑

i αi, α2, . . . , αk)
′ in one block, using the following

random walk proposals. A new value for
∑

i αi is proposed from (
∑

i α
old
i ) exp(cαζ1),

whereas a new value for αi, i = 2, . . . , k is proposed from αold
i exp(cαζi), where

ζi ∼ N (0, 1) for i = 1, . . . , k and cα = 0.1. In the second step, λi and τi are updated
jointly for each factor i by proposing new values for λi and τi from λold

i exp(cλελ,i) and
τ old
i exp(cτετ,i), respectively, where ελ,i and ετ,i are i.i.d. N (0, 1) and cλ = cτ = 0.1.

Updating of the latent process X in the third step is performed on a factor wise
basis for each i = 1, . . . , k by updating all volatilities (hi,n,PC , σ2

i,n,PC) on a whole
block n1 ≤ n ≤ n1 + B − 1 of size B. Each pair (hi,n,PC , σ2

i,n,PC) is proposed from

N2((h
old
i,n,PC , σ2,old

i,n,PC)′,Ci) with Ci = 0.1 diag(max{h̄old
i,n,PC , 0.5√

var(hold
i,n,PC)}, max{σ̄2,old

i,n,PC , 0.5
√

var(σ2,old
i,n,PC)}), where h̄old

i,n,PC and var(hold
i,n,PC) are

sample mean and the sample variance of hold
i,n,PC over n = 1, . . . , N , and similarly for

σ̄2,old
i,n,PC and var(σ2,old

i,n,PC). The starting value σ2
i,0 is updated whenever n1 = 1.

Concerning the blocking strategy, we choose with equal probability between a
complete update of the latent process and an update of randomly selected number of
blocks. In the former case we draw the block sizes from a Poisson distribution with
expectation 10 until the whole path has been partitioned. For the latter updating
scheme we draw the number of blocks from a Poisson distribution with expectation
five. For each block n1 is derived from a uniform distribution on the grid 1, . . . , N−1
and the block size is once again Poisson with expectation 10.

4 Results

4.1 Performance in simulated data and the level of centering

First we test and tune our sampler for simulated data with N = 500 observations
generated from a one factor model using two sets of parameters given in Table 1. For
the centered and the non-centered parameterization MCMC convergence properties
are extremely poor which motivated us to construct the partially centered param-
eterization introduced in Subsection 3.1. The application of this parameterization
requires tuning of ν and γ.

Roberts and Stramer (2001) and Papaspiliopoulos et al. (2003) derive tools to
calculate an at least approximately optimal level of partially centering with respect
to the mean for hierarchical models. For discretely observed diffusions with non-
constant ”volatility of volatility” finding such a transformation is not evident, see
e.g. the discussion of Wilkinson (2003). In Appendix C we extend the methodology
of Papaspiliopoulos et al. (2003) to stochastic volatility models to derive an optimal
degree of centering with respect to the mean for a given level γ of centering with
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respect to the variance and obtain following result:

ν =
2(ã− 1)(ã− 2)

2(ã− 1)(ã− 2) + ã
, (15)

if ã = 2αλ/τ 2 > 2, and ν = 0 otherwise. Interestingly, optimal centering with
respect to the mean is independent of γ. Note that the condition for partially
non-centering is stronger than the Feller condition which implies 2αλ/τ 2 ≥ 1.

ν is monotonically increasing in ã and the partial derivatives are positive with
respect to α and λ and negative with respect to τ . That means the smaller the
volatility of volatility τ and the higher the level α the more non-centering with
respect to the mean is required. Furthermore the speed of mean reversion exp(−λ∆)
has an influence on how much centering with respect to the mean is required. The
higher the persistence, i.e. the smaller λ, the more centering is required. Similar
results were obtained by Pitt and Shephard (1999) and Frühwirth-Schnatter (2004)
for discrete time, time-varying parameter models.

The optimal level of centering with respect to the variance, controlled by γ, is
derived by means of tuning and comparing the efficiency of the resulting samplers.
For the setting where λ = 0.2, τ = 0.2 and α = 0.35 rule (15) recommends approx-
imately ν = 0.8. Tuning of γ led to a value of γ = 0.35. For the larger speed of
mean reversion setting where α = 0.35, λ = 1.5 and τ = 0.5 rule (15) recommends
approximately ν = 0.9. By tuning we found that γ in the range of 0.75 is necessary
to obtain reasonable sampling properties.

MCMC sampling was carried out for 50,000 steps after a burn-in of 30,000 steps.
The MH acceptance rates for X are approximately 7%, while we observed accep-
tance rates between 30% and 40% for the components of θ. Although the repa-
rameterization improves the sampling properties compared to completely centered
or non-centered parameterizations, the autocorrelations of the simulated paths still
remain high. The first order autocorrelations of α lie in the range of 0.6 to 0.7. For
λ and τ first order autocorrelations lie in the range of 0.8 to 0.85 for the low speed
of mean reversion setting (λ = 0.2) and in the range of 0.97 to 0.975 for the high
speed of mean reversion the setting (λ = 1.5).

The resulting parameter estimation is reported in Table 1. The estimators based
on the posterior mean are near the true values and the standard deviations derived
from the variance-covariance matrix of the MCMC draws indicate that the estima-
tors are quite precise. The estimator for λ is more efficient for the setting with low
volatility and low speed of mean reversion (λ = 0.2, τ = 0.2) than for the high speed
of mean reversion/high volatility case (λ = 1.5, τ = 0.5).

Moreover we analyze the simulated paths of σ2
n. For each path we calculate the

mean σ̄2
n and the variance v̂ar(σ2

n). We observe that the average of σ̄2
n, ave(σ̄2

n),
is close to the true stationary mean E(σ2

n) = α. A comparison of the average of
v̂ar(σ2

n), ave(v̂ar(σ2
n)), and the true stationary volatility var(σ2

n)= ατ 2/(2λ) indicates
that the simulated latent paths exhibit a slightly too small volatility. By a careful
look we observe a trade-off between volatility of volatility τ and the speed of mean
reversion λ, with τ̂ being too small and λ̂ being too large. Here the sampler tends
to “mix-up” mean reversion with noise.
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Parameters Latent Process

α λ τ ατ2

2λ
E(σ2

n) var(σ2
n)

0.35 0.2 0.2 0.035 0.35 0.035

α̂ λ̂ τ̂ ave(ατ2

2λ
) ave(σ̄2

n) ave(v̂ar(σ2
n))

0.3551 0.2396 0.1746 0.0228 0.3611 0.0188
(0.0738) (0.0268) (0.0090) (0.0026) (0.0231) (0.0017)

α λ τ ατ2

2λ
E(σ2

n) var(σ2
n)

0.35 1.5 0.5 0.0292 0.35 0.0292

α̂ λ̂ τ̂ ave(ατ2

2λ
) ave(σ̄2

n) ave(v̂ar(σ2
n))

0.3534 1.6058 0.4233 0.0198 0.3420 0.0190
(0.0035) (0.1440) (0.0271) (0.0026) (0.0142) (0.0039)

Table 1: Performance in simulated data for two parameter settings. Posterior means
and standard deviations (in parentheses) are based on 50,000 MCMC draws (after
30,000 burn-in steps) using a partially centered parameterization with ν = 0.8 and
γ = 0.35 for λ = 0.2 and τ = 0.2 and ν = 0.9 and γ = 0.75 for λ = 1.5 and τ = 0.5.

4.2 Application to Daily DM/US$ Exchange Rate Data

We apply our estimation methodology to daily DM/US$ exchange rate data from
January 1997 to December 1998 where N = 500.2 Squared returns are shown in the
left hand panel of Figure 1.

The main reason behind choosing this particular data set is the limitation of the
Heston model to explain higher levels of excess kurtosis and volatility clustering as
discussed in Subsection 2.2. Both the level of volatility clustering and excess kurtosis
is relatively low for this data set compared to time series data usually observed on
financial markets with the lag 1 autocorrelation of the squared returns equals 0.0576
and the kurtosis coefficient equals 3.5.

4.2.1 Bayesian Parameter estimation

MCMC estimation of a one and a two factor model was carried out for 500,000 steps,
where we discarded the first 200,000 samples as burn-in. Estimation is based on a
partially centered version where γ = 0.35 and ν = 0.8 for the one factor model,
while (γ1, γ2)

′ = (0.35, 0.75) and (ν1, ν2)
′ = (0.9, 0.9)′ for the two factor setting.

Table 2 presents the means and the standard deviations of the marginal posteriors
of the model parameters for the one factor and the two factor setting. For the two
factor model we obtain λ1 < λ2, i.e. the persistence of the first factor is larger than
that of the second one, exp(−λ̂1) = 0.92 versus exp(−λ̂2) = 0.35. The first factor
describes the persistent part of the exchange rate volatility, while the second factor
is responsible for innovations of lower memory.

In Figure 1 we present the posterior mean of the instantaneous volatility process
for the two factor setting. The dash lines in Figure 1 represent a confidence inter-
val, obtained by taking the posterior mean ± posterior standard deviation of the

2The data were downloaded from the Deutsche Bundesbank
http://www.bundesbank.de/statistik/statistik zeitreihen.php?func=row&tr=wt5009
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Figure 1: Daily squared returns y2
n of DM/US$ exchange rate data from January

1997 to December 1998 (left hand panel); posterior means (solid line) and confidence
intervals (means ± standard deviations; dashed lines) of the instantaneous volatility
samples for a two factor Heston stochastic volatility model obtained from 500, 000
simulation steps after 200, 000 burn-in steps (right hand panel).

instantaneous volatility process. When comparing both figures we observe that the
estimated instantaneous volatility path and the squared returns have a “similar”
pattern. However, the volatility path is much smoother, which is, of course, caused
by the autoregressive structure of the volatility process.

4.2.2 Model Validation

Table 3 displays several descriptive statistics of the observed time series. To evaluate
whether the one and the two factor Heston stochastic volatility model is able to
reproduce these features, we derive the posterior distribution of these statistics using
Bayesian predictive methods as in Gelman, Meng, and Stern (1996). Based on the
MCMC samples from the posterior density p(θ,X|y) of a one or a two factor model,
we simulate for each MCMC draw θ a return time series with N = 500 observations
and compute the corresponding statistics. This Monte Carlo experiment results in
a distribution of the skewness coefficient skew(yn), the kurtosis coefficient kur(yn),
the autocorrelation function corr(yn, yn−s) of the returns and the autocorrelation
function corr(y2

n, y2
n−s) of the squared returns. A model is able to reproduce the

characteristics of the empirical time series, if the descriptive statistics of the observed
time series are covered by these distributions.

Table 3 shows for several statistics that the observed values are well covered by
these distributions both for a one and a two factor model. In addition we calculated
autocorrelations of higher order. Here, the decay in autocorrelations implied by the
model is stronger than the decay in the empirical autocorrelations of the squared
returns and the observed values were not covered by the simulated distributions.

As expected from Subsection 2.2, a two factor model does not improve the fit
regarding the marginal distribution of the exchange rate returns. However, this does
not mean that the second factor is not necessary. The MCMC sampler has identified
significantly different estimates of the speed of mean reversion λ1 and λ2 for the two
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k = 1

α̂ λ̂ τ̂

0.3542 0.0827 0.0680

(0.0092) (0.0205) (0.0103)

k = 2

α̂1 λ̂1 τ̂1 α̂2 λ̂2 τ̂2

0.1931 0.0811 0.1031 0.1571 1.0402 0.1308

(0.0236) (0.0266) (0.0107) (0.0236) (0.2104) (0.0468)

Table 2: Daily DM/US$ exchange rates from January 1998 to December 1998. Pos-
terior means and standard deviations (in parentheses) are based on 500,000 MCMC
draws (after 200,000 burn-in steps) using a partially centered parameterization with
ν = 0.8 and γ = 0.35 for a one factor model and ν = (0.9, 0.9)′ and γ = (0.35, 0.75)′

for a two factor model.

skew(yn) kur(yn) corr(yn, yn−1) corr(y2
n, y

2
n−1)

empirical data -0.2120 3.4999 -0.0201 0.0576

k = 1 -7.2e-5 3.1921 -0.0020 0.0257

(0.1243) (0.2946) (0.0458) (0.0500)

k = 2 0.0019 3.1906 -0.0018 0.0196

(0.1256) (0.2866) (0.0459) (0.0483)

Table 3: Time series properties of empirical DM/US$ exchange rate data and simu-
lated statistics (mean values, standard deviations in parentheses) from the posterior
of a one factor and a two factor setting.
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Figure 2: Squared returns y2
n of daily DM/US$ exchange for the period n = 435 to

n = 460 (left hand panel). Posterior means of the instantaneous volatility samples
for a one factor model (dashed line) and a two factor model (solid line) derived from
500, 000 simulation steps after 200, 000 burn-in steps (right hand panel).

factor setting, see again Table 2. Therefore, we expect that the sampler has inferred
additional information, which is not represented by the analysis in Table 3.

The point is that extreme realizations of the squared returns y2
n have a relatively

low persistence for these data. A one factor model cannot account for this behavior.
Figure 2 illustrates this point for the subperiod from n = 435 to n = 460. We
observe spikes in the squared returns for n = 437, 441, 443 and 448. Between these
observations and after observation n = 448, we observe moderate squared returns.
The dashed and the solid line in the right panel of Figure 2 plot the sample mean of
the instantaneous volatility for a one and a two factor model. For a one factor model
σ2

n reacts with short delay to larger observations of y2
n due to the persistence implied

by λ. After extreme yields, the estimates of σ2
n return to a level around the mean

α = 0.35. For the two factor model one factor accounts for changes in volatility,
while the second accounts for the baseline volatility. Therefore, the estimates of
σ2

1,n + σ2
2,n increase with the observations n = 437, 441, 443 and 448. The increases

in σ2
n are less pronounced with the observations n = 443 and 448. Here the estimated

levels of volatility in the last period, σ2
n−1, are already high enough to cope with the

next realization of y2
n. Summing up, although the advantage of a two factor model

cannot be observed with the marginal distribution of the returns, a more plausible
behavior after extreme events can be derived with a two factor setting.

5 Concluding Remarks

This article has implemented a Bayesian analysis of the Heston (1993) stochastic
volatility model using data augmentation and MCMC. We observed that different
parameterizations of the latent volatility process and the parameters of the volatility
process result in very different convergence behavior of the MCMC sampler. A stan-
dard MCMC implementation based on introducing the instantaneous volatilities and
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the increases in integrated volatility as latent variables failed completely. MCMC
became feasible by considering a partially centered version of the latent process.

To implement the Metropolis-Hastings algorithm within our MCMC scheme we
had to come up with an approximation to the joint transition density of the inte-
grated and actual volatility which is not available in closed form. To this aim we
used a normal approximation of this bivariate density derived from the character-
istic function of the transition density. A direct inversion of the Fourier transform
turned out to be inefficient from a computational point of view.

For a larger step-width the methodology of Elerian et al. (2001) or Eraker (2001)
can be included into our estimation methodology. Since for a lot of stochastic volatil-
ity models only the characteristic function of the latent volatility process is avail-
able, e.g. for models based on Barndorff-Nielsen and Shephard (2002), this approach
should be useful for Bayesian estimation of a much broader class of stochastic volatil-
ity models.

Finally, we proved that the applicability of the Heston stochastic volatility model
is limited for typical time series from financial markets and should be applied only
to returns with an excess kurtosis smaller than 3 and autocorrelations of squared
returns smaller than 0.2. This provides a theoretical foundation for empirical results
obtained by Bollerslev and Zhou (2002) and Jones (2003).
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A Conditional Densities and Moments

For (hi,n, σ
2
i,n)′ the characteristic function φ(u, v|σ2

i,n−1,θi) is given by (see Lamberton
and Lapeyre (1996, p. 130))3:

φ(u, v|σ2
i,n−1,θi) = E[exp(ıuhi,n + ıvσ2

i,n)] exp(Bφ1) exp(−Bφ2σ
2
i,n−1) ,

where ı =
√−1 and

Bφ1 =
2αiλi

τ 2
i

log

(
2γi exp(0.5∆(γi + λi))

τ 2
i (−ıv)(exp(γi∆)− 1) + γi − λi + exp(γi∆)(γi + λi)

)
,

Bφ2 =
(−ıv)(γi + λi + exp(γi∆)(γi − λi)) + 2(−ıu)(exp(γi∆)− 1)

τ 2
i (−ıv)(exp(γi∆)− 1) + γi − λi + exp(γi∆)(γi + λi)

,

γi =
√

λ2
i + 2τ 2

i (−ıu) .

The conditional expectation of hi,n, σ
2
i,n|σ2

i,n−1 is derived by calculating the gradient
vector of the characteristic function at u = v = 0. This results in

E(hi,n|σ2
i,n−1,θi) = αi∆ + (σ2

i,n−1 − αi)
1− exp(−λi∆)

λi

, (16)

E(σ2
i,n|σ2

i,n−1,θi) = (σ2
i,n−1 − αi) exp(−λi∆) + αi . (17)

The conditional covariance of hi,n and σ2
i,n can be derived4 from the property of

characteristic functions that

E(hi,nσ
2
i,n|σ2

i,n−1,θi) = (1/ı2)
∂2

∂u∂v
φ(0, 0|σ2

i,n−1,θi) . (18)

3This textbook provides the Laplace transform, a substitution of the convolution parameters
(u, v) by (−ıu,−ıv) provides us with the Fourier transform.

4Here we used Mathematica 4.2.
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Using (18) and the conditional first moments given by (16) results in:

var(hi,n|σ2
i,n−1,θi) (19)

=
exp(−2λi∆)τ 2

i

2λ3
i

αi[1 + 4 exp(λi∆)(1 + λi∆) + exp(2λi∆)(−5 + 2λi∆)]

+
exp(−2λi∆)τ 2

i

2λ3
i

2σ2
i,n−1[−1 + exp(2λi∆)− 2 exp(λi∆)λi∆],

var(σ2
i,n|σ2

i,n−1, θi) (20)

=
exp(−2λi∆)(−1 + exp(λi∆))τ 2

i

2λi

(
αi(−1 + exp(λi∆)) + 2σ2

i,n−1

)
,

cov(hi,n, σ
2
i,n|σ2

i,n−1,θi) =
τ 2
i exp(−2λi∆)

2λ2
i

αi(−1 + exp(2λi∆) (21)

−2λi∆ exp(λi∆)) +
τ 2
i exp(−2λi∆)

2λ2
i

2σ2
i,n−1(1 + exp(λi∆)(−1 + λi∆)).

Equation (19) exactly corresponds to the conditional variance obtained in Bollerslev
and Zhou (2002, p. 57, Eq. A.5).

B Marginal Moments and Autocorrelations

In Appendix B.1 we compute the mean and the variance of the increases in integrated
volatility hn as well as the autocorrelation function of hn. These results are used
in Appendix B.2 to compute the marginal moments of the returns yn as well as the
autocorrelation function of yn and y2

n.

B.1 Marginal Moments and Autocovariance of Increases in
Integrated Volatility

The marginal moments E(hn) and var(hn) are obtained from the conditional moments
in Appendix A.

B.1.1 Mean and Variance

From (16) and E(σ2
i,n−1) = αi we obtain:

E(hn) =
k∑

i=1

E(E(hi,n|σ2
i,n−1)) (22)

= ∆
k∑

i=1

αi +
k∑

i=1

1− exp(−λi∆)

λi

E(σ2
i,n−1 − αi) = ∆

k∑
i=1

αi.

Since h1,n, . . . , hk,n are independent we obtain

var(hn) =
k∑

i=1

var(hi,n) =
k∑

i=1

E(var(hi,n|σ2
i,n−1)) +

k∑
i=1

var(E(hi,n|σ2
i,n−1)).
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From (16) and var(σ2
i,n−1) = αiτ

2
i /(2λi) we obtain:

var(E(hi,n|σ2
i,n−1)) =

[
1− exp(−λi∆)

λi

]2
αiτ

2
i

2λi

. (23)

From (19) we obtain:

E(var(hi,n|σ2
i,n−1)) =

αiτ
2
i

λ2
i

(
∆ +

4 exp(−λi∆)− exp(−2λi∆)− 3

2λi

)
. (24)

(23) and (24) yield:

var(hi,n) =
αiτ

2
i

λ3
i

(exp(−λi∆)− (1− λi∆)) , (25)

therefore:

var(hn) = ∆2

k∑
i=1

αi
τ 2
i

2λi

2

∆2λ2
i

(exp(−λi∆)− (1− λi∆)) .

From the series expansion for exp(−λi∆) and the Leibnitz criterion we obtain

exp(−λi∆) − (1 − λi∆) ≤ λ2
i ∆2

2
. Together with the Feller condition τ 2

i /(2λi) ≤ αi

this yields the following upper bound for var(hn):

var(hn) ≤ ∆2

k∑
i=1

α2
i . (26)

The upper bound of var(hn) is a lower bound for E(hn)2, since

E(hn)2 = ∆2(
k∑

i=1

αi)
2 ≥ ∆2

k∑
i=1

α2
i .

Therefore the coefficient of variation of hn is bounded:

0 ≤ var(hn)

E(hn)2
≤ 1. (27)

B.1.2 Autocovariance Function

Due to independence of h1,n, . . . , hk,n the following holds for s = 1, 2, . . .:

cov(hn, hn−s) =
k∑

i=1

cov(hi,n, hi,n−s).

The autocovariance function of hi,n is given by:

cov(hi,n, hi,n−s) = E(cov(hi,n, hi,n−s|σ2
i,n−s−1))

+ cov(E(hi,n|σ2
i,n−s−1) E(hi,n−s|σ2

i,n−s−1)). (28)
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The first term in (28) disappears, because the increases in integrated volatility hi,n−s

and hi,n in the intervals [(n−s−1)∆, (n−s)∆] and [(n−1)∆, n∆] are conditionally
independent given the actual volatility σ2

i,n−s−1. From (16) we obtain:

E(hi,n|σ2
i,n−s−1) = αi∆ + E(σ2

i,n−1 − αi|σ2
i,n−s−1)

1− exp(−λi∆)

λi

,

E(hi,n−s|σ2
i,n−s−1) = αi∆ + (σ2

i,n−s−1 − αi)
1− exp(−λi∆)

λi

.

From (17) we obtain by taking iterated expectations:

E(σ2
i,n−1 − αi|σ2

i,n−s−1) = exp(−λis∆)(σ2
i,n−s−1 − αi).

Therefore:

cov(hi,n, hi,n−s) = exp(−λis∆)(1− exp(−λi∆))2αiτ
2
i

2λ3
i

. (29)

B.2 Marginal Moments, Autocorrelation and Squared Auto-
correlation of the Returns

Based on representing the returns as yn =
√

hnzn, where zn is an iid standard normal
sequence, we obtain the higher order moments of the marginal distribution of the
return process yn as:

E(yk
n) = E(E(yk

n|hn)) = mk E(hk/2
n ), (30)

with mk being the kth moment of the standard normal distribution. Furthermore
for s = 1, 2, . . . the following holds:

E(yk
nyl

n−s) = E(E(yk
nyl

n−s|hn, hn−s)) = mkml E(hk/2
n h

l/2
n−s). (31)

B.2.1 The marginal moments

Since m1 = m3 = 0, it follows immediately from (30) that

E(yn) = E(y3
n) = 0. (32)

From (22) and (30) we obtain:

var(yn) = E(y2
n) = E(hn) = ∆

k∑
i=1

αi. (33)

The kurtosis is given by:

kur(yn) =
E(y4

n)

var(yn)2
=

3 E(h2
n)

E(hn)2
= 3 + 3

var(hn)

E(hn)2
. (34)
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B.2.2 Autocorrelation and Squared Autocorrelation

It follows immediately from (31) with k = l = 1 that yn is uncorrelated. With
k = l = 2 we obtain that the autocovariance function of the squared returns y2

n is
equal to the autocovariance function of hn:

cov(y2
n, y

2
n−s) = E(y2

ny
2
n−s)− E(y2

n) E(y2
n−s) = E(hnhn−s)− E(hn) E(hn−s)

= cov(hn, hn−s).

The variance of the squared returns is given by:

var(y2
n) = E(y4

n)− E(y2
n)2 = 3 E(h2

n)− E(hn)2 = 3 var(hn) + 2 E(hn)2.

Therefore the autocorrelation of the squared returns is given by:

corr(y2
n, y2

n−s) =
cov(y2

n, y2
n−s)

var(y2
n)

=
cov(hn, hn−s)

3 var(hn) + 2 E(hn)2
. (35)

C Optimal Level of Non-Centering

To obtain in (12) an optimal level ν of non-centering with respect to the mean we
apply Papaspiliopoulos et al. (2003) to following hierarchical model which is already
centered with respect to the variance:

yn = hnεn =
√

AγXnεn, εn ∼ N (0, 1), (36)

Xn =
hn

Aγ
.

The resulting partially centered variable is given by hn,PC = Xn − νE(Xn) where
ν = (1 + I(yn)σ2

x)
−1 with I(yn) being the Fisher information and σ2

x being equal to
var(Xn).

The log-likelihood for yn in (36) is given by:

`(yn, Xn, θ) = −0.5 log 2π − 0.5 log AγXn − 0.5
y2

n

AγXn

. (37)

First, we derive the expected Fisher information using E(y2
n) = AγXn:

E

(
− ∂2

∂X2
n

`(yn, Xn, θ)|Xn

)
= − 1

2X2
n

+
E(y2

n)

AγX3
n

=
1

2X2
n

=
A2γ

2h2
n

. (38)

Since this is still a random variable, it is substituted by the expected value to obtain
I(yn). By combining hn ≈ ∆σ2

n with the marginal distribution σ2
n ∼ Gam(αb, b),

where b = 2λ/τ 2, we obtain that, approximately, hn ∼ Gam(αb, b/∆). As long as
ã = 2αλ/τ 2 > 2, the expectation of 1/h2

n exists and is given by:

E

(
1

h2
n

)
=

Γ(ã− 2)b2

Γ(ã)∆2
, (39)

and the expectation in (38) is approximated by:

I(yn) ≈ A2γb2

2∆2(ã− 1)(ã− 2)
. (40)
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The same approximate marginal Gamma distribution is used to approximate σ2
x =

var(Xn) = var(hn)/A2γ:

σ2
x ≈ A−2γα∆2/b. (41)

Thus, for ã = 2αλ/τ 2 > 2,

ν = (1 + I(yn)σ2
x)
−1 =

2(ã− 1)(ã− 2)

2(ã− 1)(ã− 2) + ã
. (42)

If in (36) hn is substituted by σ2
n∆ we obtain following hierarchical model:

yn =
√

BγXn/∆εn, εn ∼ N (0, 1),

Xn =
σ2

n∆

Bγ
.

The resulting partially centered variable is given by σ2
n,PC = Xn − νE(Xn) where ν

is the same as in (42).

D Density Approximation with the Multivariate

Normal Distribution

This section investigates the effect of approximating the transition density p(hi,n, σ
2
i,n|

σ2
i,n−1,θi) by means of a multivariate normal distribution. Thus we compare results

obtained from a numerical inversion of p(hi,n, σ
2
i,n|σ2

i,n−1, θi) by means of

p(hi,n, σ2
i,n|σ2

i,n−1, θi) ≈ 1
(2π)2

∑
u

∑
v

exp(−ı(uhi,n + vσ2
i,n))φ(u, v|σ2

i,n−1,θi) ∆u∆v

against a bivariate normal approximation p(hi,n, σ
2
i,n|σ2

i,n−1, θi) ≈ N (µi,n, Σi,n). The
components of µi,n are given by (16) and (17), respectively. The elements of the
variance-covariance matrix Σi,n follow from (19), (20) and (21).

For the numerical inversion a grid, symmetric with respect to the origin, of
(M + 1) × (M + 1) pairs (u, v) is used and the step-widths ∆u and ∆v are set to
one. Using M = 100 resulted in sufficiently good inversion results. We compare
the normal approximation against this benchmark. Compared to the numerical
inversion, the numerical effort of the normal approximation is approximately 1/M2

times smaller.
First, we compare the individual transition densities the log scale, i.e. log p(hi,n,

σ2
i,n|σ2

i,n−1,θi). We generate paths with the model parameters of Section 4.1 with
500 observations. For the individual densities the following differences between the
numerical inversion and the normal approximation are observed: a mean difference
of 0.0154, a median difference of 0.0027, and 5%, 10%, 90% and 95% quantiles of
-0.4053, -0.2684, 0.3332 and 0.4705, respectively. Since the log-density can be close
to zero and the ratio of the transition densities is important in the Metropolis Hast-
ings algorithm, the results in percentage terms can show a distorted picture of the
approximation problem. Therefore, we also calculated the deviations of the individ-
ual transition densities in percentage terms. Here we observe a mean deviation of
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-0.0285%, and a median of -0.0015%. While the 90% quantile of the difference in
the densities is 0.2687%, the 5% and the 95% quantiles are -0.5469% and 0.3499%,
i.e. there can be substantial differences. These differences are of course caused by
approximation errors in the tails of the normal approximation, but also by numer-
ical difficulties for low probabilities with the inversion. This second aspect is also
essential when running an MCMC sampler. Problems with inversion integrals for
small probabilities can dominate the updating properties of the MCMC sampler.

In addition we also compare the differences in the total likelihood,

N∏
n=1

p(hi,n, σ
2
i,n|σ2

i,n−1, θi)

for all N = 500 observations, because this determines the error in the acceptance
probability of the Metropolis-Hastings algorithm. It turned out that the total like-
lihood differed by about 3%. From this analysis we conclude that a density approx-
imation by a bivariate normal distribution is sufficient.

Remark Lamoureux and Paseka (2005) derive the Fourier transform of the joint
density of yields and volatility. By means of analytically inverting the Fourier trans-
form they can reduce the dimension of the inversion integral to a one-dimensional
inversion integral. Here the Fourier transform exhibits a different structure, such
that the calculations of Lamoureux and Paseka (2005) cannot be applied.
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