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Abstract

Two approaches for model-based clustering of categorical time series based
on time-homogeneous first-order Markov chains are discussed. In the Markov
chain clustering approach the individual transition probabilities are fixed to
a group-specific transition matrix. In a new approach called Dirichlet multi-
nomial clustering the individual transition matrices deviate from the group
means and follow a Dirichlet distributions with unknown group-specific hy-
perparameters.

Estimation is carried out through Markov chain Monte. Various well-
known clustering criteria are applied to select the number of groups.

An application to a panel of Austrian wage mobility data leads to an
interesting segmentation of the Austrian labour market.

Keywords: Markov chain Monte Carlo, model-based clustering, panel
data, income dynamics, transition matrices, labour market

1 Introduction

In many areas of applied statistics like economics, finance or public health it is
often desirable to find groups of similar time series in a set or panel of time se-
ries that are unlabelled a priori. To this aim, clustering techniques are required to
determine subsets of similar time series within the panel. While distance-based clus-
tering methods cannot easily be extended to time series data, where an appropriate
distance-measure is rather difficult to define, model-based clustering based on finite
mixture models (Banfield and Raftery, 1993; Fraley and Raftery, 2002) extends to
time series data in quite a natural way, see e.g. the recent review by Liao (2005). In
the present paper we are interested in clustering discrete-valued time series which
are considered as outcomes of a categorical variable with several states. For such
time series it is particularly difficult to define distance measures and model-based
clustering appears quite promising.

The crucial point in model-based clustering is to select appropriate clustering
kernels in terms of a sampling density which captures salient features of the observed
time series. Various such clustering kernels where suggested for panels with real-
valued time series observations in Frühwirth-Schnatter and Kaufmann (2007) and
Juárez and Steel (2006). Several papers applied finite mixtures of first-order time-
homogeneous Markov chains to cluster discrete-valued time series. Cadez et al.
(2000) clustered users according to their behaviour on a web site, while Ramoni
et al. (2002) clustered sensor data from mobile robots using this method. Fougère
and Kamionka (2003) considered a mover-stayer model in continuous time which
is a constrained mixture of two Markov chains to incorporate a simple form of
heterogeneity across individual labour market transition data. Mixtures of time-
homogeneous Markov chains both in continuous and discrete time are also considered
in Frydman (2005) including an application to bond ratings migration.

Although model-based clustering of discrete-valued time series based on finite
mixtures of first-order time-homogeneous Markov chains proved to be useful in
these papers, the approach is limited insofar as it implies that within each clus-
ter all individuals follow exactly the same transition behaviour. To be more flexible
in this respect we introduce in this paper a more general approach which captures
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unobserved heterogeneity within each cluster by allowing individual transition ma-
trices to deviate from the average group-specific transition matrix. This variation
is described through a Dirichlet distribution with an unknown group-specific hy-
perparameter. As the resulting clustering kernel is closely related to the Dirichlet
multinomial model, this approach will be referred to as Dirichlet multinomial clus-
tering.

For estimation, we pursue a Bayesian approach extending earlier work by Ridge-
way and Altschuler (1998) and Fougère and Kamionka (2003) rather than EM esti-
mation as in Cadez et al. (2000) or Frydman (2005).

The remaining paper is organised as follows. Section 2 deals with Markov chain
clustering, while Dirichlet multinomial clustering is discussed in Section 3. In Section
4 we give a short review of some well-known criteria for selecting the number of
groups and investigate their behaviour for simulated data. Model-based clustering
is applied in Section 5 to a large panel of Austrian wage mobility data extending
earlier work by Fougère and Kamionka (2003) for the French labour market.

2 Clustering through Finite Mixtures of Markov

Chain Models

2.1 Model-Based Clustering of Categorical Time Series

Let {yit} , t = 0, . . . , Ti be a panel of categorical time series observed for N units
i = 1, . . . , N where the number Ti of individual observations can vary from individual
to individual. The observation yit of individual i at time t arises from a categorical
variable with K potential states labelled by k ∈ {1, . . . , K}.

Model-based clustering is based on formulating a clustering kernel for an indi-
vidual time series yi = {yi0, . . . , yi,Ti

} in terms of a sampling density p(yi|ϑ), where
ϑ is an unknown model parameter. It is assumed that the N time series arise from
H hidden groups, whereby within each group, say h, the clustering kernel p(yi|ϑh)
could be used for describing all time series in this group, see Frühwirth-Schnatter
and Kaufmann (2007).

A latent group indicator Si taking a value in the set {1, . . . , H} is introduced for
each time series yi to indicate to which group the time series belongs:

p(yi|Si,ϑ1, . . . , ϑH) = p(yi|ϑSi
) =





p(yi|ϑ1), if Si = 1,
...

...
p(yi|ϑH), if Si = H.

(1)

It is assumed that S1, . . . , SN are a priori independent and Pr(Si = h) = ηh, where
ηh is equal to the relative size of group h, i.e.

∑H
h=1 ηh = 1.

An important aspect of model-based clustering is that we do not assume to
know a priori which time series belong to which group and the group indicators S =
(S1, . . . , SN) are estimated along with the group-specific parameters (ϑ1, . . . , ϑH)
and the group sizes η = (η1, . . . , ηH) from the data.

In this paper we pursue a Bayesian approach toward estimation. We assume prior
independence between η and (ϑ1, . . . , ϑH) and apply the Dirichlet distribution η ∼
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D (α0, . . . , α0) which is commonly used in mixture modelling, see e.g. Frühwirth-
Schnatter (2006) for more details. For a fixed number of groups MCMC estimation
is easily implemented using data augmentation as in Algorithm 1.

Algorithm 1

1. Bayes’ classification for each individual i: draw Si, i = 1, . . . , N
from the discrete probability distribution

Pr(Si = h|yi,η,ϑ1, . . . , ϑH) ∝ p(yi|ϑh)ηh, h = 1, . . . , H. (2)

2. Sample mixing proportions η = (η1, . . . , ηH): draw η from the
Dirichlet distribution D (α1, . . . , αH) where αh = #{Si = h}+ α0.

3. Sample component parameters ϑ1, . . . , ϑH : draw ϑh from
p(ϑh|S,y), h = 1, . . . , H.

2.2 Markov Chain Clustering

An important building block for clustering discrete-valued time series is the first-
order time-homogeneous Markov chain model characterized by the transition matrix
ξ, where

ξjk = Pr(yit = k|yi,t−1 = j), j, k = 1, . . . , K and
K∑

k=1

ξjk = 1.

ξjk represents the probability of the event that yit takes the value k at time t given it
took the value j at time t−1. Evidently, each row ξj· = (ξj1, . . . , ξjK) of ξ represents
a probability distribution over the discrete set {1, . . . , K}. An individual time series
yi is said to be generated by a Markov chain model with transition matrix ξ, if the
sampling distribution p(yi|ξ) of yi given ξ reads:

p(yi|ξ) =

Ti∏
t=1

p(yit|yi,t−1, ξ) =

Ti∏
t=1

ξyi,t−1,yit
=

K∏
j=1

K∏

k=1

ξ
Ni,jk

jk , (3)

where

Ni,jk = #{yit = k, yi,t−1 = j} (4)

is the number of transitions from state j to state k of individual i. Note that we
condition in (3) on the first observation yi0.

Markov chain clustering is based on the assumption that within each group such
a Markov chain model with group-specific transition matrix ξh could be used as
clustering kernel. In the notation of Subsection 2.1 the group-specific parameter ϑh

is equal to ξh and the time series model p(yi|ϑh) used for clustering in (1) is directly
equal to the sampling distribution defined in (3):

p(yi|Si = h, ξ1, . . . , ξH) = p(yi|ξh) =
K∏

j=1

K∏

k=1

ξ
Ni,jk

h,jk . (5)
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A special version of this clustering method has been applied in Fougère and Kamionka
(2003) who considered a mover-stayer model where H = 2 and ξ1 is equal to
the identity matrix while only ξ2 is unconstrained. Frydman (2005) considered
another constrained mixture of Markov chain models where the transition matri-
ces ξh, h ≥ 2, are related to the transition matrix ξ1 of the first group through
ξh = I − Λh(I − ξ1) where I is the identity matrix and Λh = Diag (λh,1, . . . , λh,K)
with 0 ≤ λh,j ≤ 1/(1− ξ1,jj) for j = 1, . . . , K.

In contrast to these approaches we assume that the transition matrices ξ1, . . . , ξH

are completely unrelated which leads to more flexibility in capturing differences in
the transition behaviour between the groups.

2.3 The Bayesian Approach to Markov Chain Clustering

As the likelihood of the Markov chain model given in (5) factors into K independent
terms each depending only on the j-th row of the transition matrix we assume
that the rows of ξh are a priori independent and that each row ξh,j·, j = 1, . . . , K
follows a Dirichlet distribution, ξh,j · ∼ D (e0,j1, . . . , e0,jK), with prior parameters
e0,j· = {e0,j1, . . . , e0,jK}. This prior is conjugate to the complete data likelihood and
allows straightforward implemention of Markov chain Monte Carlo estimation as in
Algorithm 1 with ϑh = ξh, h = 1, . . . , H. Classification in step 1 is based on the
Markov chain model p(yi|ϑh) = p(yi|ξh) defined in (5). The complete data posterior
distribution p(ξ1, . . . , ξH |S,y) appearing in the third step where classifications S are
considered to be known is of closed form due to conjugacy:

p(ξ1, . . . , ξH |S,y) ∝
N∏

i=1

p(yi|ξSi
)

H∏

h=1

p(ξh) =
N∏

i=1

K∏
j=1

K∏

k=1

(ξSi,jk)
Ni,jk

H∏

h=1

p(ξh)

∝
H∏

h=1

K∏
j=1

(
K∏

k=1

(ξh,jk)
e0,jk−1

∏

i:Si=h

(ξh,jk)
Nh,jk

)
.

The various rows ξh,j · of the transition matrices ξ1, . . . , ξH are conditionally inde-
pendent and may be sampled from a total of KH Dirichlet distributions line-by-line:

ξh,j ·|S,y ∼ D (
e0,j1 + Nh

j1, . . . , e0,jK + Nh
jK

)
j = 1, . . . , K, h = 1, . . . , H.

Nh
jk =

∑
i:Si=h Ni,jk where Ni,jk has been defined in (4) is the total number of

transitions from j to k observed in group h and is determined from all individuals
that fall into that particular group.

The Bayesian approach offers several advantages in the context of Markov chain
clustering compared to EM estimation as in Cadez et al. (2000) or Frydman (2005).
First, in many applications the diagonal elements in the transition matrices are
expected to be rather high whereas the off-diagonal probabilities are comparatively
low and the Bayesian approach allows to incorporate this information by setting the
prior parameters adequately.

Second, the Bayesian approach based on a Dirichlet prior D (e0,j1, . . . , e0,jK)
where e0,jk > 0 is able to handle problems that might occur under zero tran-
sitions when applying the EM algorithm to Markov chain clustering. The EM
algorithm breaks down, if no transitions starting from j are observed in group
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h, i.e.
∑K

k=1 Nh
jk = 0 for some j. Then the complete data likelihood function

p(y|ξ1, . . . , ξH ,S) is independent of the jth row of ξh, ξh,j·:

p(y|ξ) =
H∏

h=1

K∏

l=1

K∏

k=1

ξ
Nh

lk
lk =

H∏

h=1

K∏

l=1,l 6=j

K∏

k=1

ξ
Nh

lk
lk ,

and no estimator for ξh,j· exists in the M-step. Second, the EM algorithm fails if
for a single cell (j, k) no transitions from j to k are observed, i.e. Nh

jk = 0 for all
h = 1, . . . , H. In this case the M-step leads to an estimator of ξh,jk that lies on

the boundary of the parameter space, ξ̂h,jk = 0, which causes difficulties with the

computation of Pr(Si = h|yi, η̂, ξ̂1, . . . , ξ̂H) for all observations in all groups in the
subsequent E-step.

To avoid these problems one could follow the rule of thumbs discussed e.g. in ?
and add a small constant e0,jk, e.g. e0,jk = 0.5 to the number of observed transitions.
It is easy to verify that this is equivalent to combining the likelihood p(y|ξ) with
the Dirichlet prior D (e0,j1, . . . , e0,jK) within a Bayesian approach.

3 Finite Mixtures of Markov Chain Models with

Unobserved Heterogeneity

In this section we suggest a generalization of Markov chain clustering which takes
unobserved heterogeneity within each cluster into account. This is achieved by allow-
ing the individual transition probabilities to deviate from the average group-specific
transition behaviour. This variation is described through a Dirichlet distribution
with an unknown group-specific hyperparameter.

3.1 The Dirichlet Multinomial Model

Dirichlet multinomial clustering is based on the assumption that each individual
time series yi is generated by a Markov chain model with individual transition
matrix ξs

i . The sampling distribution of yi given ξs
i is obtained from (3):

p(yi|ξs
i ) =

K∏
j=1

K∏

k=1

(ξs
i,jk)

Ni,jk . (6)

It is possible to estimate each row ξs
i,j· of ξs

i individually under the prior

ξs
i,j· ∼ D (e0,j1, . . . , e0,jK) , j = 1, . . . , K, (7)

using a Bayesian approach. This hierarchical model is closely related to the Dirichlet
multinomial model as for each row ξs

i,j· of ξs
i the multinomial distribution for the

number of transitions starting from state j is combined with a Dirichlet prior.
This model, however, has certain drawbacks in a clustering context. First of

all, the estimated transition matrices are highly dependent on the prior parame-
ters e0,j1, . . . , e0,jK , in particular for short individual time series. By increasing the
sum e0,j1 + . . . + e0,jK shrinkage of the row ξs

i,j· toward the prior average increases.
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This disadvantage can be avoided within a Bayesian framework by considering the
parameters of the Dirichlet prior as unknown hyperparameters that are estimated
from the data. But even so, the standard Dirichlet multinomial model is not really
useful in a clustering context, as it is not easy to decide on the basis of the esti-
mated individual transition matrices ξs

i which individuals have a similar transition
behaviour and which are different in this respect.

3.2 Dirichlet Multinomial Clustering

To adjust the Dirichlet multinomial model to a clustering context, we assume that
the time series form H (hidden) groups and that the Dirichlet prior distribution of
the individual transition matrix ξs

i is different across groups. Within each group
h, h = 1, . . . , H the K rows ξs

i,j· of ξs
i are assumed to be independent, each following

a Dirichlet distribution with group-specific prior parameter eh,j· = (eh,j1, . . . , eh,jK):

ξs
i,j·|(Si = h) ∼ D (eh,j1, . . . , eh,jK) , j = 1, . . . , K. (8)

Si is the latent group indicator introduced in Subsection 2.1. The parameters eh =
{eh,j·, j = 1, . . . , K} of all Dirichlet priors appearing in (8) are treated for each group
as unknown hyperparameters that are estimated from the data. In the context of
the model-based clustering approach discussed in Subsection 2.1 the resulting model
corresponds to a finite mixture of Dirichlet multinomial models and for this reason
is called Dirichlet multinomial clustering.

A distinctive advantage of modelling the distribution of heterogeneity in this
way is that each group may be entirely described by the group-specific parameter
eh and that the clustering kernel p(yi|Si = h, e1, . . . , eH) = p(yi|eh) where ξs

i is
integrated out for any time series belonging to group h is available in closed form.
By combining (6) and (8), we are able to derive the sampling density p(yi|eh) in the
following way:

p(yi|eh) =

∫
p(yi|ξs

i )p(ξs
i |eh)dξs

i =

=

∏K
j=1 Γ(

∑K
k=1 eh,jk)∏K

j=1

∏K
k=1 Γ(eh,jk)

∫ K∏

k=1

K∏
j=1

(ξs
i,jk)

Ni,jk+eh,jk−1dξs
i,jk =

=

∏K
j=1 Γ(

∑K
k=1 eh,jk)∏K

j=1

∏K
k=1 Γ(eh,jk)

∏K
j=1

∏K
k=1 Γ(Ni,jk + eh,jk)∏K

j=1 Γ(
∑K

k=1(Ni,jk + eh,jk))
. (9)

It is evident from (9) that this clustering kernel no longer is a first-order Markov
process but allows for higher order dependence.

It is illuminating to study the group-specific transition behaviour implied by
the parameter eh in more detail. Each group may be characterised by the average
group-specific transition matrix ξh given by the expected value of the individual
transition matrix ξs

i in group h:

ξh,jk = E(ξs
i,jk|Si = h, eh) =

eh,jk∑K
k=1 eh,jk

. (10)
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From this formula it follows that each row of eh determines the corresponding row in
the group-specific transition matrix ξh. The matrices ξ1, . . . , ξH may be compared
to the corresponding matrices in the Markov chain clustering approach studied in
Subsection 2.2.

While for Markov chain clustering the individual matrix ξs
i is equal to the group-

specific transition matrix ξh for all individuals in group h, ξs
i is allowed to be different

from ξh for Dirichlet multinomial clustering. The variability of ξs
i within each group

is given by the variance of the individual transition probabilities ξs
i,jk:

Var(ξs
i,jk|Si = h, eh) =

eh,jk

∑
l 6=k eh,jl(∑K

k=1 eh,jk

)2 (
1 +

∑K
k=1 eh,jk

) .

It can easily be shown that

Var(ξs
i,jk|Si = h, eh)

E(ξs
i,jk|Si = h, eh) (1− E(ξs

i,jk|Si = h, eh))
=

1

1 +
∑K

k=1 eh,jk

. (11)

As the right hand side of (11) is the same for all elements of row ξs
i,j·, a single

parameter depending only on the row sum
∑K

k=1 eh,jk controls variability for all
elements in the j-th row of group h. Thus the row sums of eh are a measure of
heterogeneity in the corresponding rows of ξs

i in group h. The smaller
∑K

k=1 eh,jk,
the more variable are the individual transition probabilities in row j and the larger
deviations of ξs

i,j· from the group mean ξh,j· are to be expected. On the other hand,

if
∑K

k=1 eh,jk is very large, then variability in row j is very small meaning that the
individual transition probabilities are nearly equal to the group mean ξh,j·. If this
is the case for all rows in all groups, Dirichlet multinomial clustering reduces to
Markov chain clustering.

Note that Dirichlet multinomial clustering provides a very parsimonious way
of introducing group-specific unobserved heterogeneity in individual transition ma-
trices. While the dimension of the group-specific parameter ϑh = ξh is equal to
K(K − 1) for Markov chain clustering, the dimension of ϑh = eh is equal to K2 for
Dirichlet multinomial clustering, introducing only K additional parameters for each
group. Each of these K parameters controls group-specific unobserved heterogeneity
in exactly one row of ξs

i .

3.3 Bayesian Estimation

3.3.1 Prior Distributions

For Bayesian estimation a prior has to be chosen for each group-specific parameter
eh, h = 1, . . . , H which is a matrix of size (K × K). In contrast to Subsection 2.3
no conjugate prior allowing straightforward MCMC estimation is available, but the
structure of the complete data likelihood to be discussed in Subsection 3.3.2 still
suggests to assume that all rows eh,j· are independent within each group and between
groups.

To avoid all problems with empty transitions that have been discussed in Sub-
section 2.3 we assume that eh,j· ≥ 1 for all rows in all groups. To take dependencies
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between the elements of eh,j· into account we assume that eh,j· − 1 is a discrete-
valued multivariate random variable following a negative multinomial distribution,
eh,j· − 1 ∼ NegMulNom (pj1, . . . , pjK , β), where

pjk =
N0 · ξ̂jk

α + N0

.

The density of this prior reads:

p(eh,j·) =
Γ(β −K +

∑K
k=1 eh,jk)

Γ(β)
∏K

k=1(eh,jk − 1)!
pβ

j0

K∏

k=1

p
eh,jk−1

jk ,

where pj0 = 1−∑K
k=1 pjk, while expectation and variance are given by:

E(eh,jk) = 1 +
β pjk

pj0

=
β

α
N0ξ̂jk,

Var(eh,jk) =
β pjk(pjk + pj0)

p2
j0

=
β ·N0ξ̂ji(N0ξ̂ji + α)

α2

= E(eh,jk − 1)

(
E(eh,jk − 1)

β
+ 1

)
.

The negative multinomial distribution arises as a mixture distribution when the K
elements of eh,j· are assumed to be independent, with eh,jk−1 ∼ P (γλjk), where γ ∼
G (α, β). The resulting mixture distribution is equal to NegMulNom (pjk, . . . , pjk, β)

with pjk = λjk/(α +
∑K

k=1 λjk).

This suggest to choose in our application λjk = N0ξ̂jk, where N0 is the size of an

imaginary experiment, e.g. N0 = 10, and ξ̂ is a prior guess of the transition matrix,
while α and β are small integers, e.g. α = β = 1.

Alternatively, it is possible to assume that each element of eh,j·−1 is a continuous
random variable following independently some prior distribution, for instance, the
Gamma distribution eh,jk − 1 ∼ G (bjk, 1) where bjk = N0 ξ̂jk. However, we do not
pursue this form of a prior distribution in the present paper.

3.3.2 MCMC Estimation

The parameters e1, . . . , eH , η and the hidden indicators S are jointly estimated by
MCMC sampling using Algorithm 1 where ϑh = eh. Classification in the first step of
Algorithm 1 is based on the marginal time series model p(yi|ϑh) = p(yi|eh) defined
in (9).

The third step of Algorithm 1 is the only step which is essentially different from
the corresponding steps for Markov chain clustering. To implement this step the
complete data posterior distribution p(e1, . . . , eH |S,y) where the classifications S
are considered to be known for each individual is derived:

p(e1, . . . , eH |S,y) ∝
N∏

i=1

p(yi|eSi
)

H∏

h=1

p(eh) =
H∏

h=1

p(eh)
∏

i:Si=h

p(yi|eh,j·)

∝
H∏

h=1

K∏
j=1

p(eh,j·)
Γ(

∑K
k=1 eh,jk)

Nh

(∏K
k=1 Γ(eh,jk)

)Nh

( ∏

i:Si=h

∏K
k=1 Γ(Ni,jk + eh,jk)

Γ(
∑K

k=1(Ni,jk + eh,jk))

)
, (12)
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where Nh is the number of time series in group h. While the KH rows eh,j· of
e1, . . . , eH are independent, the conditional posterior p(eh,j·|y,S) given by

p(eh,j·|y,S) ∝ p(eh,j·)
Γ(

∑K
k=1 eh,jk)

Nh

(∏K
k=1 Γ(eh,jk)

)Nh

( ∏

i:Si=h

∏K
k=1 Γ(Ni,jk + eh,jk)

Γ(
∑K

k=1(Ni,jk + eh,jk))

)

is no longer of closed form. Thus the group-specific parameters e1, . . . , eH are
sampled line-by-line by drawing each row eh,j· from p(eh,j·|y,S) by means of the
Metropolis-Hastings algorithm.

As the computation of p(eh,j·|y,S) is rather time-consuming we decided to up-
date only l ≤ K elements per row simultaneously while the other elements remained
unchanged. As these elements are randomly chosen, this is a valid updating strategy
to reduce computation time which comes at the cost of possibly higher autocorrela-
tions than updating all elements.

We propose each element eh,jk to be updated independently from a discrete ran-

dom walk proposal density q(eh,jk|e(m−1)
h,jk ) since the support of eh,jk are the natural

numbers according to our prior assumption. If e
(m−1)
h,jk ≥ 2 we add with equal proba-

bility −1, 0 or 1, if e
(m−1)
h,jk = 1 we add 0 or 1. This proposal is equivalent to a uniform

distribution on [max(1, e
(m−1)
h,jk − 1), e

(m−1)
h,jk + 1]. We accept the proposed value enew

h,j·
with probability min(1, r) where

r =
p(enew

h,j· |y,S) q(e
(m−1)
h,j· |enew

h,j· )

p(e
(m−1)
h,j· |y,S) q(enew

h,j· |e(m−1)
h,j· )

.

Note that our MCMC implementation avoids the expensive generation of the
individual transition matrices ξs

1, . . . , ξ
s
N during iteration. This is possible only

because of the special structure of our model which yields a closed form for the
density p(yi|eSi

).
If needed, it is possible to obtain draws for ξs

i for each i = 1, . . . , N by drawing
the jth row from

ξs
i,j·|(Si = h, eh,y) ∼ D (eh,j1 + Ni,j1, . . . , eh,jK + Ni,jK) ,

where Ni,jk is the number of transitions from state j to k of individual i, see (4).

4 Selecting the Number of Clusters

If a finite mixture model is applied to model the distribution of the data in a flexible
way, selecting the number of components H reduces to a model selection problem
which could be solved by computing marginal likelihoods or running some model
space methods, see e.g. Frühwirth-Schnatter (2006, Chapter 4 and 5). In a cluster-
ing context, however, it is not so clear how to select an optimal number of groups.
Various criteria have been developed in the context of model-based clustering based
on multivariate normal distributions some of which are shortly reviewed in Subsec-
tion 4.1. To evaluate the performance of these criteria in the somewhat different
context of clustering categorical time series based on mixtures of Markov chains a
simulation study is carried out in Subsection 4.2.
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4.1 A Short Review of Some Criteria for Selecting the Num-
ber of Clusters

Most clustering criteria are based on measuring model fit through some kind of
likelihood function which is then penalised in an appropriate way to avoid overfitting.
For any of these criteria the optimal number H of groups is defined as that value of

H which minimises the criterion. Subsequently, θ̂
H

indicates an estimator for the
parameter θH = (ϑ1, . . . , ϑH , η1, . . . , ηH) in a model with H groups.

AIC (Akaike, 1974) and BIC (Schwarz, 1978) penalise the mixture log-likelihood
L(H, θH) defined by

L(H, θH) = log p(y|θH) =
N∑

i=1

log

(
H∑

h=1

ηh p(yi|ϑh)

)
(13)

by model complexity defined as the total number dH of independent parameters to
be estimated in a mixture model with H components:

AIC(H) = −2 L(H, θ̂
H

) + 2 dH , (14)

BIC(H) = −2 L(H, θ̂
H

) + dH log N. (15)

BIC is consistent under correct specification of the family of the component densities
(Keribin, 2000), while it tends to selected too many components under misspecifi-
cation. AIC tends to select too many components even for a correctly specified
mixture.

Like BIC, approximate weight of evidence (AWE) is derived in Banfield and
Raftery (1993) as an approximation to minus twice the log Bayes factor and penalises
the complete data log-likelihood defined by

LC(H, θH) = log p(y,S|θH) =
H∑

h=1

N∑
i=1

ln (ηSi
p(yi|ϑSi

)) (16)

with model complexity:

AWE(H) = −2 LC(H, θ̂
H

) + 2 dH(
3

2
+ log N). (17)

None of these criteria directly takes into account that in a clustering context a finite
mixture model is fitted with the hope of finding a good partition of the data. For
this reason various criteria were developed which involve the quality of the resulting
partition measured through the entropy EN(H, θH) given by

EN(H, θH) = −
H∑

h=1

N∑
i=1

tih log tih ≥ 0, (18)

where tih = Pr(Si = h|yi, θ
H) is the posterior classification probability defined in

(2). The entropy is a measure of how well the data are classified given the mixture
distribution defined by θH . It is close to 0 if the resulting clusters are well-separated
and increases with increasing overlap of the mixture components.
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The CLC criterion (Biernacki and Govaert, 1997) penalises the mixture log-

likelihood L(H, θH) by the entropy EN(H, θ̂
H

) rather than by model complexity as
in AIC or BIC:

CLC(H) = −2 L(H, θ̂
H

) + 2 EN(H, θ̂
H

). (19)

Since CLC works well only for well-separated clusters with a fixed weight dis-
tribution Biernacki et al. (2000) proposed the integrated classification likelihood
(ICL) criterion. A special approximation to this criterion is the ICL-BIC criterion
(McLachlan and Peel, 2000) which is equal to

ICL-BIC(H) = BIC(H) + 2 EN(H) (20)

and penalises not only model complexity, but also the failure of the mixture model
to provide a classification of the data in well-separated clusters. Simulation studies
reported by McLachlan and Peel (2000, Section 6.11) showed that ICL-BIC is able
to identify the correct number of clusters in the context of multivariate mixtures of
normals even when the component densities are misspecified.

4.2 Application to Dirichlet Multinomial Clustering

To investigate the performance of the various model selection criteria discussed in
the previous subsection in the context of Dirichlet multinomial clustering we consider
synthetic data simulated from a Dirichlet multinomial mixture with the true number
of groups being equal to three, four or five, respectively. N , Ti and yi0, i = 1, . . . , N
are chosen as in the case study for the Austrian labour market to be studied in
Section 5 and the estimators obtained there for η, e1, . . . , eH and S are used to
simulate the data in this subsection.

For each of the three panels both Markov chain clustering as well as Dirich-
let multinomial clustering is carried out for an increasing number of groups ranging
from H = 1, . . . , 6. While Dirichlet multinomial clustering corresponds to fitting the
correct mixture, the component densities are misspecified for Markov chain cluster-
ing. For each panel AIC(H), BIC(H), AWE(H), CLC(H) and ICL-BIC(H)
are computed as in Subsection 4.1 for both clustering methods and are plotted

as a function of H in Figure 1. To compute these criteria, θ̂
H

is selected as
that posterior draws which maximises the nonnormalised mixture posterior den-
sity p?(θH |y) = p(y|θH)p(θH), because the ML estimator is not available within
the framework of MCMC estimation.

From Figure 1 it can be seen that most criteria have a critical point at H = Htrue.
BIC and AWE perform best in the sense that they exhibit an obvious minimum and
always detect the real number of groups. This holds not only for clustering based
on the true component density but also for a model where the component densities
are assumed to be a homogeneous Markov chain and therefore are misspecified.
Somewhat surprisingly, CLC(H) and ICL-BIC(H) work fine for Markov chain
clustering which is a misspecified model but lead to underfitting for several panels
when fitting the correct component density.
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5 Application to Austrian Wage Mobility Data

In our application we consider wage mobility in the Austrian labour market. Wage
mobility describes chances but also risks of an individual to move between wage cat-
egories over time. The moves and transitions between the categories are expressed
in terms of transition matrices which determine the income career and career pro-
gressions for an individual. It is a sensible assumption that the income careers
and career progressions are different between the employees. Our goal is to find
meaningful groups of employees with similar wage mobility behaviour.

5.1 Data Description

The data set has been provided by the Austrian social security authority who collects
detailed data for all workers in Austria (Raferzeder and Winter-Ebmer, 2007) and
consists of time series for N = 9 809 men entering the labour market in the years
1975 to 1980 at an age of at most 25 years. The time series represent gross monthly
wages in May of successive years and exhibit individual lengths ranging from 2 to 27
years with the median length being equal to 23. Following Weber (2001), the gross
monthly wage is divided into six categories labelled with 0 up to 5. Category zero
corresponds to zero-income or non-employment which is not equivalent to be out of
labour force. The categories one to five correspond to the quintiles of the income
distribution which are determined for each year from all non-zero wages observed
in that year in our sample. The use of wage categories has the advantage that no
inflation adjustment has to be made and circumvents the problem that in Austria
recorded wages are right-censored because wages that exceed a social security payroll
tax cap which is an upper limit of the assessment base for the contribution fee are
recorded with exactly that limit.

5.2 Model-based Clustering

To give a more detailed picture of this panel several individual time series showing
wage mobility for a few employees are presented in Figure 2. The wage career is
similar for some of them and quite different for others. The panel contains almost
ten thousand of such wage careers and we are interested in searching for groups
of individuals with similar wage mobility behaviour. To this aim we apply both
Markov chain clustering as well as Dirichlet multinomial clustering for 2 up to 10
groups.

For the Dirichlet prior of the weight distribution η = (η1, . . . , ηH) we choose
α0 = 4 as recommended by Frühwirth-Schnatter (2006). For Markov chain clustering
the prior for each row for each matrix ξh is based on a Dirichlet prior where e0,jj = 2
and e0,jk = 1, if j 6= k. For Dirichlet multinomial clustering, the prior for each row for
each matrix eh is based on the negative multinomial distribution with α = β = 1,
N0 = 10 and ξ̂h = ξ̂, where ξ̂jj = 0.7 and ξ̂jk = 0.06, if j 6= k. Alternative
hyperparameters were considered but showed negligible differences in the results.

Initial values for Markov chain clustering are η
(0)
h = 1/H and ξ

(0)
h = ξ̂, where

ξ̂jj = 0.7 and ξ̂jk = 0.06, if j 6= k. The estimators obtained by Markov chain
clustering are used to define initial values for Dirichlet multinomial clustering with

12



the same number of groups: η(0) = η̂ and e
(0)
h = N0ξ̂h. To update the elements of

eh in Dirichlet multinomial clustering we choose l = 2 elements per row randomly
and apply the Metropolis-Hastings algorithm described in Subsection 3.3.2, leading
to an average acceptance rate of 0.24 percent.

For each number H of groups we conducted M = 10 000 MCMC iterations for
Dirichlet multinomial clustering and M = 20 000 MCMC iterations for Markov chain
clustering. For Markov chain clustering we discarded the first 2 000 draws as burn-
in. For Dirichlet multinomial clustering we discarded the first 5 000 draws and kept
only each 5th draw to reduce the autocorrelation in the MCMC draws.

5.2.1 Markov Chain Versus Dirichlet Multinomial Clustering

For each H = 2, . . . , 10 the group-specific parameters ξh (Markov chain clustering)
and eh (Dirichlet multinomial clustering) are estimated for h = 1, . . . , H as the
posterior means of the stationary MCMC draws. This is a valid estimator as visual
inspection of the MCMC draws revealed no label switching, see e.g. Frühwirth-
Schnatter (2006, Section 3.5) for an exhaustive review of the label switching problem.

For Dirichlet multinomial clustering, the average group-specific matrix ξh is es-
timated from the posterior draws of eh as in (10). For up to H = 5 groups the
resulting transition matrices are rather similar to the group-specific transition ma-
trices ξh obtained under Markov chain clustering for the same number of clusters.
Only for a large number of groups many small groups appear and the results are
more different.

Table 1 shows for H = 1, . . . , 4 the group-specific unobserved heterogeneity esti-
mated according to expression (11). Unobserved heterogeneity varies considerably
between the groups and in some groups also between the rows. In absolute terms,
the amount of unobserved heterogeneity is pretty moderate explaining why the aver-
age group-specific transition matrices obtained for Dirichlet multinomial clustering
are rather similar to the matrices obtained by Markov chain clustering.

5.2.2 Selecting the Number of Groups

The model selection criteria described in Subsection 4.1 are applied to select the
number of groups both under Dirichlet multinomial as well as under Markov chain
clustering, see Figure 3.

For Dirichlet multinomial clustering AWE and CLC take a minimum at H = 4,
while ICL-BIC leads to an underfitting model as for the simulated data considered
in Subsection 4.2. For Markov chain clustering AWE, CLC and ICL-BIC suggest
a mixture with 5 clusters.

Both AIC and BIC lead to strongly overfitting models. For Markov chain clus-
tering BIC suggests more than 10 groups while this number is equal to 7 for Dirichlet
multinomial clustering. Whereas BIC has been a reliable criterion for the simulated
data considered in Subsection 4.2, it appears to be sensitive to misspecification of
the clustering kernel which is likely to be present for this real-world data set even
under Dirichlet multinomial clustering.
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5.2.3 Analysing Wage Mobility

Based on the criteria discussed in Subsection 5.2.2 we proceed with discussing the
four-group solution under Dirichlet multinomial clustering which also allows very
sensible interpretations from an economic point of view.

The most interesting features are the estimated average group-specific transition
matrices which are visualised in Figure 4 using “balloon plots” generated by means
of function balloonplot() from the R package gplots (Jain and Warnes, 2006).
These plots also show the relative size of each group.

A remarkable difference in the transition behaviour of individuals belonging to
different groups is evident from these figures. Consider, for instance, the first column
of each matrix containing the risk for an individual in income category j to drop
into the no-income category in the next year. This risk is much higher for group 1
and group 3 than for the other groups.

The probability to remain in the no-income category is located in the top left cell
and is much higher in group 3 then in the other groups. The remaining probabilities
in the first row correspond to the chance to move out of the no-income category.
These chances are much smaller for group 1 and 3 than for the other groups. In
group 4 chances are high to move into any wage category while in group 2 only the
chance to move in wage category one is comparatively high.

The main diagonals of these matrices refer to the probabilities to remain in a
certain wage category. Persistence is pretty high except for group 1. In group 1 all
rows are pretty close to a uniform distribution meaning that the members of this
group move quickly between the wage categories. The upper secondary diagonal
represents the chance to move forward into the next higher wage category, which is
much higher in group 4 than in the other groups.

These obvious differences in the one-step ahead transition matrices between the
groups have a strong impact on the wage mobility of the group members. The first
column of Tables 2 shows the initial wage distribution πh,0 for each group which is
estimated from the observed category yi0 for all individuals i being classified to group
h. The subsequent columns show the estimated wage distributions πh,t = πh,0ξ

t
h

after a period of t years. There are little differences between the groups 1, 2, and 4 in
the beginning, but in the long run considerable differences in the wage distribution
become evident due to the observed differences in wage mobility. Members of group
1 have a much higher risk to end up in the no-income category than members of
group 2 and 4. In the long-run, however, members of group 2 are disadvantaged and
end up in lower wage categories while members in group 4 move into the highest
wage categories. Finally, individuals in group 3 have a much higher probability to
start in the no-income category and about 60% of the members of this group have
no income in the long-run.

The last column where t = ∞ is in the equilibrium distribution πh,∞ of the
transition matrix ξh, i.e. πh,∞ = πh,∞ ξh. In group 1 and 3 the equilibrium distri-
bution is reached after only a few years whereas in group 2 and 4 this distribution
is reached after about two decades.
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Posterior Classifications

Next we study how individuals are assigned to the four wage mobility groups us-
ing the estimated posterior classification probabilities tih = Pr(Si = h|yi,θ

4). Any
employee is allocated to that group which exhibits the maximum posterior prob-
ability. The posterior classification probabilities shown in Table 3 for the first 6
individuals indicate that some individuals are allocated with high probability to
a particular group (e.g. employee no. 5 to group 3) whereas others are not (e.g.
employee no. 4). To assess the uncertainty of the classifications we estimate the
entropy of the posterior classification matrix as in (18), giving EN(4) = 4 005.21.
While this entropy is far from a perfect classification with zero entropy, it is much
smaller than N log(4) = 13 598.16 which is the entropy of a classification rule, where
all individuals are assigned randomly according to the relative group sizes.

To assess differences in the uncertainty of the classifications between the groups,
the contribution

∑
i tih ln tih of group h to the total entropy EN(4), divided by

the number of individuals assigned to that group for the sake of comparability, is
shown in Table 4. The smaller that value the better the individuals are allocated
to the corresponding group. Individuals in group 4 have on average the lowest
misclassification risk, while it is highest for individuals in group 1.

Finally, to get an even better understanding of the various wage mobility groups,
five members that have a very high classification probability to belong to a particular
group were selected and their individual time series are plotted in Figure 5 for all
four groups. This figure further emphasises the interpretation of the wage groups
obtained above. Group 1 obviously represents the more flexible and fluctuating
employees. Typical members of group 2 stay mainly in the lowest wage category.
Group 3 contains the employees who fall into the no-income category more often
and remain there much longer than members of the other groups. Finally, group 4
comprises of employees who get out of the no-income category more easily and make
rather straight career advancements. Such huge differences in the wage mobility in
the Austrian labour market has never been documented before.

6 Concluding Remarks

In this paper we presented approaches for model-based clustering of categorical
time series based on time-homogeneous first-order Markov chains with unknown
transition matrices. While in the Markov chain clustering approach the individual
transition probabilities are fixed to a group-specific transition matrix, we suggested
a new approach called Dirichlet multinomial clustering where it is assumed that
within each group unobserved heterogeneity is still existent. We allow the individual
transition matrices to deviate from the group means and described this variation for
each row through a Dirichlet distribution with unknown hyperparameters.

An application of this approach to a panel of Austrian wage mobility data lead
to a segmentation of the employees into four groups. The group-specific transition
behaviour described through the transition matrices turned out to be very different
between the groups and leads to meaningful interpretations from an economic point
of view.

For other panels of discrete-valued time series other clustering kernels might be

15



sensible. One important alternative is to model each row of the transition matrix
with a multinomial logit model with random intercept and to assume that the dy-
namic regression parameters and the variance of the random intercept are different
between the groups. MCMC estimation, however, is more involved because no ex-
plicit form for the marginal model is available. On the other hand, this clustering
kernel allows the inclusion of additional covariates for each individual time series
and allows to capture higher order dependence by including not only the immediate
past, but also a longer history of the time series as predictor.

Both for Dirichlet multinomial clustering as well as for clustering based on a
multinomial logit model with random intercept a single parameter controls both the
amount of heterogeneity as well as correlation among the transition probabilities
within each row. For Dirichlet multinomial clustering, for instance, exactly the
same expression which controls unobserved heterogeneity in (11) also determines
dependence between two arbitrarily chosen individual transition probabilities in the
jth row ξs

i,j·, just with the opposite sign:

Cov(ξs
i,jk ξs

i,jl|Si = h, eh)

ξh,jk · ξh,jl

= − 1

1 +
∑K

k=1 eh,jk

.

To obtain more flexibility in the distribution of heterogeneity, a hierarchical multi-
nomial logit model, following e.g. Rossi et al. (2005), may be considered where all
dynamic regression parameters are random effects. However, in its most general
form this clustering kernel involves the estimation of a high-dimensional covariance
matrix of the random effects distribution for each group and for this reason might be
intractable for the purposes of clustering short individual time series, unless sensible
constraints on the covariance matrix of the random effects are introduced.
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Table 1: Amount of unobserved heterogeneity under Dirichlet multinomial cluster-
ing for 1, . . . , 4 groups according to equation (11) (multiplied by factor 102).

102

1 +
∑K

k=1 eh,jk

H = 1 H = 2 H = 3 H = 4

row j h = 1 h = 1 h = 2 h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 h = 4
0 3.486 6.250 1.451 3.325 0.842 6.790 2.661 2.916 0.789 5.556
1 2.222 1.218 2.005 2.862 1.440 0.767 2.579 0.535 1.148 1.184
2 2.856 1.850 2.820 2.601 1.484 0.769 2.991 0.667 1.120 0.888
3 2.547 1.685 3.930 3.747 3.496 1.326 3.661 1.922 3.319 1.587
4 2.214 1.431 4.551 4.460 2.659 1.043 6.775 1.802 2.401 1.292
5 0.783 0.540 2.576 3.223 0.884 0.499 3.270 2.307 1.094 0.476

Table 2: Wage distributions πh,t over the wage categories 0 to 5 for different years
t in the different groups

Group 1 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 10 t = 20 t = ∞
0 0.0993 0.2682 0.3129 0.3225 0.3231 0.3218 0.3184 0.3180 0.3180
1 0.5989 0.3952 0.3260 0.3003 0.2896 0.2847 0.2791 0.2786 0.2786
2 0.1891 0.1435 0.1274 0.1212 0.1186 0.1174 0.1160 0.1159 0.1159
3 0.0711 0.0992 0.1062 0.1081 0.1087 0.1090 0.1093 0.1094 0.1094
4 0.0322 0.0569 0.0726 0.0815 0.0865 0.0894 0.0932 0.0936 0.0936
5 0.0094 0.0370 0.0549 0.0663 0.0734 0.0778 0.0840 0.0845 0.0845

Group 2 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 10 t = 20 t = ∞
0 0.0733 0.0711 0.0683 0.0657 0.0635 0.0616 0.0555 0.0510 0.0492
1 0.7345 0.6561 0.5953 0.5471 0.5084 0.4771 0.3855 0.3268 0.3054
2 0.1278 0.1829 0.2193 0.2430 0.2580 0.2671 0.2740 0.2568 0.2447
3 0.0410 0.0499 0.0614 0.0733 0.0843 0.0942 0.1235 0.1357 0.1363
4 0.0199 0.0275 0.0373 0.0478 0.0586 0.0692 0.1150 0.1653 0.1906
5 0.0035 0.0125 0.0184 0.0231 0.0271 0.0308 0.0465 0.0644 0.0738

Group 3 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 10 t = 20 t = ∞
0 0.3339 0.4374 0.5061 0.5518 0.5819 0.6016 0.6312 0.6264 0.6215
1 0.4427 0.2974 0.2171 0.1716 0.1451 0.1294 0.1061 0.1019 0.1011
2 0.1193 0.1401 0.1333 0.1200 0.1072 0.0968 0.0743 0.0694 0.0690
3 0.0631 0.0602 0.0600 0.0583 0.0554 0.0523 0.0424 0.0397 0.0396
4 0.0281 0.0376 0.0425 0.0451 0.0461 0.0462 0.0428 0.0412 0.0415
5 0.0129 0.0274 0.0410 0.0533 0.0642 0.0737 0.1033 0.1214 0.1274

Group 4 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 10 t = 20 t = ∞
0 0.0538 0.1151 0.0948 0.0787 0.0685 0.0620 0.0499 0.0457 0.0447
1 0.5427 0.3006 0.2004 0.1473 0.1166 0.0978 0.0649 0.0542 0.0515
2 0.2403 0.2971 0.2928 0.2673 0.2393 0.2147 0.1489 0.1187 0.1104
3 0.1076 0.1781 0.2368 0.2681 0.2800 0.2805 0.2420 0.1993 0.1839
4 0.0405 0.0780 0.1236 0.1654 0.2001 0.2269 0.2748 0.2599 0.2470
5 0.0151 0.0311 0.0516 0.0732 0.0955 0.1181 0.2196 0.3221 0.3625
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Table 3: Posterior classification probabilities: The probabilities of individuals to
be allocated to each group.

Group 1 Group 2 Group 3 Group 4
1 0.0001 0.0001 0.2765 0.7233
2 0.0098 0.0000 0.9901 0.0001
3 0.1205 0.0001 0.1170 0.7623
4 0.0147 0.4768 0.0073 0.5011
5 0.0006 0.0000 0.9994 0.0000
6 0.2792 0.0001 0.7205 0.0002

...

Table 4: Contribution of each group to the total entropy EN(4) (absolute and
relative to group size)

Group h 1 2 3 4∑
i tih ln tih 930.72 972.28 943.73 1 158.47∑

i tih ln tih/Nh 0.62 0.57 0.43 0.26
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Figure 1: Model selection criteria for various numbers H of clusters for Markov
chain clustering (MCC) and Dirichlet multinomial clustering (DMC) for simulated
data where the true number of clusters is equal to 3 (top), 4 (medium) and 5
(bottom)
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Figure 2: Individual wage mobility time series of nine selected employees (time t
on x-axis and income class k on y-axis).
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Figure 3: Model selection criteria for various numbers H of clusters for Markov
chain clustering (MCC) and Dirichlet multinomial clustering (DMC) for the Aus-
trian labour market data
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Figure 4: Visualisations of estimated posterior transition probabilities ξ̂1, ξ̂2, ξ̂3, ξ̂4,
where the circular areas are proportional to the size of the corresponding entry in
the transition matrix. Estimated group sizes η̂ (mixing proportions) are indicated
in brackets.
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Figure 5: Typical group members: Selected time series of group members, who
exhibit a posterior classification probability of virtually one.
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