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Abstract

Assessment of compound sums has many applications in insurance, au-
diting and operation risk capital assessment among others. We study the
behavior of the total claim amount with claims taken from a homogeneous
portfolio. Actuaries distinguish several types of distributions to fit loss data:
gamma, log-gamma, log-normal, gamma + log-gamma, gamma + log-normal
and Pareto being the most important. We discuss some problems that one
can encounter when misemploying the log-normal assumption based methods
supported by Basel II framework. The compound sums are demonstrated to
be highly sensitive on the individual claims distributions and thus a robust
approach is needed. New estimators based on a robustified Johnson score are
introduced and compared with the classical estimators (maximal likelihood
and moment estimators) and with recently introduced robust estimators of
”generalized median” and ”trimmed mean” type. We derive the exact dis-
tribution of the likelihood ratio tests of homogeneity and tail index of the
two-parameter Pareto model which support the assessment of performance of
estimators. The real data example illustrates the concepts.

KEY WORDS: heavy-tailed distribution, claims, robust approach, Johnson
estimator, insurance, Basel II

This paper is dedicated to Alexander Nagaev, who died on 10th February, 2005.

1 Introduction

Assessment of compound sums has many applications in insurance, auditing and
operation risk capital assessment among others. Operational risk has been defined
by the Basel Committee as ’the risk of financial loss resulting from inadequate or
failed internal processes, people and systems or from external events’ (see (Basel
II initiative (2004)) and also (Voit 05), p. 349). Recent global trends in financial
markets have increased many types of operational risks (see (Alexander 03)). In
operation risk capital assessment there are many good reasons to use a lognormal
distribution (see (Alexander 03)). Although this will not capture well the extremely
high impact losses, these are by definition, very rare indeed. But exact assessment
of these upper quantiles of risk, for example calculation of operational risk capital
at a 99.9% percentile is of interest for Basel II related frameworks (see (Alexander
03)). This is a complex task and we would like to discuss the favorable estimators
of the individual and aggregated heavy-tailed claims. If we are interested only in
the extreme quantile estimation for heavy tailed data, then there are several meth-
ods, e.g. Blocks method, Peaks-over-threshold (POT) method and Quantile-based
methods. In practice, probably the main drawback of the POT method is that for
each different choice of a threshold the other parameters and quantile estimates are
needed. Typically quantile methods are Hill estimator, Pickands estimator and mo-
ment estimator. For maximum likelihood (ML) method improving Q-based methods
see (Beirlant et al. (1999)). However, in practice one could be interested in both
aspects: in estimating parameters and in drawing conclusions on extreme quantiles
behavior. Particularly, statistical extreme value models concern only the ultimate
tail section of the distribution while a practitioner faced for instance with reinsurance
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rating (see (Beirlant et al. (2001))) will need to model also more central areas of the
distribution in order to handle the different layers in a flexible way. Several recent
papers treated robust and efficient estimation of tail index parameters for Pareto
models, for large and small samples (see e.g. (Brazauskas and Serfling (2003))).
Robustness in this setup is not satisfactorily covered by the recently arisen litera-
ture, however there is a rather good coverage in the estimation (see e.g. (Resnick
(2006))). Particularly, in (Cantoni and Ronchetti 04) robust statistical procedures
are presented for the analysis of skewed and heavy tailed outcomes as they occur in
health care data. The importance of the new approaches supporting the regulation
related to Basel II can be seen also from recent papers, e.g. for the case of the
capital requirements and capital adequacy ratios for banks (Fouche et al. 06).

In this paper we compare classical ML and method of moments (MM) estimators
with newer ones, based on Johnson score (see (Fabián 07)) and those provided by
(Brazauskas and Serfling (2003)). As estimations based on Johnson score do not de-
pend on the existence of moments, they may be interesting especially for the class of
heavy-tailed distributions. The paper is organized as follows. In the 2nd section we
shortly describe estimation based on Johnson score and robust ”generalized median”
and ”trimmed mean” type of estimation. In the 3rd section of the paper we discuss
and compare some recent results for compound sums when an individual distribution
is from the subexponential family. In the 4th section we derive the distribution of
exact likelihood ratio tests of the homogeneity and Pareto-tail index for the Pareto
sample. This method, instead of classical KS test heavily dependent on estimation
of parameters, is used to compare the performance of the various estimators. In the
5th section we demonstrate why robust estimates are needed in the analysis of sums
of claims, discussing both the individual and aggregated claim sensitivity for the
underlying distribution. The last section illustrates the proposed approach. In the
first example we analyze a real data set consisting of 96 nonlife insurance payments
observed in one year. In the 2nd example the Wind catastrophes data (1977) taken
from (Hogg and Klugman 84) is analyzed. The proofs and technicalities are put into
the Appendix to maintain a better discussion.

2 Estimators based on Johnson score, of ”gener-

alized median” and ”trimmed mean” type

The maximum likelihood estimation is very sensitive to deviation from the theoret-
ical distributions, also in the class of heavy-tailed distributions. Not surprisingly
(see e.g. (Alexander 05)), the maximum likelihood estimator (which is the limit-
ing case of minimum density power divergence estimator, MDPDE, see (Juárez and
Schucany 04)) of parameters failed to provide a reasonable estimation. More robust
alternatives to MLE approach have been proposed by e.g. (Juárez and Schucany
04) and (Marazzi and Ruffieux 95). (Juárez and Schucany 04) recommends to use
MDPDE to estimate the parameters of the Generalized Pareto distribution.
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2.1 Estimators based on Johnson score

A new method proposed by Fabián (2006, 2008) is based on a different idea. Data
are considered to be taken from a non-contaminated, but possibly heavy-tailed dis-
tribution, and are treated by means of the Johnson score, which is a scalar inference
function characteristic for the given distribution. It turns out that Johnson scores of
heavy tailed distributions are bounded so that the estimates are ’naturally’ robust
in these cases.

Let X = (a, b) ∈ R. The Johnson score of distribution F with support X and
with density f(x) continuously differentiable according to x ∈ X is defined by

T (x) =
1

f(x)

d

dx

(
− 1

η′(x)
f(x)

)
. (1)

where η : X → R, given by

η(x) =





x if (a, b) = R
log(x− a) if −∞ < a < b = ∞
log

(x− a)
(b− x)

if −∞ < a < b < ∞
− log(b− x) if −∞ = a < b < ∞,

(2)

is the Johnson transformation adapted for arbitrary interval support.
The philosophy behind this concept is the following. The score function of dis-

tribution G with support R and density g,

Q(y) = −g′(y)

g(y)
, (3)

equals to the likelihood score for location, the most important parameter character-
izing the mode of G. However, (3) do not characterize distributions F with support
X 6= R. The generalization (1) of (3) for F with support X 6= R has the follow-
ing meaning: F is viewed as a transformed ’prototype’ G with support R, that is,
F (x) = G(η(x)). Denoting by g the density of G, the density of F is

f(x) = g(η(x))η′(x), x ∈ X , (4)

where η′(x) = dη(x)/dx is the Jacobian of the transformation. By setting y = η(x),
we obtain from (1) and (4)

T (x) =
1

g(y)η′(x)

d

dy
(−g(y))

dy

dx
= Q(η(x)). (5)

Johnson score of F is thus the transformed score function of its prototype.
A unique solution x∗ of equation

T (x) = 0 (6)

is called a Johnson mean (the solution is unique if the prototype G of F is uni-
modal). Johnson mean thus characterizes a typical value of unimodal heavy-tailed
distributions, the mean of which does not exists (and is a value near the mean of
light-tailed distributions).
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Johnson score moments

EfT
k =

∫

X
T k(x)dF (x), k = 1, 2, ... (7)

exist if F satisfies the usual regularity requirements, and EfT = 0. Let now m ∈ N
and x1, ..., xn be a random sample from Fθ with unknown θ ∈ Θ ⊆ Rm. By the
substitution principle we obtain equations for the ’Johnson score moment estimate’
of θ in the form

θ̂n :
1

n

n∑
i=1

T k(xi; θ) = ET k(θ), k = 1, ..., m, (8)

which turns out to be consistent and asymptotically normal. Moreover, if F is heavy-
tailed, T is bounded and the estimates are ’naturally’ robust. Since the Johnson
mean of Fθ, θ ∈ Rm is a function x∗ = x∗(θ), its (robust) estimate can be obtained
as x̂∗ = x∗(θ̂). It was shown by (Fabián 07) that x̂∗ is asymptotically N(x∗, ω2)
where ω2 is related with the second Johnson score moment of F . The Johnson
estimation for particular distributions is treated in (Fabián 08). For illustration, in
the case of the log-normal distribution the score based method brings nothing new
in the context of possibility of transformation to the normal distribution. Trimmed
version of Johnson score method for log-normal distribution coincides (dependently
on trimming) with the transformation to R and Huber trimming for the normal
distribution.

2.2 Robust estimators of ”generalized median” and
”trimmed mean” type

Several recent papers treated robust and efficient estimation of tail index parameters
for Pareto models given by cdf F (x) = 1 − (λ

x
)α, x > λ, see e.g. (Brazauskas and

Serfling (2003)) and (Vandewalle et al. 07). Estimators of ”generalized median”
and ”trimmed mean” type were introduced by (Brazauskas and Serfling (2003)).
They have been shown to provide more favorable trade-offs between efficiency and
robustness than the several well-established estimators, including those correspond-
ing to methods of ML, quantiles and percentile matching. Generalized median (GM)
statistics are defined by taking the median of the

(
n
k

)
evaluations of a given kernel

h(x1, . . . , xk) over all k-sets of the data. In (Brazauskas and Serfling (2000a)) such
estimators were considered for the parameter α in the case of λ known, with a par-
ticular kernel h(x1, . . . , xk, λ) = k

Ck
∑k

i=1 ln(xi/λ)
, where Ck is a multiplicative median

unbiasing factor. The generalized median estimator of α for k-sets and known λ is
α̂GM,k,λ = Median{h(xi1 , . . . , xik , λ)}

Asymptotic relative efficiency (ARE) with respect to the MLE is increasing with
k, while robustness (largest proportion of the sample observations which may be
contaminated without effecting the parameter estimation) decreases with k. For k-
values between k = 5, . . . , 10 we have high ARE and still relatively high robustness.
In (Brazauskas and Serfling (2000b)) two similar generalized quantile estimators and
particular generalized median estimators for the parameter α in the case of unknown
λ are introduced by substituting λ in the kernel h(x1, . . . , xk, λ) with min{x1, . . . , xk}
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and λ̂ML respectively. Since λ̂ML is biased we used the bias-corrected MLE λ̂unb

instead of λ̂ML. Also the median unbiasing factors have to be changed slightly.
The generalized median estimators of α for k-sets and unknown λ are α̂GM,k,min =

Median{h(xi1 , . . . , xik ,min{xi1 , . . . , xik})} and α̂GM,k,λ̂unb
= Median{h(xi1 , . . . , xik , λ̂unb)}.

Similarly to the case of known λ a reasonable trade-off between robustness and ef-
ficiency can be found with k-values between k = 5, . . . , 10. ARE of α̂GM,k,min is
slightly smaller than ARE of α̂GM,k,λ and α̂GM,k,λ̂unb

respectively.

In (Brazauskas and Serfling (2000a)) a trimmed mean estimator α̂TM for α is
discussed for the case of known λ. This estimator is similar to the MLE but discards
the proportion β1 of the lowermost and the proportion β2 of the uppermost obser-
vations. The remaining observations are weighted such that α̂−1

TM is mean-unbiased

for α−1: α̂TM,β1,β2 = (
∑n

i=1 cn,i,β1,β2

log(x(i))

λ
)−1 with mean unbiasing factors cn,i,β1,β2

and x(1) ≤ x(2) ≤ · · · ≤ x(n).

3 Large deviations of compound sums within the

subexponential family

Here we consider the random sum of claims

S =
N∑

i=1

Xi, (9)

where N denotes an integer valued counting variable and {Xi} constitutes a sequence
of independent, identically distributed (iid) non-negative random variables with cdf
F independent on counting. S is called the total claim amount or aggregate claim.
Such a model is typical in ruin theory. We are interested in probabilities of large
deviations of S under the assumption that F is heavy tailed. In particular, we
assume that Xi has no finite exponential moments, i.e. standard large deviation
theory does not apply (the existence of the moment generating function is crucial
for proving Cramér’s theorem, for more see (Mikosch and Nagaev 01)). A r.v. X
(or its d.f.) is said to be heavy tailed on right-hand if E(erX) = +∞ for any r > 0.
Such a situation is typical for many distributions met in insurance, when one is
interested in modeling large claims. In such a case distributions with exponentially
decaying tail do not form adequate models. In what follows F̄ (x) = 1 − F (x), x ≥
0 denotes the tail of the cdf F. The most important heavy-tailed subclass is the
subexponential class (denoted as S). Provided that X > 0 a.s., (Mikosch and
Nagaev 98) distinguish the following typical subclasses of S : regularly varying
tails RV(α), lognormal-type tails LN(γ), and Weibull-like tails WE(α). Distributions
F ∈ RV(α) are for instance the infinite variance stable distributions (with α < 2),
including the Cauchy distribution (with α = 1), the Fréchet distribution, which is
one of the extreme value distributions, the Burr and the loggamma distributions.
The lognormal distribution belongs to LN(2). The heavy-tailed Weibull and the
Benktander-type-II distributions are members of WE(α). All these distributions
do not satisfy Cramér’s condition. For a precise definition of these distributions
we refer for instance to (Embrechts et al. 03), Chapter 1. As we have already
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mentioned, distributions in classes RV(α), LN(γ) and WE(α) are subexponential
distributions provided that X > 0 a.s. The subexponentiality means that the tail of
the sum of n random variables becomes large by a dominating large random variable,
i.e. F is subexponential if for every n ≥ 2 and x tending to +∞, P (

∑n
i=1 Xi >

x) ∼ P (max1≤k≤n Xk > x) holds. There are two other heavy-tailed subclasses, the
class L of long-tailed d.f.’s and the class D of d.f.’s with dominatedly varying tails,
which are closely related to class S (see (Ng et al. 02)). It is well-known that
D∩L ⊂ S ⊂ L, D 6⊂ S, S 6⊂ D and RV(α) ⊂ D (see (Ng et al. 02) and (Embrechts
et al. 03), p. 50).

In what follows all random variables are positive with infinite support, i.e.
F (x) < 1 for all x > 0. Let F n?

be the n-fold convolution of F (for the defini-
tion see Embrechts et all, p.39). Now let us assume a subexponential individual
claim. (Mikosch and Nagaev 01) have proved that for a claim from T1 = {X : X ∈
RV(α), α > 1} and under the assumption that the moment generating function of
the counting variable N exists in a neighborhood of the origin, we have

∆(x) :=
P (S > x)

P (X > x)
− E(N) → 0, x → +∞. (10)

But without additional conditions the approximation of P (S > x) by E(N)P (X >
x) may be very bad, since the rate of convergence in (10) can be arbitrarily slow as it
is shown in (Mikosch and Nagaev 01) (see also example 4 in section 5). In the same
paper they proved that ∆(x) = O(1/x), x → +∞ under some regularity conditions.
For instance if 1 − F is regularly varying with some α > 2, then its integrated tail
distribution FI(x) = (1/E(X))

∫ x

0
(1− F (u))du, x ≥ 0 with 0 < E(x) < ∞ satisfies

these conditions. Here we relate the set T1 to the set T2 of claim r.v.’s, for which
Theorem 2.3 in (Ng et al. 02) holds. Assuming X > 0 a.s. the next Lemma shows
that T1 ⊂ T2 (for Proof see Appendix).

Lemma Assume X > 0 a.s. Then T1 ⊂ T2 := {X : X ∈ D ∩ L and E(X) <
+∞}.

Coming back to ∆(x) asymptotics, for instance let F̄α(x) = x−α be the tail
of Pareto distribution, α > 0, x ≥ 1. (Mikosch and Nagaev 01) proved that even
for such a regular distribution with α > 2 the rate O(1/x) cannot be improved.
(Christoph 05) (see Theorem 2) has proved that for 1 < α < 2 and supposing
uα(x) = O(x−r) as x →∞ for 1 + α < r ≤ 2α and E(N3) < ∞, µ = E(X) we have

∆(x) =
αµ(E(N2)− E(N))

x
+ O(x−(r−α)), x →∞. (11)

He assumed that 1−F is regularly varying for some 0 < α < 2, α 6= 1 and we define
uα(x) := 1 − F (x) − C(α)x−α for some C(α) > 0. If F is regularly varying with
some index 0 < α < 1 then Proposition 1 in (Christoph 04) shows that the exact
rate of convergence of ∆(x) is usually x−α as x →∞. In the special case of α = 1/2
Theorem 3 in (Christoph 05) says that

∆(x) =
µ?E(N2)− 1

6
E(N3)− (µ? − 1

6
)E(N)

2x
+ O(x−(r− 1

2
)), x →∞,

where µ? =
∫∞
0

xd(F (x) − G 1
2
,1(x)) is the first pseudomoment and we assume

E(N4) < ∞, u 1
2
(x) = O(x−r) as x → ∞ for 3

2
< r ≤ 5

2
, r 6= 2. For r = 2
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see (Christoph 05). The stable law G 1
2
,1(x) is the Lévy-distribution with density

1

2
√

πx
3
2 e4x

for x > 0.

4 Testing of the quality of fit

Typically, the classical GOF tests are used to compare the quality of different es-
timators. For instance, (Brazauskas and Serfling (2003)) use Kolmogorov-Smirnov,
Cramér-von-Mises and Anderson-Darling statistics to assess the performance of dif-
ferent estimators. However, typically available for those tests are only the asymp-
totical quantiles and critical constants. The implementation of the exact or approx-
imative Kolmogorov-Smirnov, Cramér-von-Mises and Anderson-Darling GOF tests
for the case of estimated parameters of the null distribution is extremely difficult.
Therefore in our paper we use the exact procedure to assess the quality of different
estimators. The typical model used for a heavy tail is the P (λ, α) Pareto model
given by cdf

F (x) = 1− (
λ

x
)α, x > λ, (12)

where α > 0 is the shape parameter that characterizes the tail distribution and
λ > 0 is the scale parameter. A well known equivalence relation between Pareto
model and truncated exponential distribution E(µ, θ) having cdf

G(z) = 1− e
−(z−µ)

θ , z > µ, µ ∈ R, θ > 0 (13)

constitutes a base for further considerations. Specifically, if random variable X has
cdf given by (12), then variable Z = log X has cdf G given by (13) with µ = log λ
and θ = α−1. Here we construct the exact LR tests of the homogeneity and Pareto
tail index. The base will be the ELRT (exact likelihood ratio test) procedures given
by (Stehĺık (2006)). The following theorem gives the ELRT statistics of homogeneity

H0 : λ1 = . . . = λN versus nonH0 (14)

for the sample from P (λ, α). For proof see Appendix.

Theorem 1 Let x1, . . . , xN be i.i.d. from the Pareto P (λ, α) family. Then the LR
statistics − ln ΛN of the hypothesis (14) has the form

N ln(
N∑

i=1

yi)−N ln N −
N∑

i=1

ln yi (15)

where yi = α(log xi − log λ). Under the H0 it has the same distribution as the
random variable

− ln{NNu1 . . . uN−1(1− u1 − . . .− uN−1)},
where the vector (u1, . . . , uN−1) has a generalized Beta distribution B(1, . . . , 1) on
the simplex

{u : 0 < u1 < 1, . . . , 0 < uN−1 < 1− u1 − . . .− uN−2}.
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The generalized Beta distribution is in the literature also called the Dirichlet
distribution or the multivariate Beta distribution. Notice, that the determination
of the likelihood ratio statistic is no problem. The very important property of the
LR test of homogeneity is that its distribution is under the H0 independent on the
unknown tail index α (this is an advantage against some asymptotical tests and
tests dependent on true but unknown value of α). This property, in the case of
exponential model the scale invariance, is discussed in (Stehĺık (2006)). For other
properties of such a test in the case of exponential samples see (Stehĺık (2006)) and
(Stehĺık and Wagner (2008)). Thus the LR test of the homogeneity is dependent
only on the location parameter λ. However, both ML and MM estimation of λ brings
problems, since in the case of ML estimation we have λ̂ML = min{x1, ..., xn} and thus
− ln ΛN becomes infinity and in the case of MM estimation we get a negative values
of y′is. However, in actuarial literature, the assumption of λ being known is quite
typical, because, as for example (Philbrick (1985)) states, ”although there may be
situations where this value must be estimated, in virtually all insurance applications
this value will be selected in advance”. See also discussion by (Rytgaard (1990)).
When λ is assumed known, the Pareto P (λ, α) model is called a single-parameter
Pareto model. When the sample is drawn by single-parameter Pareto model one
can be interested in testing a hypothesis about the tail parameter α. The following
Theorem 2 gives the exact distribution and the power function of the LR test of the
hypothesis

H0 : α = α0 versus H1 : α 6= α0. (16)

For the proof see Appendix.

Theorem 2 Let x1, . . . , xN be a sample from the single-parameter Pareto model
P (α) (λ is known parameter). Then the LR statistics − ln ΛN of the hypotheses
(16) has the form

− ln ΛN = GN

(
N∑

i=1

yi

)
−GN(N) (17)

where yi = α(log xi− log λ). Under H0 the cumulative distribution function (cdf) of
the Wilks statistics −2 ln ΛN has the form (here τ > 0)

F Γ
N

{−NW−1(−e−1− τ
2N )

}− F Γ
N

{−NW0(−e−1− τ
2N )

}
. (18)

Here we define for u, x > 0 the function Gu(x) = x−u ln x. The Wk, k ∈ {−1, 0} is
k-th branch of Lambert W function (see Appendix) and F Γ

N is gamma cdf with shape
parameter N and scale parameter 1.

For the properties of the exact LR test for the case of the (transformed) expo-
nential observations yi see (Stehĺık (2006)).

5 Why robust estimates are needed in the analy-

sis of sums of claims

Actuaries (e.g. see (Hewitt and Lefkowitz 79)) distinguish several types of distribu-
tions to fit loss data: gamma, log-gamma, log-normal, gamma + log-gamma, gamma
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+ log-normal and Pareto being the most important. They described the method
to fit these five types of distributions to loss data and discussed applications of the
fitted distributions to estimation problems. Casualty actuaries frequently need to
extract information from insurance loss data. Used alone, each of these distribu-
tions assumes that the observed losses are generated by a single underlying process.
This may not always be the case. For example, a sample of observed losses may
contain some that involved litigation and others that did not. In this situation a
single distribution may not fit the aggregate data as well as a combination of two
or more distributions. The authors do not claim that all insurance loss data can be
fitted by the methods described here. However, after many years of actuarial ex-
perience (see (Alexander 05; Hewitt and Lefkowitz 79)) one can be convinced that
these methods will produce useful results for most practical problems. In operation
risk capital assessment there are many good reasons to use a log-normal distribu-
tion (see (Alexander 03)). Although this will not capture well the extremely high
impact losses, these are by definition, very rare indeed. Moreover, especially when
we analyze the sums of claims, robust estimates and procedures are needed. Both of
these facts are demonstrated by the following examples. All simulations are made
using Matlab 7.1. Here we study empirically the quality of the upper-quantile close-
ness drawn from classical parametric inference (method of moments and maximum
likelihood estimation) and Johnson inference when the individual claim distribution
is misspecified. Such studies are typical in various fields of statistics and are some-
times called sensitivity analysis. Example 1 shows the quantiles deviations when
log-gamma distribution is misspecified by a log-normal one, in example 2 we partic-
ularly study the misspecification of log-gamma by a log-normal claim when MLEs
are used. In example 3 the upper quantiles misspecification effect when a mixture
of gamma and log-gamma is misspecified by a log-normal distribution is studied.
The model of a mixture of gamma and log-gamma is given by (Hogg and Klugman
84), p. 51. Example 4 is motivating the estimation method based on Johnson score
given in section 2. In example 5 we demonstrate that the difference between MLE
and moment estimation is also large in the case of log-gamma distributed individual
claims (compare with example 4). Example 6 shows, that the application of Mikosch
Nagaev formula to estimation of upper extreme quantiles is very sensitive. Example
7 discusses the application of Gerd-Christoph formula (11). In all these examples a
significant difference in quantiles was observed and plotted by qq-plots. The qq-plot
provides a somewhat informal but convenient way of graphical detection of such a
difference.

5.1 Example 1

We consider a collective claim arisen from the i.i.d. individual claims log-gamma
distributed. For our example we assume, as it is usual in actuarial practice, the
individual claims to be log-normal LN(µ, σ). We obtain the ML-estimates of µ and
σ by using the values of zi = log(xi) and computing the ML-estimators of the
normally distributed data zi. In our example the expected values of the parameter
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estimates are:

E(µ̂) = a log(

√
1− 2

b

(1− 1
b
)2

), E(σ̂2) = a log(
(1− 1

b
)2

1− 2
b

)

For the comparison of the distributions of the sums of independent identically dis-
tributed individual claims we took these expectations as the parameters of the as-
sumed log-normal distribution.

Comparison of the distributions of the individual claims
For our example we set the parameters of the loggamma distribution to a = 10

and b = 2.5. For b we chose a value greater than 2 because for the loggamma distri-
bution there exist only the moments of order less than b and we wanted to ensure the
existence of the variance for our data. In figure 1 the real distribution (red) of the
individual claims (loggamma with a = 10 and b = 2.5) and the assumed distribution
(blue) of the individual claims (lognormal with µ = 2.1693 and σ2 = 5.8779) are
shown. The two distributions do not look similarly, the lognormal distribution has
the heavier tail.

Comparison of the distributions of the sum of claims
We are interested in the sum of iid individual claims S =

∑N
i=1 Xi. The distri-

bution of the sum depends on the distribution of the individual claims. Since the
distribution of the sums cannot be derived analytically, we obtained the distributions
empirically via simulations.

In our example we set the number of individual claims to be summed up to N =
100. 1.000.000 simulations of 100 iid loggamma and lognormal distributed claims
respectively were generated and added each. The distributions of these 2.000.000
sums are shown in figure 2. The two distributions clearly differ from each other.

For the computation of ruin probabilities upper thresholds for the sums are used.
These thresholds are very sensitive to the distribution of the individual data. This
can also be seen in figure 3: If we take the quantiles of the sum of lognormal variables
instead of the quantiles of the sum of loggamma variables we will overestimate the
ruin probability and vice versa.

We can conclude that the distribution of the sum of claims is highly sensitive to
the distribution of the individual claims. Thus for the analysis of operational risk it
is necessary to implement robust estimators and robust procedures respectively.
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Figure 6: Q-Q plot of the sum of log-
gamma and log-normal claims

5.2 Example 2

Again, we consider a collective claim arisen from the i.i.d. individual claims log-
gamma distributed and assume that the individual claims obeying a log-normal
LN(µ, σ) distribution. In example 1 we have concluded that the distribution of the
sum of claims is highly sensitive to the distribution of the individual claims. Here
we illustrate the non-robustness of MLE.

For the comparison of the distributions of the sums of independent identically
distributed individual claims we took the maximum likelihood estimates (MLE) as
parameters of the assumed log-normal distribution. Since we compared the distribu-
tions of the sum of claims empirically, we got different MLE in each simulation step.
To show how the assumed distributions differ from the log-normal distribution with
the expected values of the MLE, we computed the Kolmogorov-Smirnov-test statis-
tic in each simulation step. I.e. we computed the maximal positive and negative
difference between the cdf of the log-normal distributions with MLE as parameters
and with the expected values of MLE as parameters.

Comparison of the distributions of the individual claims
For our example we set the parameters of the log-gamma distribution to a = 10

and b = 2.5. For b we chose a value greater than 2 because for the log-gamma
distribution only the moments of order less than b exist and we wanted to ensure
the existence of the variance. In figure 4 the real distribution of the individual claims
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(log-gamma with a = 10 and b = 2.5) and the range of assumed distributions of the
individual claims (log-normal with expected MLE µ = 2.169 and σ2 = 5.878 and
distributions with maximal positive and negative cdf deviation from the expected
distribution) are shown. The log-gamma and the expected log-normal distribution
do not look similarly (the log-normal distribution has the heavier tail) but we are
basically interested in the distributions of the sum of N iid claims. We can also see
that the variation of the log-normal distributions is not negligible.

Comparison of the distributions of the sum of claims
Here we are interested in the sum of iid individual claims S =

∑N
i=1 Xi. We set

the number of individual claims to be summed up to N = 100. 1.000.000 simulations
of 100 iid log-gamma and log-normal distributed claims respectively were generated
and added each. The distributions of these 2.000.000 sums are shown in figure 5.
The two distributions clearly differ from each other, but the difference is less than the
difference in example 1. For the computation of ruin probabilities upper thresholds
for the sums are used. These thresholds are very sensitive to the distribution of the
individual data. If we look at the Q-Q plot in figure 6 we see that we underestimate
the ruin probability if we take the quantiles of the sum of log-normal claims based on
ML estimation instead of quantiles of the sum of log-gamma claims. This is totally
inconsistent to the results of example 1 where the ruin probability is overestimated
when log-normal claims instead of log-gamma claims are assumed.

Also this example shows, that the distribution of the sum of claims is highly
sensitive to the distribution of the individual claims. If we use the Johnson estimates,
we get the same results as for the MLE, since log-normal distribution can be obtained
from normal distribution by the Johnson transformation.

5.3 Example 3

The third example is based on the model given by (Hogg and Klugman 84), p. 51.
Actuaries have found (see (Hogg and Klugman 84) and (Hewitt and Lefkowitz 79)),
that a mixture of loggamma and gamma distributions is an important model for

12



700 800 900 1000 1100 1200 1300

800

850

900

950

1000

1050

1100

1150

quantiles of the sum of mixture distributions

qu
an

til
es

 o
f t

he
 s

um
 o

f L
og

−N
or

m
al

 d
is

tri
bu

tio
ns

LN with known
parameters

LN with ML estimated
parameters

99%

99,95%

99,9%

90%

Figure 9: Q-Q-Plot of the distribution of the sum of 100 mixture variables vs the
sum of 100 iid lognormal variables

claim distributions. In this example we consider the mixture with p.d.f. of the form

f(x) =





(1− p)
ba2
2 xa2−1

Γ(a2)
exp(−b2x), 0 < x ≤ 1

p
ba1
1 (ln x)a1−1

Γ(a1)x
b1+1 + (1− p)

ba2
2 xa2−1

Γ(a2)
exp(−b2x), 1 < x,

and zero elsewhere. Notice, that the variance is not simply the weighted average of
the two variances but also includes a positive term involving the weighted variance of
the means. In our example mean and variance of the gamma-distributed component
are given by:

mΓ =
a2

b2

vΓ =
a2

b2
2

Mean and variance of the loggamma-distributed component are given by:

mlogΓ = (1− 1

b1

)−a1 vlogΓ = (1− 2

b1

)−a1 − (1− 1

b1

)−2a1

Using these parameters, we can compute mean and variance of the mixture distri-
bution as follows:

E(x) = p ·mlogΓ + (1− p) ·mΓ

V ar(x) = p · vlogΓ + (1− p) · vΓ + p(1− p)(mlogΓ −mΓ)2

Assumed distribution of the data
In practice we never know the real distribution of the data. For our example

we expect the data to be distributed log-normal (what is a common practice of
actuaries). Mean and variance of the lognormal distribution are given by:

E(x) = exp(µ +
σ2

2
) V ar(x) = exp(2µ + σ2)(exp(σ2)− 1)

For the comparison of the distributions of the sums of independent identically dis-
tributed individual claims we took the same means and variances for the mixture-
distribution and the assumed lognormal distribution respectively.

Comparison of the distributions of the individual claims
For our example we set the parameters of the loggamma component of the mix-

ture distribution to a1 = 3 and b1 = 2.5. The parameters of the gamma component
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of the mixture distribution were set to a2 = 2 and b2 = 0.25. Finally we set the
mixing probability to p = 0.3. In figure 7 the real distribution of the individual
claims (mixture of loggamma and gamma) and the assumed distribution of the in-
dividual claims (lognormal with µ = 1.3393 and σ2 = 0.8246) are shown. The two
distributions are quite similar.

Comparison of the distributions of the sum of claims
We are interested in the sum of iid individual claims S =

∑N
i=1 Xi. The distri-

bution of the sum depends on the distribution of the individual claims. Since the
distribution of the sums cannot be derived analytically, we obtained the distributions
empirically via simulations.

In our example we set the number of individual claims to be summed up to
N = 100. 1.000.000 simulations of 100 mixture distributions and 100 log-normal
distributed claims respectively were generated and added each. The distributions of
these 2.000.000 sums are shown in figure 8. The two distributions differ from each
other. The sum of the loggamma distributed variables seems to vary more, which is
not true, if we look at the empirical variances.

In figure 9 the quantiles of the distribution of the sum of log-normal variables are
plotted against the quantiles of the distribution of the sum of the mixture variables.
It can be seen that the distribution of the sum of the mixture distributed claims has
the heavier tail.

5.4 Example 4

Example 4 is motivating the estimation method based on Johnson score discussed
in section 2. Assume for the sake of simplicity that the individual claim distribu-
tion is gamma. Then the Johnson score estimation is identical with the method of
moments. We have simulated 100 gamma distributed random numbers with param-
eters α = 3 and γ = 0.25, computed the MLE and moment estimates of α and γ
and then simulated 100 gamma random numbers with the MLE and moment esti-
mated parameters each (1.000.000 simulation steps). The distribution of the sum of
moment estimated gamma distributions varies more than the sum of MLE gamma
distributions (see figure 10). Also the upper quantiles from (0.9, 0.9995) differ as
we can see in figure 11. We can conclude a significant difference between maximum
likelihood and moment estimation. With another choice of parameter values we get
a result that is completely different: with α = 3 and γ = 4 the moment estimation
method yields results that are superior to the results of ML estimated parameters.

5.5 Example 5

In this example we demonstrate that the difference between MLE and moment esti-
mation is large also in the log-gamma case (compare with example 2). We simulated
100 log-gamma distributed random numbers with a = 10 and b = 2.5, computed
the MLE and moment estimates of a and b numerically, and then simulated 100
log-gamma random numbers with the MLE and moment estimated parameters each
(1.000.000 simulation steps each). The distribution of the sum of MLE log-gamma
distributions varies more than the sum of moment estimated log-gamma distribu-
tions (see figure 12). Also the upper quantiles (0.9 to 0.9995) differ, as we can see
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claims

in figure 13. Additional details: the expectation of the sum should theoretical be:
100 · (1 − 1

γ
)−α = 16538.17, the mean of the 1.000.000 simulated log-gamma sums

was 16577.98, the mean of the 1.000.000 simulated moment estimated log-gamma
sums was 16602.03, the mean of the 1.000.000 simulated MLE log-gamma sums was
17408.83 (here moment method is clearly better), the variance of the sum should
theoretically be: 100 · ((1 − 2

b
)−a − (1 − 1

b
)−2a) = 9.738 · 108, the variance of the

1.000.000 simulated log-gamma sums was 7.22 · 108, the variance of the 1.000.000
simulated moment estimated log-gamma sums was 1.029 · 109, the variance of the
1.000.000 simulated MLE log-gamma sums was 4.229 · 109.

5.6 Example 6

In this example we demonstrate that application of Mikosch-Nagaev results to esti-
mation of the extreme upper quantiles is rather non-robust and sensitive.

We made 1.000.000 simulations of a Poisson variate N with parameter λ = 10.000
and then of the sum of N log-gamma variables with parameters a = 10 and b = 2.5.
For a comparison we also simulated the sum of λ = 10.000 log-gamma variables with
parameters a = 10 and b = 2.5. The two distributions of the sums (with N Poisson
distributed and fixed at N = λ respectively) seem to be the same.

We studied the speed of convergence of the Mikosch-Nagaev theorem with the
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empirical distribution of the sum of N iid log-gamma variates with N Poisson dis-
tributed. First we compared P (S > x) with E(N) · P (X > x) which can be seen
in figure 14. It seems as if E(N) · P (X > x) − P (S > x) → 0 with x → ∞. Con-

vergence does not look that fast if we plot P (S>x)
P (X>x)

against E(N) (see figure 15) but
it still seems to be acceptable. The applicability of the theorem can be seen if we
plot P (S>x)

P (X>x)
for small values of P (S > x) (see figure 16). It seems as if P (S>x)

P (X>x)
would

converge to E(N) but the theorem is not applicable for probability values used in
actuarial practice, convergence is too slow.

5.7 Example 7

In this example we demonstrate that application of Christoph’s formula (11) to
estimation of the extreme upper quantiles is rather sensitive.

We made 1.000.000 simulations of the sum of N Pareto distributed random
variates with α = 1.5, λ = 1 where N is Poisson distributed with parameter λ =

10.000. In figure 17 we can see ∆(x) and αµ(E(N2)−E(N))
x

. It looks as if the Christoph’s
theorem based asymptotics is sensitive in this setup. This can be observed also in

the figures 18 and 19 where we plotted ε(x) := ∆(x)− αµ(E(N2)−E(N))
x

and xα−r for
1+α < r ≤ 2α against x and P (S > x) respectively. This behavior can be partially
explained by the fact that we know ∆(x) only empirically and that the variation of
the empirical ∆(x) is very high for high x-values.

6 Illustrating Examples

In this section we illustrate the performance of estimators on real data set of Wind
catastrophes claims (1977) modeled by Pareto distribution and on real data based
on a non-life insurance sample consisting of 96 payments in one year. Here we
consider both American and European Pareto parametric model. These models
arise as parametric models in actuarial science, economics and reliability as well as in
semiparametric modeling of upper observations in samples from distributions which
are regularly varying or in the domain of attraction of extreme value distribution.
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6.1 Example 1: Application to non-life insurance data

Here we consider a non-life insurance (real data) sample consisting of 96 payments
in one year taken from (Plevová 99). The values are in thousands of Slovak crowns,
displayed in table 1, see the data plot in figure 20.

24 26 73 84 102 115 132 159 207 240 241 254
268 272 282 300 302 329 346 359 367 375 378 384
452 475 495 503 531 543 563 594 609 671 687 691
716 757 821 829 885 893 968 1053 1081 1083 1150 1205

1262 1270 1351 1385 1498 1546 1565 1635 1671 1706 1820 1829
1855 1873 1914 2030 2066 2240 2413 2421 2521 2586 2727 2797
2850 2989 3110 3166 3383 3443 3515 3521 3531 4068 4527 5006
5065 5481 6045 7003 7245 7477 8738 9197 16370 17605 25318 58524

Table 1: Payments (in thousands of Slovak crowns)

First, we used the QQ method to show that the data are heavy tailed. Some
typical diagnostics like Hill estimator (see figure 21) do not work optimally for these
data but the QQ method works pretty well. The Hill estimator is a consistent
estimator of 1

α
as n, k →∞ and k

n
→ 0 under the convergence condition on the tail

empirical measure (see (Resnick (2006))).
In figure 22 we give a QQ plot of the log-transformed data matched against

exponential quantiles. Clearly, we should be looking at exceedances as not all data
fall on the line. So we can conclude that the data are heavy tailed. Here the
employed QQ method is based on the consideration, that our data have exact or
approximate Pareto tail, what is also the base of the POT method, where the
approximate distribution of the large values relative to a threshold is replaced by
the limiting Pareto distribution. This means P (X > x) ≈ (x

λ
)−α, x > λ and we have

P (α ln X
λ

> y) = e−y, y > 0, (see (Resnick (2006))) so we should plot {(− ln(1 −
i

n+1
), ln Xi:n), 1 ≤ i ≤ n} and if H0 of Pareto tail is correct or at least approximately

correct, the plot should be roughly linear with slope α−1 and intercept ln λ. This is
an adaptation of the classical QQ plot which for normal data has a robust version
RQQ based on a robust standardization of the observed data (see (Gel et al. 05)).

Assuming the data are a random sample from a distribution with a regularly
varying tail with index −α the QQ estimator is a weakly consistent estimator of
α−1 (for k, n → +∞ and k/n → 0, see (Resnick (2006)), Theorem 4.3). The QQ
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estimator, which is the formalization of the idea that the slope of the least squares
line fitted to the QQ plot is an estimate of α−1, gave for our data the value of
α̂QQ = 0.7234.

6.1.1 European Pareto

Here we consider the European Pareto parametrization, F̄ (x) = (λ
x
)α. We have

computed the p-value and estimated Johnson mean x̂∗ for the LR test for the Pareto
model P (α, λ) with fixed (known) λ. We fixed λ = 20 and used different estimators
for α. The results can be seen in table 2.

The p-values and estimated Johnson mean x̂∗ for estimated λ parameters can be
seen in table 3.

The p-value for the moment estimators cannot be computed because λ̂MM >
xmin. The moment estimators α̂MM = 2.0919 and λ̂MM = 1560.6 are inconsistent
with xmin > λ. But mean and variance of the Pareto distribution only exist for
α > 2 which might be an indicator for α < 2.

6.1.2 American Pareto

Here we consider the American Pareto parametrization, which is considered also
in (Plevová 99), F̄ (x) = ( λ

λ+x
)α. We computed the estimated Johnson mean x̂∗ for

the LR test for the American Pareto model P (α, λ) with fixed and estimated λ
respectively.

The parameter estimates and estimated Johnson mean x̂∗ with λ = 3000 fixed
and estimated λ̂ can be seen in the tables 4 and 5.

The solution of the estimation equations for the Johnson estimates yield improper
results when λ is not fixed. The parameter estimates we obtained are in agreement
with the numerical results given in (Plevová 99), i.e. α̂ML = 1.9088, λ̂ML = 2704.48,
α̂MM = 2.46968 and λ̂MM = 4394.25. See figure (23) for comparing the different
sums of Pareto distributed random variables.

Running of the Kolmogorov Smirnov test is not a routine task here, since we are
estimating the parameters of the null hypothesis distribution. The comparison of
the empirical cdf and estimated cdf is given in Figure 24.
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α̂ p-value x̂∗
ML 0.2484 1 100.51
unbiased 0.2458 0.9185 101.363
MM 1.0067 5.0938 · 10−71 39.866
QQ 0.7234 3.4641 · 10−37 47.646
Johnson 0.0537 3.4395 · 10−33 392.43
Trimmed Mean Estimators α̂TM,β1,β2

β1 = 0, β2 = 1
96

0.2400 0.7390 103.32

β1 = 0, β2 = 2
96

0.2335 0.5487 105.66

β1 = 0, β2 = 3
96

0.2278 0.4042 107.78

β1 = 0, β2 = 4
96

0.2228 0.2965 109.75

β1 = 0, β2 = 5
96

0.2180 0.2113 111.74

β1 = 0, β2 = 6
96

0.2180 0.2113 111.74

β1 = 0, β2 = 7
96

0.2094 0.1036 115.53

β1 = 0, β2 = 8
96

0.2054 0.0713 117.37

β1 = 0, β2 = 9
96

0.2017 0.0486 119.18

β1 = 0, β2 = 10
96

0.1980 0.0326 120.99

Generalized Median Estimators α̂GM,k,λ

k = 1 0.1682 0.0003 138.92
k = 2 0.2078 0.0902 116.22
k = 3 0.2209 0.2595 110.55
k = 4 0.2277 0.4007 107.84
k = 5 0.2317 0.5019 106.30
k = 6 0.2346 0.5803 105.24
k = 7 0.2365 0.6327 104.58
k = 8 0.2379 0.6761 104.05
k = 9 0.2391 0.7098 103.66
k = 10 0.2401 0.7400 103.31
k = 15 0.2428 0.8244 102.37
k = 20 0.2442 0.8688 101.89
k = 30 0.2456 0.9122 101.43
k = 50 0.2467 0.9480 101.05
k = 70 0.2472 0.9628 100.90
k = 94 0.2475 0.9728 100.80
k = 95 0.2476 0.9745 100.78
k = 96 0.2475 0.9729 100.80

Table 2: Estimates α̂, p-values and Johnson mean for λ = 20 fixed for European
Pareto
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λ̂ α̂ p-value x̂∗
ML 24 0.2602 1 116.24
unbiased 23.0185 0.2547 0.9185 113.3914
MM 1560.6 2.0919 nan 2306.7
QQ 24 (ML) 0.7234 1.3117 · 10−33 57.176
Johnson 24 (ML) 0.0651 1.7776 · 10−28 392.43
Generalized Median Estimators α̂GM,k,min

k = 2 – 0.5265 – –
k = 3 – 0.5230 – –
k = 4 – 0.5014 – –
k = 5 – 0.4823 – –
k = 6 – 0.4656 – –
k = 7 – 0.4504 – –
k = 8 – 0.4367 – –
k = 9 – 0.4244 – –
k = 10 – 0.4124 – –
k = 15 – 0.3706 – –
k = 20 – 0.3475 – –
k = 30 – 0.2797 – –
k = 50 – 0.2600 – –
k = 70 – 0.2574 – –
k = 94 – 0.2566 – –
k = 95 – 0.2566 – –
k = 96 – 0.2566 – –
Generalized Median Estimators α̂GM,k,λ̂unb

k = 1 23.0185 (unb) 0.1715 0.0002 157.25
k = 2 23.0185 (unb) 0.2127 0.0701 131.26
k = 3 23.0185 (unb) 0.2262 0.2152 124.80
k = 4 23.0185 (unb) 0.2332 0.3423 121.72
k = 5 23.0185 (unb) 0.2374 0.4358 119.96
k = 6 23.0185 (unb) 0.2404 0.5094 118.76
k = 7 23.0185 (unb) 0.2423 0.5590 118.01
k = 8 23.0185 (unb) 0.2439 0.6005 117.41
k = 9 23.0185 (unb) 0.2450 0.6328 116.96
k = 10 23.0185 (unb) 0.2461 0.6621 116.56
k = 15 23.0185 (unb) 0.2489 0.7443 115.50
k = 20 23.0185 (unb) 0.2504 0.7880 114.95
k = 30 23.0185 (unb) 0.2518 0.8308 114.43
k = 50 23.0185 (unb) 0.2530 0.8665 114.00
k = 70 23.0185 (unb) 0.2535 0.8813 113.83
k = 94 23.0185 (unb) 0.2538 0.8912 113.71
k = 95 23.0185 (unb) 0.2539 0.8930 113.69
k = 96 23.0185 (unb) 0.2538 0.8913 113.71

Table 3: Estimates α̂, λ̂, p-values and Johnson mean for European Pareto

α̂ x̂∗

ML 2.38 1260.5
MM 2.0034 1497.5
Johnson 2.0645 1453.2

Table 4: Estimates α̂, and John-
son mean for λ = 3000 fixed

λ̂ α̂ x̂∗

ML 2704.3 1.9088 1416.8
MM 4412.5 2.4758 1782.3

Table 5: Estimates α̂, λ̂ and Johnson
mean for American Pareto
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Table 6: Wind catastrophe data
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6.2 Example 2: Wind catastrophes claims (1977)

The Wind catastrophes data set is taken from (Hogg and Klugman 84), p. 64. It
represents 40 losses that occurred in 1977 due to wind related catastrophes. The data
were recorded to the nearest $1.000.000 and include only those loses of $2.000.000
or more. The table 6 displays the losses in million of dollars.

Since the data were rounded, for the estimation of the parameters of the Pareto
distribution (cdf: F (x) = 1 − (λ

x
)α) uniformly distributed random numbers (r ∼

U[−0.5; 0.5)) were added to the original data. In the actuarial approach this is
called data de-grouping.

6.2.1 European Pareto

The p-values and estimated Johnson mean x̂∗ for estimated λ are given in Table 7.
The simulated distributions of sums of Pareto distributed random variates are

quite different. We simulated 100.000 sums of N Pareto distributed rv with the
ML, QQ and Johnson estimated parameters. In figure 27 the 3 pdfs are plotted.
The distribution of the sums using the moment estimates is far away from the
other two distributions, but also the distributions using α̂QQ and α̂ML respectively
are clearly different from each other. In this case the qq-plots in figure 28 in fact
are unnecessary, everyone can see the differences also without these plots. The
distribution using the moment estimates is obviously wrong, which can be seen from
figure 29 where the pdf of a Pareto distribution with parameters λ̂MM and α̂MM is
plot together with the empirical distribution of the data. The moment estimates
for λ and α are inconsistent with the data (all data should be greater than λ, but
λ̂MM = 5.3102). Mean and variance only exist for α > 2. This might be an indicator
either for α < 2 or that we are fitting the wrong distribution.

Running of the Kolmogorov Smirnov test is not a routine task here, since we are
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λ̂ α̂ p-value x̂∗
ML 1.5118 0.7668 1 3.4832
unbiased 1.4599 0.7281 0.8736 3.4647
MM 5.3102 2.3559 1.9962 · 10−24 7.5642
QQ 1.5118 (ML) 0.9294 0.2100 3.1384
Johnson 1.5118 (ML) 0.6492 0.3064 3.8405
Generalized Median Estimators 1
k = 2 – 0.7410 – –
k = 3 – 0.7244 – –
k = 4 – 0.7473 – –
k = 5 – 0.7546 – –
k = 6 – 0.7550 – –
k = 7 – 0.7556 – –
k = 8 – 0.7550 – –
k = 9 – 0.7547 – –
k = 10 – 0.7541 – –
k = 11 – 0.7530 – –
k = 12 – 0.7519 – –
k = 15 – 0.7497 – –
k = 25 – 0.7460 – –
k = 35 – 0.7424 – –
k = 36 – 0.7418 – –
k = 37 – 0.7420 – –
k = 38 – 0.7418 – –
k = 39 – 0.7392 – –
k = 40 – 0.7413 – –
Generalized Median Estimators 2
k = 1 1.4599 (unb) 0.5452 0.0592 4.1374
k = 2 1.4599 (unb) 0.6216 0.2611 3.8083
k = 3 1.4599 (unb) 0.6573 0.4299 3.6809
k = 4 1.4599 (unb) 0.6781 0.5489 3.6126
k = 5 1.4599 (unb) 0.6870 0.6031 3.5849
k = 6 1.4599 (unb) 0.6927 0.6393 3.5673
k = 7 1.4599 (unb) 0.6976 0.6706 3.5525
k = 8 1.4599 (unb) 0.7009 0.6917 3.5428
k = 9 1.4599 (unb) 0.7038 0.7109 3.5341
k = 10 1.4599 (unb) 0.7060 0.7253 3.5276
k = 11 1.4599 (unb) 0.7075 0.7351 3.5233
k = 12 1.4599 (unb) 0.7091 0.7458 3.5186
k = 15 1.4599 (unb) 0.7122 0.7665 3.5096
k = 25 1.4599 (unb) 0.7176 0.8024 3.4942
k = 35 1.4599 (unb) 0.7198 0.8173 3.4880
k = 36 1.4599 (unb) 0.7199 0.8178 3.4877
k = 37 1.4599 (unb) 0.7205 0.8219 3.4860
k = 38 1.4599 (unb) 0.7208 0.8237 3.4853
k = 39 1.4599 (unb) 0.7202 0.8199 3.4869
k = 40 1.4599 (unb) 0.7219 0.8316 3.4820

Table 7: Estimates α̂, λ̂, p-values and Johnson mean for European Pareto
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estimating the parameters of the null hypothesis distribution. The comparison of
the empirical cdf and estimated cdf is given in Figure 30.

Now, let us consider the situation mostly typical in actuarial practice: the pa-
rameter λ is known. We have used the exact LR test of homogeneity (see Theorem
1) to test the goodness of fit for various values of λ. The figure 31 plots the p-values
against λ. Particularly, for λ = 1.5 we obtain 0.8299 and the λ-value for which
P (U >= − ln Λ) = 0.95 is 1.4513.

For the case of Johnson estimation we have n∑n
i=1

1
xi

= λα+1
α

. The dependence of

α̂J values on λ is given by Figure 32. For λ = 1.5 we obtain α̂J = 0.6409.
We computed the p-value for the LR test for the Pareto model P (α, λ) with fixed

(known) λ. We fixed λ = 1.5 and used different estimators for α and estimated also
the Johnson mean x̂∗ (see table 8).

The ML estimators are biased but we can get unbiased estimates for λ and α on
the basis of the ML estimators:

α̂unb = α̂ML
n− 1

n
λ̂unb = λ̂ML(1− 1

nα
)

(see also discussion in (Rytgaard (1990)) for the case of α̂unb with the known λ). For
both estimates the second parameter has to be known respectively. So we computed
the unbiased estimates recursively starting with the ML estimators. The iterations
converge very fast (2 or 3 steps).
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α̂ p-value x̂∗
ML 0.7623 1 3.4678
unbiased 0.7432 0.8736 3.5183
MM 1.1941 0.0022 2.7561
QQ 0.9294 0.1957 3.1140
Johnson 0.6409 0.2874 3.8405
Trimmed Mean Estimators
β1 = 0, β2 = 0.025 0.7271 0.7673 3.5630
β1 = 0, β2 = 0.05 0.7043 0.6220 3.6299
β1 = 0, β2 = 0.075 0.6868 0.5178 3.6841
β1 = 0, β2 = 0.1 0.6743 0.4481 3.7246
β1 = 0, β2 = 0.125 0.6657 0.4030 3.7534
β1 = 0, β2 = 0.15 0.6613 0.3812 3.7681
β1 = 0, β2 = 0.175 0.6608 0.3785 3.7700
β1 = 0, β2 = 0.2 0.6641 0.3950 3.7587
β1 = 0, β2 = 0.225 0.6658 0.4038 3.7528
β1 = 0, β2 = 0.25 0.6687 0.4186 3.7432
Generalized Median Estimators
k = 1 0.5787 0.0964 4.0920
k = 2 0.6545 0.3480 3.7919
k = 3 0.6906 0.5400 3.6719
k = 4 0.7119 0.6700 3.6069
k = 5 0.7208 0.7265 3.5810
k = 6 0.7265 0.7638 3.5646
k = 7 0.7315 0.7962 3.5506
k = 8 0.7347 0.8176 3.5415
k = 9 0.7377 0.8372 3.5333
k = 10 0.7399 0.8519 3.5272
k = 11 0.7414 0.8615 3.5232
k = 12 0.7430 0.8724 3.5187
k = 15 0.7462 0.8931 3.5103
k = 25 0.7515 0.9289 3.4959
k = 35 0.7537 0.9434 3.4901
k = 36 0.7538 0.9438 3.4900
k = 37 0.7544 0.9480 3.4883
k = 38 0.7547 0.9498 3.4876
k = 39 0.7541 0.9458 3.4892
k = 40 0.7559 0.9580 3.4843

Table 8: Estimates α̂, p-values and Johnson mean for λ = 1.5 fixed for European
Pareto
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α̂ x̂∗

ML 4.1332 12.0971
MM 6.4191 7.7893
Johnson 6.3728 7.8459

Table 9: Estimates α̂ and John-
son mean for λ = 1.5 fixed for
American Pareto

λ̂ α̂ x̂∗

ML 55.1486 6.9473 7.9381
MM 104.9797 12.3779 8.4812
Johnson 43.1091 5.5988 9.8501

Table 10: Estimates α̂, λ̂ and Johnson
mean for American Pareto

The value of QQ estimator (0.9294) tend to confirm that a typical tail parameter
value for property is 1.0 (see (Philbrick (1985))).

6.2.2 American Pareto

Also for the wind catastrophe data we estimated the parameters and the Johnson
mean x̂∗ for the American Pareto model P (α, λ) with λ fixed at λ = 50 and unknown
λ respectively. These estimates can be seen in the tables 9 and 10.

The p-values for the LR test for the Pareto model cannot be computed because
all λ-estimates are > min xi

7 Conclusions

In recent decades the field of financial and insurance risk management has undergone
explosive development. This paper discusses the favorable estimation for fitting in-
dividual heavy-tailed data or the aggregated claims of such heavy tailed individuals.
The main novelty of the paper is that

(1) we compare the method of Johnson score based estimators to the other ones,
recently discussed in e.g. (Brazauskas and Serfling (2003)) and show their advantages
in some cases but also mention their drawbacks in others. We think they may serve
as a good substitute where the so-called classical methods fail.

(2) we consider both aggregated and individual claims and demonstrate that the
distribution of aggregate claims is highly sensitive to the distribution of individ-
ual claims. This is in agreement with (Brazauskas and Serfling (2000a)) showing
that small errors in estimation of the tail index can already produce large errors
in the estimation of quantiles based on the tail index. Hence robust operators and
procedures have to be implemented.

We have also derived the exact distribution of the LR tests of homogeneity and
Pareto-tail index for the Pareto sample, which can be of some interest for the prac-
titioners (e.g. industry professionals or regulators) and theoreticians active in this
area. Such a test has some optimality properties, for instance it could be used for any
sample size since no asymptotical considerations are involved. As the simulations
and a real-data example shows, the favorable estimation is highly sensitive on the
underlying parametric model of the heavy tailed data. Our findings for the Pareto
are in accord with conclusions of (Brazauskas and Serfling (2000a)) that the ML
estimator is efficient but not robust and should be replaced by a competitor. The
generalized median approach dominates the ML, quantiles and percentile matching.
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ML is not robust also for the case of misspecification of the heavy-tailed distribution.
One of the possible dominators is also the estimator based on robustified Johnson
score. However, more research should be conducted to characterize the cases when
such an estimation gives favorable trade-offs between efficiency and robustness. For
the case of MM estimator and Pareto claims we came to the same conclusions as
(Brazauskas and Serfling (2000a)). They have shown that for α > 1 the correspond-
ing MM estimator exhibits neither satisfactory robustness nor satisfactory efficiency.
Although the MM-estimators can also be defined when α ≤ 1, they fail to satisfy
consistency. It follows from the examples of the sections 5 and 6 that the classi-
cal methods of moments and maximum likelihood do not reflect the heavy-tailed
character of the data satisfactorily. In this paper we have therefore presented some
alternative methods how to treat this problem.

8 Appendix

Proof of Lemma
We have

T1 = {X : X ∈ RV(α), α > 1},
and

T2 = {X : X ∈ D ∩ L and E(X) < +∞}.
Moreover RV(α) ⊂ S ⊂ L (X > 0 a.s.) and RV(α) ⊂ D (see (Embrechts et al. 03),
p. 50). Finally T1 ⊂ D ∩ L.

If E(X) exists, it can be expressed by ordinary integrals,

E(X) =

∫ +∞

0

F̄ (x)dx−
∫ 0

−∞
F (x)dx.

Conversely, the existence of the integrals on the right-hand side implies the existence
of the expectation (see (Rényi 70), p. 215). In our case

∫ 0

−∞ F (x)dx = 0 and

∫ +∞

0

F̄ (x)dx =

∫ +∞

0

x−αL(x)dx

and L > 0 vary slowly. Applying Lemma in (Feller 71), p.280, the latter integral
converge for α > 1, which is our case. We have proved that E(X) exists and together
with T1 ⊂ D ∩ L we have proved T1 ⊂ T2.

¤
Proof of Theorem 1
Let xi ∼ Pareto P (λi, α) be independent. Then yi ∼ Exp(ln λi, 1/α). Let us

assume the null hypothesis of homogeneity (λ1 = λ2 = . . . = λN) holds, then the
LR statistics has the form (15). Applying the theorem 5 in (Stehĺık (2006)) (under
the H0) it has the same distribution as the random variable − ln{NNu1 . . . uN−1(1−
u1−. . .−uN−1)}, where the vector (u1, . . . , uN−1) has a generalized Beta distribution
B(1, . . . , 1) on the simplex {u : 0 < u1 < 1, . . . , 0 < uN−1 < 1− u1 − . . .− uN−2}.

¤
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Proof of Theorem 2
Let x1, . . . , xN be a sample from the single-parameter Pareto model P (α) and λ

be known parameter. The LR statistics − ln ΛN of the hypotheses (16) has the form
(17) since yi = α(log xi − log λ) ∼ Exp(1). Employing the theorem 1 we have that
under H0 the cumulative distribution function of the Wilks statistics −2 ln ΛN has
the form (18).

¤
Lambert W-function
The Lambert W function is defined to be the multivalued inverse of the complex

function f(y) = yey. As the equation yey = z has an infinite number of solutions for
each (non-zero) value of z ∈ C, the Lambert W has an infinite number of branches.
Exactly one of these branches is analytic at 0. Usually this branch is referred to
as the principal branch of the Lambert W and is denoted by W or W0. The other
branches are denoted by Wk where k ∈ Z \ {0}. The principal branch and the pair
of branches W−1 and W1 share an order 2 branch point at z = −e−1. A detailed
discussion of the branches of the Lambert W can be found in (Corless 96). Since
the Lambert W function has many applications in pure and applied mathematics,
the branches of the Lambert W function are implemented to many mathematical
computational softwares, e.g. the Maple, Matlab, Mathematica and Mathcad. For
more information about the implementation and some computational aspects see
(Corless 93).
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