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Abstract

As in any statistical test, a power analysis can help in assessing the out-
comes of whether we are facing global or local spatial dependencies. Although
Tiefelsdorf (2000) addresses this point briefly with respect to global Moran’s
I, it is surprising that practitioners do not seem to have followed this up more
widely. One reason may be that the most commonly used spatial analysis
and GIS software packages do not support power analysis. Thus, apart from
using the code for saddle-point approximation provided in connection with
Tiefelsdorf (2002), users have been practically restricted to employing normal
approximations.

In this paper, we present an implementation of the exact distributions for
global and local Moran’s I, following the developments in Tiefelsdorf and Boots
(1995), which are integrated into the R-package spdep (Bivand et al., 2008).
Furthermore, assuming a simultaneous autoregressive spatial data generating
scheme, we provide some substantial cases, demonstrating the drawbacks and
potential flaws of using the normal approximation in power calculations. Our
results confirm the intuitions expressed in Tiefelsdorf (2000), that particularly
for local Moran’s I, due to the smallness of sets of neighborhoods, this practice
may potentially lead to errors of inference. We present an example concerned
with Upper-Austrian migration, where using the exact distribution leads to
different conclusions.

Keywords: Normal approximation, exact distribution, hot spots, clusters,
spatial dependence.

1 Introduction

Modern spatial analysis requires a local viewpoint to complement global analysis (cf.
Lloyd (2007)). This is an essential prerequisite for being able to separate influences
due to model misspecification from genuinely spatially determined patterns. We
require methods of investigation that allow us to try to identify locally particular
behavior against the background of global data generation mechanisms. Global
model misspecification should remain the prime suspect, but very often a careful set
of local analyses can be of great help in showing ways that the global model can be
improved.

One measure that has been applied to detect local spatial autocorrelation is local
Moran’s Ii, developed from global Moran’s I. The specific difficulties that are found
in using such local indicators of spatial association are partly to do with adjusting
probability values to take account of the repeated use of the same data in inference,
and secondly to do with inference itself. We will be addressing the inference ques-
tion, to establish whether or not we can rely on the normal approximation for local
Moran’s Ii, given the very small neighbour lattice used for computing each statistic.

1.1 Global and Local Moran’s I

The Moran’s I statistic is commonly used as an indicator of spatial dependence in
a data set. It is defined as a ratio of quadratic forms in the normally distributed re-
gression residuals ǫ̂ = (I−X(XT X)−1XT )y = My from a regression on y on X, and
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thus of the same structure as the Durbin-Watson statistic for serial autocorrelation,
i.e.

I0 =
ǫ̂T · 1

2
·
(

V + V T
)

· ǫ̂

ǫ̂T · ǫ̂
, (1)

where V denotes the (usually row-standardized) spatial link matrix (cf. Cliff and Ord,
1973).

Anselin proposed the local Moran’s Ii statistic to test for local spatial dependence
and to detect spatial objects with influence on global Moran’s I (Anselin, 1995). He
states two requirements that have to be fulfilled by a sensible local indicator:

1. The local statistic should give an indication of outstanding clustering in ei-
ther positive or negative spatially distributed regression residuals, as well as
pointing to significant spatial outliers in the regression residuals that do not
fit into their surrounding environment. The notion of local clusters is related
to positive spatial autocorrelation whereas the notion of spatial outliers is tied
to negative spatial autocorrelation.

2. The sum of the local indicators should be proportional to a global indicator
of spatial association defined over all spatial objects. Consequently, the global
statistic can be broken down into its local components and their impact on
the global statistic can be investigated.

For the numerator of the local Moran’s Ii, Anselin (1995) proposed a weighted
linear combination of the residuals. Tiefelsdorf and Boots (1997) defined the numer-
ator as a quadratic form in regression residuals with a local spatial link matrix V i

which is analytically equivalent to Anselin’s definition. The basic idea is to decom-
pose a global spatial binary link matrix G into n local sparse star-shaped structures
Gi.
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

(2)

The observed value of the local Moran’s Ii is then given by

Ii =
ǫ̂T · V i · ǫ̂

ǫ̂T · ǫ̂
(3)

2



where V i ≡ si ·Gi is the local spatial link matrix with a specific si for a given coding
scheme (e.g. si = 1

2·di

and (d1, ..., dn)
T = G ·~1 for row-sum standardization). These

definitions assure the additivity requirement, i.e. that the symmetric coded global
link matrix is the sum of the coded local link matrices

1

2

(

V + V T
)

=

n
∑

i=1

V i (4)

and the global Moran’s I is the sum of the local Moran’s Ii’s.

Local Moran’s Ii have increasingly been used for the spatial detection of so called
hotspots or clusters, i.e. significantly deviant local outliers (cf. McLaughlin and Boscoe,
2007). They came to be an almost unrivaled tool for this purpose, for a recent al-
ternative, however, see Ainsworth and Dean (2008).

2 Moran’s I-Tests

To decide whether a particular realized value of Ii is indicative of spatial indepen-
dence (Null-hypothesis) or dependence (Alternative), the application of a statistical
test is required, and thus the distributions of Ii under both hypotheses, if both size
and power is to be evaluated.

The Moran’s I test statistic measures the intensity of spatial autocorrelation in
a spatial process but not directly the spatial autocorrelation level ρ (see Li et al.,
2007, for an approximate profile-likelihood estimator). Tests for positive correlation
are much more relevant in practice, because negative spatial autocorrelation very
rarely appears in the real world.

For a properly conducted power analysis we require the ability to calculate the
distribution of our test statistic given spatial dependence driven by a particular
spatial process. This is similarly so, when we want to detect local outliers against
the background of a global process. Although both apply different techniques, much
general discussion on the latter issue can be found in Ord and Getis (2001) and
Goovaerts and Jacquez (2005) respectively. However, note that power analyses are
rarely performed in this context with a short paragraph in Tiefelsdorf (1998) being
a rare exception.

2.1 Normal Approximation

One of the most commonly used methods is to employ the asymptotic normal dis-
tribution (derived by Cliff and Ord, 1973) as an approximation, and test the stan-
dardized value of the statistic

z(I) =
I0 − E[I]
√

V [I]
∼ N (0, 1) (5)

against a standard normal.
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For this purpose and the purpose of power evaluation one needs to evaluate the
moments under the assumption of spatial independence as well as under a given
spatial process for the alternative.

The expectation and variance under the assumption of spatial independence can
be easily derived from the central moments of I (see Tiefelsdorf, 2000). They yield

E [I |H0 ] =
tr (K)

n − k
= γ (6)

and

V [I |H0 ] =
2
(

(n − k)tr(K2) − tr(K)2
)

(n − k)2 (n − k + 2)
(7)

respectively, where {γ1, ..., γn−k, 0, ..., 0} are the eigenvalues of the matrix M · 1

2
·

(

V + V T
)

· M . The sum of the eigenvalues of K ≡ M · 1

2
·
(

V + V T
)

· M can be

evaluated with the trace operator tr (Kp) =
∑n−k

i=1
γ

p
i .

The moments of Moran’s I under the influence of a spatial process are not so
easy to derive. For more details see Tiefelsdorf (2000).

Under the influence of a spatial process the random errors ǫ are normally dis-
tributed with covariance matrix σ2Ω, and hence the regression residuals ǫ̂ are nor-
mally distributed with covariance matrix σ2MΩM . The expectation of the random
errors ǫ and the expectation of the regression residuals ǫ̂ are zero, which is eventually
important as it leads to central χ2-distributed variables. The structure of the matrix
Ω depends upon the spatial process that is assumed to generate the data under the
alternative. Throughout the paper we will assume a Gaussian simultaneous spatial
autoregressive (SAR) process, i.e. ǫ = ρV · ǫ+η with η ∼N (0, σ2 · I), which yields

Ω
1

2 =
(

I − ρV T
)

−1
, without loss of generality.

Let us then define

A ≡ΩT 1

2 · M ·
1

2
·
(

V + V T
)

· M · Ω
1

2

B ≡ΩT 1

2 · M · Ω
1

2

with βi being the eigenvalues of B and P a n × n matrix whose columns are the
normalized eigenvectors of B. Because of the rank defect of the projection matrix
M only n − k eigenvalues of B are non zero.

The conditional expectation of Moran’s I is then given by

E [I |H1] =

∞
∫

0

n−k
∏

i=1

(1 + 2 · βi · t)
−

1

2 ·
n−k
∑

i=1

hii

1 + 2 · βi · t
dt

and the conditional second moment of the Moran’s I can be written as

E
[

I2 |H1

]

=

∞
∫

0

n−k
∏

i=1

(1 + 2 · βi · t)
−

1

2 ·
n−k
∑

i=1

n−k
∑

j=1

(hii · hjj + 2 · h2
ij) · t

(1 + 2 · βi · t) · (1 + 2 · βj · t)
dt

where the hij are the diagonal elements of the matrix P T · A · P .
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An alternative to the normal approximation, which is implemented in some soft-
ware packages (GeoDa) is a permutation based approach usually applied directly
to the variable under analysis. There are asymptotic arguments for extending this
practice also to regression residuals - see Jacqmin-Gadda et al. (1997) in this context
following the reasoning of Schmoyer (1994). However, note that the permutations
are merely employed to generate the first two moments, and a normal approxima-
tion is used for evaluating the whole distribution anyway. Thus for power analysis
purposes the two approaches differ little.

2.2 The exact distribution

It turns out that the normal approximation is not very suitable for small lattices (i.e.
especially the case of local Moran’s Ii), so that other approximation methods were
suggested, e.g. the Saddlepoint approximation by Tiefelsdorf (2002). However, due
to increasing computing power, it has become possible to evaluate the numerically
demanding exact distribution of the Moran’s I statistic in shorter time for even big
lattices. We will furthermore show that especially for power computations the errors
induced by the using the normal approximation can be severe.

In the following, we will give a brief review of the theory essentially following
the derivation from Tiefelsdorf and Boots (1995) (an independent development can
be found in Hepple (1998)). A comprehensive exposition of this derivation and
many related issues including some comments on power analyses can be found in
the monograph by Tiefelsdorf (2000).

Under the influence of a spatial process, the conditional distribution of Moran’s
I given the observed value I0 and a hypothetical spatial process generating σ2Ω can
be written as

F (I0 |H1 ) = P

(

δT · ΩT 1

2 · M · 1

2
·
(

V + V T
)

· M ·Ω
1

2 · δ

δT · ΩT 1

2 · M · Ω
1

2 · δ
≤ I0

)

(8)

= P

(

δT · ΩT 1

2 · M ·

[

1

2
·
(

V + V T
)

− I0 · I

]

· M · Ω
1

2 · δ ≤ 0

)

(9)

By the spectral decomposition Theorem

LH1 ≡ ΩT 1

2 · M ·

[

1

2
·
(

V + V T
)

− I0 · I

]

· M · Ω
1

2 (10)

(note that LH1 is symmetric) can be written as LH1 = HT · Λ · H , where H is
the matrix of the normalized eigenvectors and Λ = diag(λ1, ...λn) is the diagonal
eigenvalue matrix of LH1 given in equation (10). Substituting into equation (9) we
get

F (I0 |H1 ) = P
(

δT · HT · Λ · H · δ ≤ 0 |H1

)

Because the random error vector δ belongs to the class of the spherically symmetric
distributions, the orthogonal transformation η ≡ H ·δ is again independent normal
distributed with η ∼ N (0, I) (Tiefelsdorf, 2000).
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So the conditional distribution of Moran’s I is given by

F (I0 |H1 ) = P

(

n
∑

i=1

λi · η
2

i ≤ 0 |H1

)

, (11)

and this enables us to use Imhof’s formula because
∑n

i=1
λi · η

2
i is a weighted sum

of χ2
1-distributed variables.

(Imhof’s Formula) (Imhof, 1961) The distribution function F (y) of the
weighted sum of independent central χ2-distributed variables is given by

F (y) = P (Y ≤ y) =
1

2
−

1

π

∞
∫

0

1

u
· sin (Θ(u)) · ξ(u) du

Where X1, X2, . . . , Xn are independent χ2
1-distributed random variables,

with the weights λ1, λ2 . . . , λn ∈ R. Thus the weighted sum Y =
λ1 · X1 + λ2 · X2 + . . . + λn · Xn.

The two functions Θ(u) and ξ(u) are given by

Θ(u) =
1

2

n
∑

j=1

arctan(uλj) −
1

2
u y

ξ(u) =
n
∏

j=1

(1 + u2λ2

j )
−

1

4

Note that all zero eigenvalues can be ignored, and because of y = 0, the term −1

2
u ·y

in Imhof’s formula is irrelevant for our purposes.
Another way is the direct evaluation of the complex-valued characteristic function

of a weighted sum of χ2-distributed variables. It has not succeeded in practice,
because the calculation is not easy to implement and the approach above with real-
valued integration is much easier to handle. Here, the solution of the integral in
Imhof’s formula can be approximated by numerical integration. The behavior of the
improper integral at u = 0 and at u → ∞ have to be considered especially, yielding
starting and truncation values respectively (see Tiefelsdorf, 2000, for details).

Under the assumption of spatial independence (ρ = 0) the covariance matrix σ2Ω
reduces to σ2I and we are able to simplify the conditional distribution of Moran’s
I given by equation (9) to

F (I0 |H0 ) = P

(

δT · M ·

[

1

2
·
(

V + V T
)

− I0 · I

]

· M · δ ≤ 0

)

(12)

with

LH0 ≡ M ·

[

1

2
·
(

V + V T
)

− I0 · I

]

· M (13)
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and similar calculations as before give us

F (I0 |H0 ) = P

(

n
∑

i=1

λi · η
2

i ≤ 0 |H0

)

= P

(

n−k
∑

i=1

(γi − I0) · η
2

i ≤ 0 |H0

)

(14)

where LH0 = HT · Λ · H , H is the matrix of the normalized eigenvectors and
Λ = diag(λ1, ...λn) is the diagonal eigenvalue matrix of LH0 given in equation (13).

The latter equality, where Γ = diag(γ1, . . . , γn−k, 0, . . . , 0) is the diagonal matrix
of the eigenvalues of the matrix M · 1

2
·
(

V + V T
)

· M is a simplification allowing
the quick calculation for each observed I0.

Again we are able to use Imhof’s formula because
∑n−k

i=1
(γi − I0) η2

i is a weighted
sum of χ2

1-distributed variables. Comparing with equation (14) we get that λi =
γi − I0 for i = {1, ..., n − k} and λj = 0 for the remaining j = {n − k + 1, ..., n}.

It is useful to know that the feasible range of the exact distribution of Moran’s
I is given by [γ1, γn−k], i.e. the interval over which we have nonzero probability (cf.
Dhrymes, 1984).

All of the above also holds for computing size and power for local Ii tests.
However, here we face the additional issue of size inflation by multiple testing. And
although we will employ the common Bonferroni correction based on n throughout
the paper, it is evident that through the correlated nature of the data/residuals this
leads to being overconservative. It may be reasonable to base the correction on only
a fraction of n representing the equivalent number of independent observations. A
detailed discussion of many testing issues (except power analysis) for local spatial
indicators can be found in Leung et al. (2003).

3 Implementation Issues

The initial implementation was undertaken by Markus Reder, using the R open
source statistical computation environment (R Development Core Team, 2007). An
integration of this work into the spdep package by (Bivand et al., 2008) has been
released. In this section, we will discuss how the implementation has been carried
out.

The spdep package had contained a number of global and local versions of the
Moran’s
mi, including versions using the Saddlepoint approximation contributed by Michael
Tiefelsdorf, and implementing his presentation of the approach in Tiefelsdorf (2002).
In the global case, eigenvalues have to be found for an n × n matrix. This also
applies in the local case when testing under the alternative that spatial dependence
is present, which we will need to do for the power analysis.

Things can, however, be simplified for evaluating the exact distributions for local
Moran’s
mi under the null hypothesis, in the same way as for the Saddlepoint approximation.
Here, under the assumption of spatial independence, we have to derive the eigenval-
ues of the matrix M ·V i ·M . However, as mentioned above, only two eigenvalues of
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the local spatial link matrix V i are nonzero, thus only two eigenvalues of M ·V i ·M
are nonzero. It is possible to derive these two eigenvalues directly by the following
equations (Tiefelsdorf, 2002)

γ1,n−k =
1

2
·

(

t1 ±
√

2 · t2 − t21

)

(15)

where

t1 = tr(M · V i · M )

t2 = tr
(

(M · V i · M)2
)

A further simplification is to use the following identities.

tr(M · V i · M) = − tr
(

XT V iX
(

XT X
)

−1
)

tr
(

(M · V i · M)2
)

=tr
(

V 2

i

)

− tr
(

XT V 2

i X
(

XT X
)

−1
)

+ tr

(

(

XT V iX
(

XT X
)

−1
)2
)

Because most matrix products on the right-hand side involve only k × k matrices
instead of n×n matrices, the required number of computation operations are reduced
substantially.

Since this approach had been implemented in the lo
almoran.sad function for the
Saddlepoint approximation, introducing a corresponding lo
almoran.exa
t function
was not difficult. Both functions take care to use the residuals of a linear model as
their first argument, thus implementing univariate local Moran’s I as an analysis of
the residuals of a model including only the intercept. If explanatory variables can be
added, thus removing mis-specification, testing the residuals will be more robust. In
the substantive example below, we will only use an intercept-only model, although
it may well be that using explanatory variables and/or weights to reduce possible
heteroskedasticity would have permitted us to draw clearer conclusions.

Power analysis involves working under the alternative hypothesis in order to
establish whether we reject the null only when we should, and not otherwise. The
key issue raised in work on exact inference for Moran’s I is that, for the global case,
the normal approximation may lead to over-eager rejection of the null hypothesis.
In the local case, this is much more likely to happen, not least because of the very
limited number of observations involved in each inference.

The implementation of the functions has been conducted so that the intermediate
objects, matrices, eigenvalues, and local sparse star-shaped structures can optionally
be returned. This avoids their sometimes costly re-computation during analysis. The
internal code for computing the exact probability values has been split out within
the spdep namespace, so that it can be used with the intermediate objects in order
to conduct power analyses. These internal functions are not exported, but can be
accessed where necessary. While the substantive cases will be presented in the next
section, we will show how intermediate objects and internal functions can be used,
here to produce some of the values shown in Table 1.
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First we will read in a shapefile containing the boundaries of communities in
Upper Austria (see Figure 1, panel c). A list of neighbours based on shared boundary
points is constructed using the poly2nb function, and finally the net migration rate
per 1000 inhabitants for 2002 is added to the spatial polygon data frame object:> library(maptools)> UA <- readShapePoly("gemeinden.shp")> library(spdep)> UA_nb <- poly2nb(UA)> load("mig2002.rDATA")> UA$mig2002 <- mig2002

We have no other model of the data than the intercept, so fit a null linear model.
We use the community of Atzesberg as our single case here, for reasons explained
in the following section. The lo
almoran.exa
t takes the object containing the null
model fit as its first argument, the selected community as a single element vector (if
the argument is omitted, all communities will be chosen), and the list of coniguous
neighbours and the "W" style argument for row-standardisation:> lmobj <- lm(mig2002 ~ 1, UA)> Atzesberg <- whi
h(UA$GEM_NAME == "Atzesberg")> reso_Atzesberg <- lo
almoran.exa
t(lmobj, sele
t = Atzesberg,+ nb = UA_nb, style = "W")> reso_AtzesbergLo
al Morans I Exa
t SD Pr. (exa
t)36 35 5.717311 5.085056 1.837589e-07

The object returned is a single member list of "htest" objects, single member
because we only selected one community — what is displayed is the output of theprint method for this class. Each object in the list also has some intermediate
information returned with it, here the pair of analytical eigenvalues for the product
of the star-shaped weights matrix for Atzesberg and the projection matrix fromlmobj, computed as shown above.> Gamma <- reso_Atzesberg[[1℄℄$gamma> Gamma[1℄ -99.3332 98.3332

We also prepare some extra arguments for the next step, including the Bonferroni-
adjusted 0.05 probability value; our scenario is that we have actually computed local
Moran’s Ii for all the communities in Upper Austria, hence the adjustment:> N <- length(UA_nb)> np2 <- N - (2 + lmobj$rank)> pp <- 0.05/N> pp[1℄ 0.0001123596

Our aim is to find the values of Moran’s Ii for the Atzesberg star-shaped weights
matrix and the projection matrix from lmobj corresponding to a Bonferroni-adjusted
0.05 probability value. We write a function to hand to optimize to do a line search
within the limits given, reporting the value at the function minimum. The function
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calls an internal function within the spdep namespace to return the exact probability
value for varying values x of Moran’s Ii, given the eigenvalues, that this is a local
Moran’s Ii, and the value of np2 for this data set:> f <- fun
tion(x) abs(pp - spdep:::exa
tMoran(x, Gamma, type = "Lo
al",+ np2 = np2)$p.value)> I_ex <- optimize(f, interval = 
(-5, 5))$minimum> I_ex[1℄ 3.112458

If we calculate the first two moments using the eigenvalues already made avail-
able, we can use qnorm to find the value of local Moran’s Ii corresponding to a
Bonferroni-adjusted 0.05 probability value for the Normal approximation and for
our specific setting:> gamma <- 
(Gamma[1℄, rep(0, np2), Gamma[2℄)> mu1 <- mean(gamma)> mu2 <- 2/(N - 1 + 2) * mean((gamma - mu1)^2)> I_nv <- qnorm(pp, mean = mu1, sd = sqrt(mu2), lower.tail = FALSE)> I_nv[1℄ 1.636615

We see that it is very much smaller than the value of local Moran’s Ii found
using the exact Bonferroni-adjusted 0.05 probability value. Cross-checking, we can
compute the exact probability value of the value of local Moran’s Ii corresponding
to a Bonferroni-adjusted 0.05 probability value:> p_ex <- spdep:::exa
tMoran(I_nv, Gamma, type = "Lo
al", np2 = np2)$p.value> p_ex[1℄ 0.004419898

Going the other way, we can find the Normal approximation probability value for
the value of local Moran’s Ii corresponding to a Bonferroni-adjusted 0.05 probability
value:> p_nv <- pnorm(I_ex, mean = mu1, sd = sqrt(mu2), lower.tail = FALSE)> p_nv[1℄ 1.175178e-12

These code snippets simply illustrate how the conbination of returning interme-
diate objects, together with modularising internal code in functional form within the
user-visible exact Moran functions provided in the spdep package, provides the entry
points needed to make power analysis feasible. The complete script for reproducing
the substantive cases is available from the authors and from the journal electronic
supplementary material site, and may be used with released versions of spdep.

In performance terms, the comments made by Tiefelsdorf (2002) continue to hold,
but, given advances in memory capacity and processor speed, the advantage of the
Saddlepoint approximation over the exact distribution for the null case, assuming
the absence of spatial autocorrelation, is less pronounced. In our case selecting all
445 Upper Austrian communities (by omitting the sele
t= argument), compared to
219 counties in the former GDR in Tiefelsdorf (2002, p. 203), we see that (for a
2001-built 1.5GHz i386 platform with 1GB memory):
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> system.time(reso_Atzesberg_E <- lo
almoran.exa
t(lmobj, nb = UA_nb,+ style = "W"))user system elapsed14.564 0.009 14.695> system.time(reso_Atzesberg_S <- lo
almoran.sad(lmobj, nb = UA_nb,+ style = "W"))user system elapsed13.340 0.005 13.348> Omega <- diag(length(UA_nb))> system.time(reso_Atzesberg_Ea <- lo
almoran.exa
t.alt(lmobj,+ nb = UA_nb, style = "W", Omega = Omega))user system elapsed593.112 37.404 631.015
Naturally, when the analytical method discussed above cannot be used, the nu-

merical function call count for large matrices is increased radically, so that the results
for the null exact distribution in the first case running lo
almoran.exa
t and the
third running lo
almoran.exa
t.alt with Ω set to the identity matrix are identical,
but with a very large difference in timings. A final problem in power analysis is
that the spdep:::H1_moments internal function for generating moments for the nor-
mal approximation under the alternative hypothesis continues to be very compute-
intensive. Note, however, that local Moran’s Ii under the alternative for many
observations is embarassingly parallelizable, although here only a single processor
core has been used. Two processes running with two different sele
t= argument
vector values would effectively halve the processing time.

4 Substantive Cases

We intend to demonstrate the potential drawbacks of using the normal approxima-
tion through power analyses on two artificial and one real example. We will use
three different areas with the row-standardized coding scheme: a regular 5×5 grid

(Figure 1 a), the B07-structure (Figure 1 b) from the set of fourteen maximally
connected planar spatial structures called the B-series with a fixed number n = 8
nodes and an overall connectivity D = 36 from Boots and Royle (1991) and Upper

Austria (Figure 1 c), a federal state of Austria with 445 communities.

4.1 Artificial Examples

4.1.1 The 5×5 grid

In Figure 2, left panel, the deviation between the normal approximation and the
exact distribution under the Null hypothesis is plotted against global Moran’s I.
One may note that there is a reasonable agreement over a wide range of values. In
particular, for the value 0.20545, for which we are just able to reject the Null for a
one-sided size 0.05 test, which is represented by the dashed line (and any value large
than that), the exact p-value would typically be just less than 0.05. Thus in this
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example the normal approximation does not do any harm, other than being slightly
too conservative.

Let us turn to a corresponding power analysis: Figure 2, centre panel, shows
three different power functions.

• A: Deriving the p-value with the normal approximation hence the critical
Moran’s I is 0.20545. Deriving the power for different autocorrelation levels ρ

with the normal approximation.

• B: Deriving the p-value with the normal approximation hence the critical
Moran’s I is 0.20545. Deriving the power for different autocorrelation levels ρ

with the exact distribution.

• C: Deriving the exact p-value hence the critical Moran’s I is 0.20481. Deriving
the power for different autocorrelation levels ρ with the exact distribution.

Note that here the differences are marginal. This can be clearly seen by displaying
the ratios of the power functions displayed in Figure 2, right panel, which are close
to 1 throughout the range.

4.1.2 B07-structure

The picture is very different for our second example. We are adding equivalent
results for the Saddlepoint approximation accuracy and power analyses, to match
those in Tiefelsdorf (2002) for this lattice.

Figure 3, upper panel, again plots the deviation between the normal approxima-
tion and the exact approach versus Moran’s I. Now for the normal approximation
critical value of 0.092283 (and all larger values) the exact p-value is larger than
0.05, thus we would too quickly reject the Null hypothesis; the exact critical value is
0.13850 here. The differences between the normal and Saddlepoint approximations
and the normal approximation and exact values are very similar, bearing out the
conclusions in Tiefelsdorf (2002).

Note that this mistake may manifest itself also in the power analysis. Figure 3
centre panel now shows six different power functions.

• A: Normal approximation test, hence the critical Moran’s I is 0.092283. De-
riving the power for different autocorrelation levels ρ with the normal approx-
imation.

• B: Normal approximation test, hence the critical Moran’s I is 0.092283. Deriv-
ing the power for different autocorrelation levels ρ with the exact distribution.

• C: Exact distribution based test, hence the critical Moran’s I is 0.13850.
Deriving the power for different autocorrelation levels ρ with the exact distri-
bution.

• D: Normal approximation test, hence the critical Moran’s I is 0.092283. De-
riving the power for different autocorrelation levels ρ with the Saddlepoint
approximation.
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Figure 3: The B07 lattice — upper panel: accuracy for different values of Moran’s I;
centre panel: power for different values of ρ; lower panel: power ratios for different
values of ρ.
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• E: Saddlepoint approximation based test, hence the critical Moran’s I is
0.14464. Deriving the power for different autocorrelation levels ρ with the
exact distribution.

• F: Saddlepoint approximation based test, hence the critical Moran’s I is
0.14464. Deriving the power for different autocorrelation levels ρ with the
Saddlepoint approximation.

The differences in the reported powers can now be substantial. Note that the power
using the normal approximation may go down to 60% (solid A/B line in Figure 3,
lower panel) while it could be wrongly reported 20% too high (dashed A/C line).
The lines form two groups, with the A/B and A/D lines lying close together — the
Normal approximation test with power derived from the exact distribution and the
Saddlepoint approximation respectively, and A/C, A/E, and A/F — the Saddlepoint
approximation and Exact distribution based tests with power derived from the exact
distribution (A/C, A/E) and the Saddlepoint approximation respectively (A/F).
Although this example represents a global analysis, it has merits in our context
as well because of the small numbers of observations. In addition, we note that
choosing the exact distribution based test or the Saddlepoint approximation based
test for this lattice configuration is clearly superior to the normal approximation.

4.2 Real Example

Let us now turn to a real local analysis. Figure 4 shows a LISA (local indicators
of spatial association) plot for the residuals of a null SAR model, with a global
autoregressive coefficient value of 0.1563371, of net migration per 1000 inhabitants
for Upper Austria in the year 2002; this global spatial process is significant with
a likelihood ratio test value of 0.0312. Additionally, adjusted for the presence of
this global process, we find significant local spatial autocorrelation for the Atzesberg

community, as we can see from the LISA plot.
Figure 5 shows the conditional distribution plot for net migration per 1000 in-

habitants for Upper Austria in 2002. Therefore we will derive the conditional distri-
bution function of the local Moran’s Ii F (Ii |Ω(ρ0)) adjusted to the force of a global
spatial SAR reference process Ω(ρ0). A full conditional distribution map following
the suggestions in Tiefelsdorf (2000) is displayed in 5, using the residuals of the null
SAR model described above, and the projection matrix from the least squares stage
of the GLS SAR fit once ρ0 has been found by maximum likelihood.

The conditional distribution map should be viewed in conjunction with the em-
pirical cumulative distribution plot of the underlying variable, shown in Figure 6.
We see clearly that very many of the communities identified as clusters or hotspots
in this example have unusually large or small net migration rates. As is well known,
extreme rates can be associated with small populations; this is indeed the case here.
The community of Atzesberg had in 2001 only 526 inhabitants, and a net migration
rate of -52 per thousand, and two of its five neighbours, Oberkappel and Hörbich,
also had very small numbers of inhabitants, and extreme net migration rates (-37
and -25 per thousand). The fourth member of the “cluster”, Sarleinsbach, is some-
what larger, with a 2001 population of 2364, and a net migration rate in 2002 of
-15 per thousand. Arguably, in a real application, we ought to handle the probable
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Figure 4: LISA plot of exact local Moran’s Ii p-values, significant at 0.05 after Bon-
ferroni adjustment; null SAR model residuals for net migration per 1000 inhabitants
in 2002, Upper Austria.
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presence of variability in the variance of the rates in our model, before analysing
the residuals for local spatial autocorrelation. So although this can be represented
as a problem of outliers, it may be more prudent to correct the underlying model
first before drawing conclusions. For the purposes of this power analysis, however,
we will proceed as though the value reported for Atzesberg can be relied on fully.

−50 0 50 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
n(

x)

Atzesberg

F(Moran’s Ii|Omega(0.1563))
0.00 to 0.05 (hot spots)
0.05 to 0.10
0.90 to 0.95
0.95 to 1.00 (clusters)

Figure 6: Empirical cumulative distribution function of the null SAR model resid-
uals, marked with clusters and hotspots using unadjusted local Moran’s Ii test
p-values.

Table 1: Contrasted values of local Moran’s Ii for Atzesberg for the null SAR model
residuals for the Bonferroni adjusted 0.05 level.

p(normal) p(sad) p(exact) Ii

Ii normal 0.000112 0.004697 0.004420 1.63661
Ii sad 7.15e-13 0.000112 0.000104 3.14321

Ii exact 1.18e-12 0.000121 0.000112 3.11246

We will now investigate more closely the situation of Atzesberg. The community
has five neighbours, so the power analysis will apply to other communities with
five neighbours in a lattice of this size, because the star-shaped matrices for five
neighbours for binary contiguous neighbours and row-standardization will be similar,
and the projection matrix only contains the impact of the intercept.

Table 1 shows how the three different tests represent the Bonferroni adjusted
0.05 level, for Atzesberg for the null SAR model residuals, that is 0.000112. The
rows of the table show the local Moran’s Ii being tested, and the first three columns
the way that the p-value is calculated. The fourth column shows the value of local
Moran’s Ii that corresponds to the Bonferroni adjusted 0.05 level for its own test.
So the p-values on the diagonal of the left square table are the reference point —
if the off-diagonal values differ, they indicate divergence. There is effectively no
difference between the exact distribution and Saddlepoint approximation p-values,
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but the normal approximation local Moran’s Ii value clearly corresponds to a much
larger p-value than the Bonferroni adjusted 0.05 level. The values given here differ
slightly than those in section 3, where the residuals were taken from the null linear
model rather than the null SAR model.

The upper panel of Figure 7 again displays the deviation between the normal
approximation and the exact distribution for its local Moran’s Ii, and the deviation
between the normal and Saddlepoint approximations. We are using the Bonferroni
correction here, and we see that using the normal approximation we would falsely
reject the null hypothesis. The sequence of values of local Moran’s Ii used to analyse
accuracy are large, because the individual weights in the star-shaped local weights
matrices take large values. In this case, with five neighbours, there are only ten
weights, summing to 445.

For the same reason, the range of ρ values used in the power analysis seems very
small, but simply reflects the feasible range for this star-shaped matrix. Performing
a power analysis as above for the B07 lattice, a similar if not more dramatic picture
arises.

We see from the centre panel in Figure 7 that the power remains quite low for
small to moderate local autocorrelation, but increases for more marked local auto-
correlation. We see that the normal approximation (line A) is “over-eager” and rises
faster with increasing ρ in the alternative hypothesis than the C, E and F curves,
which have very similar outcomes — they take the p-values of the Saddlepoint ap-
proximation and exact distribution based tests for local Moran’s Ii at the Bonferroni
adjusted 0.05 level.

The middle group of curves are for B and D, where the p-values for the normal
approximation local Moran’s Ii at the Bonferroni adjusted 0.05 level are run against
the Saddlepoint approximation and exact distribution based powers for increasing
values of ρ in the alternative hypothesis.

As we can see from the lower panel of Figure 7, the ratios of these power curves:

• A: Normal approximation test, hence the critical Moran’s Ii is 1.6366. Power
function with normal approximation.

• B: Normal approximation test, hence the critical Moran’s Ii is 1.6366. Exact
distribution power function.

• C: Exact distribution test, hence the critical Moran’s Ii is 3.1125. Exact
distribution power function.

• D: Normal approximation test, hence the critical Moran’s Ii is 1.6366. Sad-
dlepoint approximation power function.

• E: Saddlepoint approximation based test, hence the critical Moran’s Ii is
3.1432. Exact distribution power function.

• F: Saddlepoint approximation based test, hence the critical Moran’s Ii is
3.1432. Saddlepoint approximation power function.

exhibit more extreme behavior than in the B07 lattice case. Here the power could be
reported four times higher using the normal approximation than its exact value, for
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Figure 7: Atzesberg community, Upper Austria — upper panel: accuracy for dif-
ferent values of local Moran’s I; centre panel: power for different values of ρ; lower
panel: power ratios for different values of ρ.
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moderate and larger values of ρ in the alternative hypothesis, although very small
and very large values of ρ are not affected.

Once again, the power ratio lines form two groups, with the A/B and A/D lines
lying close together — the Normal approximation test with power derived from
the exact distribution and the Saddlepoint approximation respectively, and A/C,
A/E, and A/F — the Saddlepoint approximation and Exact distribution based tests
with power derived from the exact distribution (A/C, A/E) and the Saddlepoint
approximation respectively (A/F). This result reinforces what we have learnt from
analysing the B07 lattice, that on small lattices, be they global or star-shaped local
lattices within maps of arbitrary size, the normal approximation may be misleading,
and that alternatives will provide much better guidance.

5 Conclusions

In this paper, we have investigated the effect of using the common normal approxi-
mation for the distribution of global and local Moran’s I on power calculations. Our
substantive cases demonstrate that the induced errors can be severe and lead to be
over- and rarely also underconfidence when testing for local clusters and hotspots.

Since the Saddlepoint approximation also fares well, with today’s computing
facilities there are no reasons left for using the normal approximation. The analyst
can choose between the Saddlepoint approximation and the exact distribution, and
as we have shown, these run at about the same speed because they use the same
analytical pair of eigenvalues. For this purpose we have provided code for the exact
distribution in the Rspdep package. Because both the exact distribution Saddlepoint
approximation code now provide internal functions and intermediate objects, such
as star-shaped weights structures and eigenvalues, power analysis has been made
easier in practice, and we hope this contributes to making power analyses a regular
feature of investigations of spatial patterns.

Note that the calculation of power function values may also be used in other
contexts. Gumprecht et al. (2008) for instance employs them for defining a criterion
to select sample points. They still use normal approximations and their method
would greatly benefit from taking into account our findings.

Appendix

Full code can be found in Reder (2007). R-scripts for all the examples are contained
in the file bmr_s
ripts.zip downloadable close to this technical report.
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