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Abstract

The article proposes an improved method of auxiliary mixture sampling
for count, binomial and multinomial data. In contrast to previously proposed
samplers the method uses a bounded number of latent variables per obser-
vation, independent of the intensity of the underlying Poisson process in the
case of count data, or of the number of experiments in the case of binomial
and multinomial data. The bounded number of latent variables results in
a more general error distribution, which is a negative log-Gamma distribu-
tion with arbitrary integer shape parameter. The required approximations of
these distributions by Gaussian mixtures have been computed. Overall, the
improvement leads to a substantial increase in efficiency of auxiliary mixture
sampling for highly structured models. The method is illustrated for finite
mixtures of generalized linear models and an epidemiological case study.

Key words: binomial data, count data, finite mixture models, Gaussian mix-
ture, log-gamma distribution, multinomial data, negative binomial distribu-
tion

1 Introduction

During the past years, auxiliary mixture sampling (AMS) has turned out to be
a useful tool for the Bayesian analysis of non-Gaussian models. The method has
been used first by Shephard (1994) for stochastic volatility models, see also Omori
et al. (2007). Recently, it has been extended to hierarchical models for non-Gaussian
data like state-space and random-effects models by Frühwirth-Schnatter and Wagner
(2006b, 2006a) and Frühwirth-Schnatter and Frühwirth (2007). The main motiva-
tion for the development of auxiliary mixture sampling has been to simplify Markov
chain Monte Carlo (MCMC) estimation, see LeSage et al. (2007), Fahrmeir and
Steinert (2006) and Gschlößl and Czado (2005). Rather recently, auxiliary mixture
sampling has been shown to facilitate Bayesian model selection for non-Gaussian
models (Holmes and Held, 2006; Frühwirth-Schnatter and Wagner, 2007; Tüchler,
2007).

Auxiliary mixture sampling uses data augmentation by introducing for each de-
pendent observation yi latent variables that lead to a conditionally Gaussian model.
The number of latent variables per observation differs for the various distribution
families, being 2(yi + 1) for Poisson data, 2Ni for data from a binomial distribution
Bino (Ni, πi), and 2mNi for multinomial data with m+1 categories. Thus auxiliary
mixture sampling seems to be infeasible for high intensity Poisson data, in particular
for panels with a high number of total observations, or for binomial and multinomial
data with a high number of total repetitions

∑N

i=1Ni.
In this paper we propose an improved method of auxiliary mixture sampling that

utilizes a bounded number of latent variables per observation, namely at most 4 for
Poisson data, 2 for binomial data, and 2m for multinomial data. This leads to a sub-
stantial increase in efficiency for highly structured hierarchical models. The latent
variables of the improved sampler are constructed in such a way that their expecta-
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tion is a linear function of the unknown parameters as for the original sampler. The
deviation from the expectation, however, follows a more general distribution than in
Frühwirth-Schnatter and Wagner (2006a) and Frühwirth-Schnatter and Frühwirth
(2007), namely the distribution of the negative logarithm of a Gamma random vari-
able with integer shape parameter ν and unit scale. The shape parameter is equal
to yi for Poisson data and to Ni for binomial and multinomial data. For each latent
variable this distribution is approximated by a Gaussian mixture distribution, and
the component indicator is introduced as a further auxiliary variable. Due to the
Central Limit Theorem the number of required mixture components drops with ris-
ing ν. From the computational point of view, a larger intensity (in the case of count
data) or a larger repetition number (in the case of binomial or multinomial data) is
therefore an additional advantage.

The improved sampler for count data is described in Section 2. It is also shown
how to extend it to data from the negative binomial distribution. Section 3 describes
the improved sampler for binomial and multinomial data. The sampler is illustrated
in Section 4 for finite mixtures of generalized linear models and a Bayesian hierarchi-
cal model for count data with a Gaussian Markov random field prior. The technical
details of the mixture approximation are given in the Appendix.

2 Auxiliary Mixture Sampling for Count Data

We present details for the following model. Let y = (y1, . . . , yN) be a sequence of
count data, and assume that yi|λi is Poisson distributed with parameter λi, where
λi depends on covariates Zi = (Zα

i ,Z
β
i ) through fixed coefficients α and varying

coefficients βi:

yi|λi ∼ Po(λi), λi = exp((Zα
i )T α + (Zβ

i )T βi). (1)

Furthermore, the data are conditionally independent given λ1, . . . , λN . The precise
model for βi is left unspecified at this stage; it could be a spatial or a temporal
model, for example. We only assume that the joint distribution p(α,β1, . . . ,βN |θ)
is known and indexed by some unknown parameter θ.

2.1 Improved Auxiliary Mixture Sampling

2.1.1 Data augmentation

For each i, the distribution of yi|λi is regarded as the distribution of the number of
jumps of an unobserved Poisson process with intensity λi, having occurred in the
time interval 0 ≤ t ≤ 1. In Frühwirth-Schnatter and Wagner (2006a), the first step
of data augmentation creates such a Poisson process for each yi and introduces the
(yi +1) interarrival times of this Poisson process as latent variables, yielding a total
of 2(N+

∑N

i=1 yi) latent variables once the mixture approximation has been applied.
A more efficient method is derived in the following way. First note that for any

observation yi > 0 the arrival time of the last jump before t = 1, denoted by τ ⋆
i2,

follows a Ga(yi, λi) distribution:

τ ⋆
i2 =

ξi2
λi

, ξi2 ∼ Ga(yi, 1). (2)
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The Ga(a, b) distribution is defined as in Bernardo and Smith (1994), with den-
sity fGa(y; a, b) = baya−1e−by/Γ(a). Second, the interarrival time between the last
jump before and the first jump after t = 1, denoted by τ ⋆

i1, follows an exponential
distribution:

τ ⋆
i1 =

ξi1
λi

, ξi1 ∼ Ex(1). (3)

Equations (2) and (3) can be reformulated in the following way:

− log τ ⋆
i1 = log λi + εi1, (4)

− log τ ⋆
i2 = log λi + εi2, (5)

where εi1 = − log ξi1 with ξi1 ∼ Ex(1) = Ga(1, 1) and εi2 = − log ξi2 with ξi2 ∼
Ga(yi, 1). For yi = 0 we are dealing only with equation (4).

The first step of the improved sampler introduces the bivariate latent variable
τi = (τ ⋆

i1, τ
⋆
i2) for each nonzero observation yi and the single latent variable τi = τ ⋆

i1

for each zero observation. In the second step the densities of εi1 and εi2 in (4) and
(5) are approximated by Gaussian mixtures, and the latent component indicators
ri = (ri1, ri2) are introduced as missing data. For a zero observation this is done
only for (4), so that ri = ri1 in this case.

The distribution of εi1 is a type I extreme value distribution and the same mixture
approximation as in Frühwirth-Schnatter and Wagner (2006a) can be used. Finding
a mixture approximation for εi2 is more challenging because this is a negative log-
Gamma distribution with integer shape parameter ν equal to yi. In Appendix A
such an approximation is described for arbitrary integer shape parameters ν,

pε(ε; ν) =
exp(−νε − e−ε)

Γ(ν)
≈

R(ν)
∑

r=1

wr(ν)ϕ(ε;mr(ν), s
2
r(ν)), (6)

where ϕ(ε;mr(ν), s
2
r(ν)) denotes a normal density. The number of components R(ν)

depends on ν, as do the weights wr(ν), the means mr(ν) and the variances s2
r(ν).

For ν = 1 (6) is identical with the mixture approximation derived in Frühwirth-
Schnatter and Frühwirth (2007).

Conditional on the latent variables τ = {τ1, . . . , τN} and R = {r1, . . . , rN},
the nonlinear non-Gaussian model (1) reduces to a linear Gaussian model where
the mean of the observation equation is linear in α,β1, . . . ,βN and the error term
follows a normal distribution:

− log τ ⋆
i1 = log λi +mri1

(1) + εi1, εi1|ri1 ∼ No(0, s2
ri1

(1)),
− log τ ⋆

i2 = log λi +mri2
(yi) + εi2, εi2|ri2 ∼ No(0, s2

ri2
(yi)),

with log λi = (Zα
i )T α + (Zβ

i )T βi. For yi = 0 we are dealing only with the first
equation.

2.1.2 The sampling scheme

Select starting values for τ and R and repeat the following steps.

(1) Sample α, β = {β1, . . . ,βN}, and θ conditional on τ and R.
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(2) Sample the interarrival times τ and the component indicators R conditional
on α,β, θ and y by running the following steps, for i = 1, . . . , N .

(a) Sample ξi ∼ Ex(λi). If yi = 0, set τ ⋆
i1 = 1 + ξi. If yi > 0, sample τ ⋆

i2 from
a Beta (yi, 1)-distribution and set τ ⋆

i1 = 1 − τ ⋆
i2 + ξi.

(b) Sample ri1 from the following discrete distribution where k = 1, . . . , R(1):

pr{ri1 = k|τi1, λi} ∝ wk(1)ϕ(− log τi1 − log λi;mk(1), s2
k(1)).

If yi > 0, sample ri2 from the following discrete distribution where k =
1, . . . , R(yi):

pr{ri2 = k|τi1, λi} ∝ wk(yi)ϕ(− log τi2 − log λi;mk(yi), s
2
k(yi)).

To obtain starting values for τ and R we use step 2 with λi = max(yi, 0.1). Step 2
is based on decomposing the joint posterior of (τ ,R) as

p(τ ,R|y, θ,α,β) =
N
∏

i=1





min(yi+1,2)
∏

j=1

p(rij |τij, λi)



 p(τi|yi, λi).

Thus for each i = 1, . . . , N , we may first sample the arrival times τi = (τ ⋆
i1, τ

⋆
i2)

without conditioning on the indicators, and then sample the indicators ri1 and,
if yi > 0, ri2 independently conditional on τi. For any i with yi > 0 the joint
distribution of τi = (τ ⋆

i1, τ
⋆
i2) factorizes as p(τ ⋆

i1, τ
⋆
i2|yi, λi) = p(τ ⋆

i1|yi, λi) · p(τ ⋆
i2|yi).

Conditionally on yi, the arrival time τ ⋆
i2 of the yith jump is the maximum of yi

Un [0, 1] random variables and follows a Beta (yi, 1)-distribution, see Robert and
Casella (1999, p.47), while the waiting time until the first jump after t = 1 is
distributed as Ex(λi), and therefore τ ⋆

i1 = 1 − τ ⋆
i2 + ξi, where ξi ∼ Ex(λi).

Step 1 is model dependent, but standard for many models, as we are dealing
with a Gaussian model once we condition on τ and R. For many models this leads
to an easily implemented algorithm which samples from standard densities, only.

2.2 Evaluation of the Improved Sampler

To compare the improved with the original sampler of Frühwirth-Schnatter and
Wagner (2006a) we have reanalyzed several data sets.

First, we performed state space modelling of road safety data as in Frühwirth-
Schnatter and Wagner (2006a, Section 4), using both samplers. The data are
monthly counts of children aged 6–10 years and senior people above 65 years killed
or injured in Linz (Austria) from 1987–20051, i.e. N = 228. Since the counts are
fairly small the original sampler is very efficient. Nevertheless, for the children data
the CPU time of the new sampler is only about 54% of the CPU time of the original
sampler, see Table 1. Part of this reduction results from reducing the total number
of interarrival times used for data augmentation from 634 to 418. In addition, the
aggregated interarrival times − log τ ⋆

i2 appearing in (5) are closer to a normal distri-
bution than the interarrival times in the original sampler, and less components are
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Table 1: Evaluation of improved auxiliary mixture sampling. “ratio CPU” is the
CPU time of the improved sampler over the CPU time of the original one.

Data N latent variables (without indicators) ratio CPU
original improved

Children 228 634 418 54.1%

Senior people 228 1393 453 49.0%

Air polution 1147 18452 2294 6.3%

needed in the mixture approximation (6), see Appendix A.2. A similar reduction
results for the senior people, see Table 1.

The larger the observed counts the greater, of course, is the reduction in com-
puting time. For a further illustration we perform a similar analysis as Chiogna and
Gaetan (2002) who evaluated the relationship between mortality and air pollution
for the city of Birmingham, Alabama (US). The observation yi are daily counts from
August 3, 1985 to December 31, 1988, i.e. N = 1147. The counts range between
3 and 32, the median being equal to 15. We explain yi by the Poisson regression
model yi|λi ∼ Po(λi) where

log λi = α1 + Zi,2α2 + Zi,3α3 + Zi,4α4.

Zi,2 is the minimum temperature and Zi,3 is the humidity on day i, while Zi,4 is
equal to PM10 on day i−1. PM10 is defined as particle matter with a mass median
aerodynamic diameter less than 10µm, see Chiogna and Gaetan (2002) for more
details.

Under a multivariate normal prior on α = (α1, . . . , α4), the improved sam-
pler is implemented as described in Subsection 2.1.2. The conditional posterior
p(α|τ ,R,y) in Step 1 is a multivariate normal distribution. We observe a dramatic
reduction in computing time, the CPU time of the improved sampler being only
6.3% of the CPU time of the original sampler. This is mainly due to the tremen-
dous reduction of interarrival times used for data augmentation, see Table 1.

For illustration, Figure 1 shows the posterior draws of α2, α3 and α4. Evidently,
the sampler converges quickly to the stationary distribution and mixing is pretty
good although the number of latent variables still is equal to 2294. Humidity has no
significant effect. The minimum temperature, however, has a significant effect: the
lower the minimum temperature, the higher the mortality rate. Concerning PM10,
we obtain from the posterior draws that pr{α4 > 0|y} = 0.9511. Thus the higher
PM10, the higher the mortality rate.

2.3 Auxiliary Mixture Sampling for Data from the Negative

Binomial Distribution

A model commonly applied to capture overdispersion in count data is the Poisson-
Gamma model which leads to the negative binomial distribution as marginal distri-

1The time series in Frühwirth-Schnatter and Wagner (2006a) are shorter versions ranging from
1987–2002.
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Figure 1: Birmingham mortality data; posterior draws (M = 15000) obtained for
α1 (left hand side), α2 (middle) and α3 (right hand side).

bution for the data, see Hilbe (2007) for a recent review.
Auxiliary mixture sampling for data from the negative binomial distribution has

not been considered before, but is easily implemented by observing that such a
model corresponds to the following modification of model (1),

yi|λi ∼ Po(λi), λi = λµ
i γi, λµ

i = exp((Zα
i )T α + (Zβ

i )T βi), (7)

where a random intercept deviating from the average intercept by log γi is present.
The negative binomial distribution results if one assumes that γi follows a Ga(ρ, ρ)-
distribution with degrees of freedom ρ, and that γ1, . . . , γN are independent. The
model converges to a Poisson model as ρ goes to infinity. For finite ρ, the marginal
distribution p(yi|λµ

i , ρ) reads:

p(yi|λµ
i , ρ) =

(

ρ+ yi − 1
ρ− 1

)(

ρ

ρ+ λµ
i

)ρ(
λµ

i

ρ+ λµ
i

)yi

. (8)

The sampling scheme in Subsection 2.1.2 has to be modified in the following way.
In step 1, the random intercept γ1, . . . , γN is assumed to be known, when sampling
α, β and θ. A third step is added to draw (ρ, γ1, . . . , γN) jointly. First, the number
of degrees of freedom ρ is sampled marginally using a random walk Metropolis-
Hastings algorithm without conditioning on γ1, . . . , γN , by combining the likelihood
p(y|α,β1, . . . ,βN , ρ) constructed from (8) with a prior p(ρ). Then γ1, . . . , γN |ρ,y
are drawn independently from the conditional Gamma distribution Ga(ρ+yi, ρ+λ

µ
i ).

3 Extension to Binomial and Multinomial Data

3.1 Improved Auxiliary Mixture Sampling

We start with the following modification of model (1), where y = (y1, . . . , yN) are
conditionally independent data from a binomial distribution with known repetition
parameter Ni:

yi|πi ∼ Bino (Ni, πi) , (9)

log
πi

1 − πi

= log λi = (Zα
i )T α + (Zβ

i )T βi.
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3.1.1 Data augmentation

To implement auxiliary mixture sampling, Frühwirth-Schnatter and Frühwirth (2007)
recover the underlying repeated binary measurements z1i, . . . , zNi,i, where zni = 1
for 1 ≤ n ≤ yi and zni = 0 for yi < n ≤ Ni, and introduce for each binary observa-
tion zni the utility yu

ni of choosing category 1 as latent variable, leading to a total of
2(
∑N

i=1Ni) latent variables once the mixture approximation has been applied.
A more efficient sampler is derived in the following way. First note that for any

utility yu
ni the following holds for n = 1, . . . , Ni:

exp(−yu
ni) =

1

λi

exp(−εni),

where exp(−εni) follows a standard exponential distribution. Taking the sum over
all n we obtain:

Ni
∑

n=1

exp(−yu
ni) =

1

λi

ξi, ξi =

Ni
∑

n=1

exp(−εni), (10)

where ξi follows a Ga(Ni, 1) distribution due to the independence of the binary
experiments. By taking the negative logarithm in (10) we obtain:

y⋆
i = log λi + εi, (11)

where εi = − log ξi with ξi ∼ Ga(Ni, 1), and y⋆
i is the following aggregated utility:

y⋆
i = − log

Ni
∑

n=1

exp(−yu
ni). (12)

The first step of the improved sampler introduces for each binomial observation yi

the aggregated utility y⋆
i as a latent variable, rather than the sequence of individual

utilities yu
1i, . . . , y

u
Nii

. In the second step, the density of εi in (11), which follows a
negative log-Gamma distribution with integer shape parameter Ni, is approximated
by a mixture of normal distributions as before. The indicator ri of this finite mixture
is introduced as an additional latent variable. This leads to a total of 2N rather
than 2(

∑N

i=1Ni) latent variables.
Conditional on y⋆ = {y⋆

1, . . . , y
⋆
N} and R = {r1, . . . , rN}, the nonlinear non-

Gaussian model (9) reduces to a linear Gaussian model:

y⋆
i = log λi +mri

(Ni) + εi, εi|ri ∼ No(0, s2
ri
(Ni)),

with log λi = (Zα
i )T α + (Zβ

i )T βi.

3.1.2 The sampling scheme

Select starting values for y⋆ and R and repeat the following steps.

(1) Sample α, β = {β1, . . . ,βN}, and θ conditional on y⋆ and R.

(2) Sample the aggregated utilities y⋆ and the indicators R conditional on α,β, θ
and y, by running the following steps, for i = 1, . . . , N .
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(a) Sample y⋆
i conditional on λi and yi as

y⋆
i = − log

(

Ui

1 + λi

+
Vi

λi

)

, (13)

where Ui ∼ Ga(Ni, 1), and Vi ∼ Ga(Ni − yi, 1), independently, if yi < Ni,
whereas Vi = 0 if yi = Ni.

(b) Sample ri from the following discrete distribution where j = 1, . . ., R(Ni):

pr{ri = j|y⋆
i , λi} ∝ wj(Ni)ϕ(y⋆

i − log λi;mj(Ni), s
2
j(Ni)). (14)

To obtain starting values for y⋆
i and ri we use Step 2 with λi = min(max(yi/Ni,

0.05), 0.95). To justify sampling of the aggregated utility y⋆
i , we use (12) and repre-

sent the individual utilities yu
ni as in Frühwirth-Schnatter and Frühwirth (2007):

yu
ni = − log

(

− logUni

1 + λi

− log Vni

λi

I{zni=0}

)

,

where Uni and Vni are independent uniform random numbers. This yields:

y⋆
i = − log

Ni
∑

n=1

exp(−yu
ni)

= − log

(

∑Ni

n=1(− logUni)

1 + λi

+

∑Ni

n=yi+1(− log Vni)

λi

)

.

Step 2(a) is justified by the facts that
∑Ni

n=1(− logUni) ∼ Ga(Ni, 1) and, for yi < Ni,
∑Ni

n=yi+1(− log Vni) ∼ Ga(Ni − yi, 1).

3.2 Evaluation of the Improved Sampler

In order to compare the improved sampler with the original sampler we have reana-
lyzed the Titanic data (Hilbe, 2007, Table 6.11), reporting the number yi of survivals
in each of 12 groups corresponding to all combinations of class (first/second/third),
age (child/adult) and gender. The number of exposures Ni in each group ranges
from 1 to 462, the median being equal to 71.

While all children in the first and second class survived this was not the case
for the children in the third class. To compare their chance of survival with that
of the adults in the various groups, we perform an ANOVA for the survival rates
of all N = 7 groups having non-survivor by fitting various binomial logit regression
models with appropriate design matrices Zi and unknown regression parameter α:

yi ∼ Bino (Ni, πi) , log
πi

1 − πi

= log λi = ZT
i α. (15)

Under the multivariate normal prior α ∼ No(a0,A0) the improved sampler is im-
plemented as described in Subsection 3.1.2. The conditional posterior p(α|τ ,R,y)
in Step 1 is again a multivariate normal distribution.
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First, we have fitted a saturated model with ZT
i = (δi,1 · · · δi,7 1), with δi,j = 1

iff j = i. Thus α7 defines the survival rate of the baseline, chosen to be an adult
male in the first class, whereas αj, 1 ≤ j ≤ 6, captures the difference in the survival
rate of group j compared to the baseline.

15,000 posterior draws were generated after a burn-in of 5,000 draws, using the
prior a0 = 0 and A0 = 4 · I. Posterior inference is summarized in Table 2 showing
95% HPD regions of all regression coefficients along with inefficiency factors for the
improved and the original sampler. For each regression coefficient the HPD regions
were computed marginally as the shortest interval containing 95% of the posterior
draws. The inefficiency factor τ = 1 + 2 ·

∑v

s=1 ρ(s), where ρ(s) is the empirical
autocorrelation at lag s, is computed as in Geyer (1992).

We observe a considerable reduction in computing time, the improved sampler
being more than six times faster than the original sampler (57 versus 358 CPU
seconds). In addition to that, the new sampler also reduces inefficiency considerably,
see the inefficiency factors τ in Table 2. Only for α5 which corresponds to a survival
rate very close to 1 inefficiency is still rather high.

From the 95% HPD regions we find that an adult female had a significantly higher
chance to survive than an adult male in the first class, with the chance increasing
with class. In contrast, chance of survival was significantly lower for adult men in
classes 2 and 3. Surprisingly, for children in the third class the regression coefficient
αi is not significant meaning that they did not have a higher chance to survive
than an adult male in the first class. Most likely, in the third class children stayed
with their parents, thus had the same chance to survive as an adult in this class.
We fitted several reduced regression models to test this hypothesis and computed
marginal likelihoods as in Frühwirth-Schnatter and Wagner (2007), see Table 3. For
the model with the largest marginal likelihood α1 equals α3 and α2 equals α6 had
meaning that for a girl in the third class her chance was equal to the chance of the
mother, while for a boy is was equal to the chance of his father.

Table 2: Posterior inference for the Titanic data

Group i yi/Ni 95% HPD region inefficiency factors τ
for αi improved original

child/female/class 3 14/31 (−0.272, 1.248) 9.5 40.4
child/male/class 3 13/48 (−0.997, 0.396) 13.7 52.1

adult/female/class 3 76/165 ( 0.117, 0.966) 8.4 52.2
adult/female/class 2 80/93 ( 1.833, 3.121) 13.1 70.6
adult/female/class 1 140/144 ( 3.213, 5.158) 53.8 201.8

adult/male/class 3 75/462 (−1.339,−0.561) 10.1 54.4
adult/male/class 2 14/168 (−2.360,−1.086) 19.9 123.5
adult/male/class 1 57/175 (−1.014,−0.403) 7.6 60.2

3.3 Dealing with Multinomial Data

A similar method can be applied to data y = (y1, . . . ,yN) from a multinomial dis-
tribution with m+1 categories, where yi = (y1i, . . . , ymi) and yki counts the number
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Table 3: Log marginal likelihoods log p(y|M) of various regression models for the
Titanic data (standard errors are given in parenthesis)

Model M unrestricted α1 = α2 = α3 α1 = α3, α2 = α6 α1 = α2 = α6

log p(y|M) -38.82(0.006) -47.58(0.009) -36.76(0.004) -47.56(0.008)

of times category k is observed on occasion i. Model (9) is modified accordingly:

yi|πi ∼ MulNom (Ni, π0i, π1i, . . . , πmi) , (16)

πki =
λki

1 +
∑m

l=1 λli

, log λki = (Zα
i )T αk + (Zβ

i )T βki, k = 1, . . . , m,

with known repetition parameters Ni ≥ 1.

3.3.1 Data augmentation

The first step of the improved sampler introduces for each observation yi m ag-
gregated utilities y⋆

i = (y⋆
1i, . . . , y

⋆
mi) as latent variables, in a similar manner as for

binomial data, see also (11):

y⋆
ki = log λki + εki, (17)

where εki = − log ξki, with ξki =
∑Ni

n=1 exp(−εkni) ∼ Ga(Ni, 1). In the second step
the density of εki in (17) is approximated by a Gaussian mixture, and the indicator
rki is introduced as an additional latent variable. This leads to a total of 2mN
rather than 2m(

∑N

i=1Ni) latent variables.
Conditional on y⋆ = {y⋆

1, . . . ,y
⋆
N} and R = {r1, . . . , rN}, where ri = (r1i, . . . , rmi),

the nonlinear non-Gaussian model (16) reduces tom linear Gaussian models, reading
for k = 1, . . . , m:

y⋆
ki = log λki +mrki

(Ni) + εki,

with log λki = (Zα
i )T αk + (Zβ

i )T βki.

3.3.2 The sampling scheme

Select starting values for y⋆, R and θ, and repeat the following steps.

(1) Sample α, β = {β1, . . . ,βN}, and θ conditional on y⋆ and R.

(2) Sample the aggregated utilities y⋆ and the indicators R conditional on α,β, θ
and y, by running the following steps, for i = 1, . . . , N .

(a) Sample y⋆
i = (y⋆

1i, . . . , y
⋆
mi) as:

y⋆
ki = − log

(

Ui

1 +
∑m

l=1 λli

+
Vki

λki

)

, (18)

where Ui ∼ Ga(Ni, 1) and, for k = 1, . . . , m, Vki ∼ Ga(Ni − yki, 1), if
yki < Ni, with all random variables being independent, and Vki = 0 if
yki = Ni.
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(b) Sample rki from the following discrete distribution where j = 1, . . . , R(Ni):

pr{rki = j|y⋆
ki, λki} ∝ wj(Ni)ϕ(y⋆

ki − log λki;mj(Ni), s
2
j(Ni)). (19)

The justification of step 2 is similar to the one for binomial data.

4 Statistical Modeling Based on Auxiliary Mix-

ture Sampling

Auxiliary mixture smapling allows straightforward statistical modeling of non-Gaussian
data as demonstrated for non-Gaussian state-space and random-effects in Frühwirth-
Schnatter and Wagner (2006a) and Frühwirth-Schnatter and Frühwirth (2007). Fur-
ther illustration is provided by LeSage et al. (2007) who analyze knowledge spillovers
across Europe through a Poisson spatial interaction model, by Fahrmeir and Stein-
ert (2006) who evaluate post war human security in Cambodia using a geoadditive
Bayesian latent variable model for Poisson indicators, and by Gschlößl and Czado
(2005) who model the expected number of claims for policy holders of a German
car insurance company using spatial regression modelling. In this section, we apply
auxiliary mixture sampling to two further classes of non-Gaussian models, namely
finite mixtures of generalized linear models (GLMs) and a Bayesian hierarchical
model for count data with a Gaussian random field prior.

4.1 Finite mixtures of GLMs

Finite mixtures of generalized linear models (GLMs) based on the Poisson, the bino-
mial, the negative binomial, or the multinomial distribution, have found numerous
applications in biology, medicine and marketing in order to deal with overdisper-
sion and unobserved heterogeneity, see Frühwirth-Schnatter (2006, Section 9.4) for
a review. A finite mixture of Poisson regression models, for instance, reads:

p(yi|θ) =
K
∑

k=1

ηkfPo(yi;λk,i), (20)

where fPo(yi; ·) is the Poisson density with mean λk,i = exp(ZT
i αk), and θ =

(η1, . . . , ηK ,α1, . . . ,αK) is an unknown parameter.

4.1.1 Parameter estimation using auxiliary mixture sampling

Various proposals have been put forward on how to estimate the unknown parameter
θ for finite mixtures of GLMs using MCMC under the assumption of a multivariate
normal prior for the group specific regression parameters α1, . . . ,αK and a Dirichlet
prior for the weight distribution (η1, . . . , ηK).

As the likelihood p(y|θ) is available in closed form, one may use a single-move
random walk Metropolis–Hastings algorithm as in Viallefont et al. (2002) or a mul-
tivariate random walk Metropolis–Hastings algorithm as is Hurn et al. (2003) to
sample from the marginal posterior distribution p(θ|y).
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To avoid time-consuming tuning of the underlying proposal densities, a three step
auxiliary mixture sampler is applied, based on introducing a latent group indicator
Si for each observation pair (Zi, yi) as missing data, see Frühwirth-Schnatter (2006,
Section 3.5). In Step 1 in Subsections 2.1.2, 3.1.2 and 3.3.2, respectively, θ is
sampled by adding the latent group indicators S = (S1, . . . , SN) as conditioning
argument. This leads to a conditional multivariate normal posterior for α1, . . . ,αK

and a conditional Dirichlet posterior for (η1, . . . , ηK). A third step has to be added
to sample the latent indicators S = (S1, . . . , SN) conditional on knowing θ and y.
This last step is based on the original finite mixture regression model rather than
the augmented model as it utilizes for each observation yi only ηk and p(yi|αk), for
each k = 1, . . . , K.

4.1.2 Application to Fabric Fault Data

We reconsider regression analysis of the fabric fault data (Aitkin, 1996). The re-
sponse variable yi is the number of faults in a bolt of length li. Based on the
regressor matrix ZT

i = (1 log li), we fitted a Poisson (MP
1 ) and a negative binomial

regression model (MNB
1 ), as well as finite mixtures of Poisson (MP

K) and negative
binomial regressions models (MNB

K ) with up to K = 4 groups. Furthermore we con-
sider mixtures of regression models, where the intercept is group specific, while the
slope is fixed, both for the Poisson (MP,F

K ) and the negative binomial distribution
(MNB,F

K ).
Bayesian analysis was carried out under a Dirichlet Di(4, . . . , 4) prior for the

weights (η1, . . . , ηK) and a No(0, 4) prior both for fixed as well as for group specific
regression coefficient. For the negative binomial distribution the number of degrees
of freedom ρk was assumed to be group specific with following the prior: p(ρk) ∝
2dρk/(ρk + d)3 with median d(1 +

√
2) = 10. We sampled 10,000 posterior draws,

after a burn-in of 2,000, using the improved sampler, requiring between 60 and 90
CPU seconds per model. For each model, marginal likelihoods were computed as in
Frühwirth-Schnatter and Wagner (2007).

The posterior distribution of ρ shown in Figure 2 for a negative binomial regres-
sion model clearly indicates overdispersion compared to the Poisson distribution.
This is confirmed by the marginal likelihoods p(y|MP

K) and p(y|MNB
K ) shown in

Table 4. Furthermore, the marginal likelihoods lead to selecting a negative bino-
mial regressions model rather than a mixture of two Poisson regression models as
claimed by several authors (Aitkin, 1996; McLachlan and Peel, 2000). The estimated
parameters are given in Table 5.

4.2 Gaussian Markov Random Field Models

We discuss now another extension of (1), where the joint distribution of β1, . . . ,βN

is a hierarchical Gaussian Markov random field (GMRF). More specifically, in the
first stage of the model responses yi are conditionally independent Poisson with
mean ei exp(βi), where ei are exposures, in the second stage β = (β1, . . . , βN)T is
multivariate Gaussian with mean u = (u1, . . . , uN)T and diagonal precision matrix
ωI,

β ∼ No(u, ωI), (21)
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Figure 2: Fabric fault data; posterior density of ν under a negative binomial regres-
sion model.

Table 4: Log marginal likelihoods of various regression models for the fabric data
(standard errors are given in parenthesis)

Model K = 1 K = 2 K = 3 K = 4

Poisson –101.79 –99.21 –100.74 –103.21
(0.002) (0.01) (0.05) (0.14)

Poisson (fixed slope) –101.79 –97.46 –97.65 –98.60
(0.002) ( 0.073) (0.073) (0.062)

Negative Binomial –96.04 –99.05 –102.21 –104.95
(0.007) (0.027) (0.038) (0.142)

Negative Binomial (fixed slope) –96.04 –97.25 –98.76 –99.97
(0.007) (0.044) (0.046) (0.060)

Table 5: Posterior inference for the fabric fault data for the negative binomial re-
gression model

95% HPD region inefficiency factor τ

intercept (−5.35,−1.42) 3.9
log(length) (0.57,1.19) 3.9
ν (2.9,22.2) 8.9

and in the third stage u follows an intrinsic GMRF:

p(u|κ) ∝ κ
N−1

2 exp(−κ
2

∑

i∼j

(ui − uj)
2), (22)

see Rue and Held (2005). In (22), i ∼ j denotes all pairs of adjacent observations i
and j. This prior leaves the overall level of the GMRF unspecified, as only differences
of log relative risk parameters enter in (22). For the unknown precision parameter
ω and κ we adopt the usual (independent) Gamma hyperpriors, ω ∼ Ga(a, b) and
κ ∼ Ga(c, d),with a = c = 1.0 and b = d = 0.01.

4.2.1 Parameter estimation via MCMC

Statistical inference via MCMC in this highly parametrized model is difficult, espe-
cially if the data are sparse.
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Joint block updating of β and u, as proposed in Knorr-Held and Rue (2002), is
based on the GMRF approximation as described in detail in Rue and Held (2005,
Subsection 4.4.1). Basically a GMRF Metropolis-Hastings proposal is computed
based on a quadratic Taylor approximation to the Poisson likelihood. This can be
combined with updates of the two precision parameters κ and ω to a joint Metropolis-
Hastings proposal for all unknown parameters. Knorr-Held and Rue (2002) use a
specific proposal, multiplying the current value of the precision parameter with a
random variable z proportional to 1 + 1/z on [1/f, f ], where f > 1 is a constant
scaling parameter. This specific choice has the advantage that the proposal ratio in
the Metropolis-Hastings acceptance probability equals one. The proposal is used for
both κ and ω. Subsequently β and u are sampled based on the GMRF approxima-
tion, as described above. Finally, all updated parameters are accepted or rejected
in a joint Metropolis-Hastings step.

Alternatively, auxiliary mixture sampling can be implemented. This has the
distinct advantage that the conditional distribution of β and u given κ and ω is
already a GMRF, so no approximation is necessary. Step 1 of the auxiliary sampler
presented in Subsection 2.1.2 may be implemented as a two-block Gibbs steps by first
updating β and u conditional on κ and ω and than updating κ and ω conditional
on β and u.

To speed up convergence, it may be necessary to implement Step 1 as a Metropolis-
Hastings move which updates β, u, κ and ω jointly with the same proposal for κ
and ω as described above. Since the full conditional for β and u is Gaussian, this
joint step updates κ and ω from the marginal posterior where the latent Gaussians
β and u are integrated out (Rue and Held, 2005, p. 141).

4.2.2 Application to disease mapping

A typical application of a hierarchal GMRF model is disease mapping. This model
assumes that the observed disease counts yi in district i = 1, . . . , N are conditionally
independent Poisson with mean ei exp(βi), where ei are known expected counts and
βi are the unknown log relative risk parameters. The model proposed in Besag et al.
(1991) decomposes the log relative risk into spatially structured and unstructured
heterogeneity, by assuming the hierarchal prior (21) and (22).

We now report results from an empirical comparison of improved auxiliary mix-
ture sampling using the joint Metropolis-Hastings move and the GMRF approxi-
mation based on two data sets. The first one gives the number of cases of Insulin
dependent Diabetes Mellitus (IDDM) in Sardinia (N = 366), as analyzed in Knorr-
Held and Rue (2002). The second one gives the number of deaths of oral cavity
cancer in Germany (N = 544), as analyzed in Knorr-Held and Raßer (2000). The
first disease is fairly common with a total of 12,835 cases (median of 15), whereas
the second one is sparse with a total of 619 cases (median of 1 per district).

Tables 6 and 7 summarize the results for the Sardinia and Germany data, respec-
tively, showing the effective sample size (ESS) (Kass et al., 1998) and the effective
sample size per second for the two precision parameters ω and κ. Also given is the
acceptance rate of the two algorithms for different choices of the scaling factor f . For
simplicity, we have used the same factor for both precision parameters, although this
could be changed easily. ESS is an estimate of the number of independent samples
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Table 6: Empirical comparison of the GMRF approximation and improved auxiliary
mixture sampling (IAMS) for the Sardinia data

Scaling Method Speed Acc. Parameter ESS ESS
factor (it/sec) rate per sec

2.0 GMRF 42.3 61.1 ω 388.2 1.6
κ 166.0 0.7

IAMS 159.3 50.1 ω 200.1 3.2
κ 164.5 2.6

5.0 GMRF 42.7 29.8 ω 840.3 3.6
κ 537.4 2.3

IAMS 163.4 15.8 ω 370.8 6.1
κ 134.5 2.2

Table 7: Empirical comparison of the GMRF approximation and improved auxiliary
mixture sampling (IAMS) for the Germany data

Scaling Method Speed Acc. Parameter ESS ESS
factor (it/sec) rate per sec

1.5 GMRF 27.9 33.4 ω 220.3 0.6
κ 609.6 1.7

IAMS 102.5 41.9 ω 271.5 2.8
κ 760.2 7.8

3.0 GMRF 28.1 10.3 ω 347.8 1.0
κ 403.6 1.1

IAMS 104.2 9.2 ω 282.2 2.9
κ 426.0 4.4

which would be required to obtain a parameter estimate with the same precision
as the MCMC estimate based on M dependent samples (here we used M = 2, 000
samples obtained by storing every fifth iteration of the MCMC algorithm). The
effective sample size of a parameter is calculated as the number of samples M used
from the Markov chain divided by the inefficiency factor τ .

Concerning Table 6 we note that the improved sampler is nearly four times as
fast as the GMRF approximation, despite the large number of additional auxiliary
variables. However, for the same values of the scaling parameters, the acceptance
rates for the auxiliary mixture sampling are generally lower than the ones based on
the GMRF approximation. At first sight this is surprising as — without the update
of the precision parameters — the improved sampler yields acceptance rates equal
to unity, whereas the GMRF approximation has acceptance rates of approximately
70% for these data. However, the auxiliary mixture sampler conditions on a partic-
ular mixture component, so the target distribution has smaller variance and lower
acceptance rates are possible. The effective sample size is somewhat better for the
GMRF approximation, since the samples are less autocorrelated. However, adjust-
ing for computation time, the order is reversed and the auxiliary variable method is
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roughly twice as good in terms of ESS per second, if the acceptance rates are not
too low.

For the Germany data, see Table 7, the results are even more in favour of the
improved sampler with up to four times as large effective sample sizes per second.
Interestingly, the acceptance rates are now higher for the auxiliary mixture sampler,
except for the third case where the scaling parameter is quite large. Presumably, for
larger counts, the mixture approximation will be dominated by one component, so
the reduction of the conditional variance, compared to the GMRF approximation,
will be minor.

5 Concluding Remarks

In this paper we have developed improved auxiliary mixture sampling algorithms for
hierarchical models of Poisson, binomial, negative binomial or multinomial data. In
contrast to methods previously suggested in the literature, the number of auxiliary
variables is independent of the number of counts yi in the Poisson and the negative
binomial case and of the number of repetitions Ni in the binomial and multinomial
case. This is a clear improvement compared with the auxiliary mixture sampling
algorithms proposed in Frühwirth-Schnatter and Wagner (2006a) and Frühwirth-
Schnatter and Frühwirth (2007). Empirical evidence of this has been reported in
Subsections 2.2 and 3.2.

The main motivation for the development of the improved sampler has not been
to yield a uniformly better algorithm, but to simplify the implementation and to
improve the computational performance of MCMC algorithms for fairly complex
non-Gaussian hierarchical models. This was illustrated for a finite mixture of GLMs
and an application to disease mapping. In particular, auxiliary mixture sampling
allows us to construct good samplers with reasonable acceptance rates for block-
updating a large or very large number of parameters, as in the spatial and spatio-
temporal analysis of several health outcomes (Held et al., 2005, 2006), where count
and binomial data are commonplace.

A Approximation of the Negative Log-Gamma

Distribution by Gaussian Mixtures

A.1 The negative log-Gamma distribution

Assume that x is Gamma-distributed with integer shape parameter ν and unit scale,
x ∼ Ga(ν, 1). This distribution is the convolution of ν exponential distributions with
mean equal to one. Then y = − log x is distributed according to the negative of a
log-Gamma distribution, with the probability density function

g(y; ν) =
exp
(

−νy − e−y
)

Γ(ν)
,

and the characteristic function

φ(t; ν) = −Γ(it+ ν)

Γ(ν)
.
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The moments can be computed explicitely in terms of polygamma functions. In
particular, the expectation µ and the variance σ2 are given by

µ(ν) = −ψ(ν), σ2(ν) = ψ′(ν),

where ψ(·) is the digamma function, and ψ′(·) is the trigamma function. In the
following, only the standardized variate u = (y−µ)/σ will be used, with the density

f(u; ν) =
σ(ν) · exp

{

−ν[σ(ν)u + µ(ν)] − e−[σ(ν)u+µ(ν)]
}

Γ(ν)
.

Using the standardized variates has the advantage that the effective support of the
distribution is almost independent of ν. For small values of ν, however, there is a
noticeable tail to the right, so that the interval S = [−6, 10] has been used as the
support for all values of ν. For large ν, the distribution of u approaches the standard
normal distribution. Approximation by Gaussian mixtures therefore requires fewer
components for increasing ν.

A.2 Approximation by Gaussian mixtures

The approximating Gaussian mixtures were estimated by minimizing the Kullback-
Leibler divergence dKL plus a penalty term that forces the sum of the weights to
one:

D(w,m, s2) =

∫

S

f(u; ν) log
f(u; ν)

ϕ(u,w(ν),m(ν), s2(ν))
du (23)

+ ω

(

R(ν)
∑

r=1

wr − 1

)2

,

where ϕ(u,w(ν),m(ν), s2(ν)) is the density of a Gaussian mixture with R(ν) com-
ponents, weights wr(ν), means mr(ν), and variances s2

r(ν). The penalty factor was
set to ω = 109. As a consequence, the sum of the weights differs from one by at most
7 · 10−10. Note that dKL is invariant under affine transformations and in particular
under standardization. The integral in (23) was computed by the trapezoidal rule
on a grid of size 32000.

As the component weights wr are constrained to the interval (0, 1) and the vari-
ances s2

r have to be positive, the mixture was rewritten in terms of the unconstrained
transformed parameters

w′
r = log(wr) − log(1 − wr), (s′r)

2 = log s2
r.

The modified objective function was minimized using the function fminsearch in
the optimization toolbox of Matlab (Version 7.0.1). This function implements a
direct search method, the Nelder-Mead simplex algorithm (Nelder and Mead, 1965).

The starting point was the 10-component approximation of the log-exponential
distribution, corresponding to ν = 1, described in Frühwirth-Schnatter and Frühwirth
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(2007). As it is neither feasible nor necessary to compute the approximating mix-
tures for all values of ν up to, say, ν = 100, 000, a sequence of values of ν was chosen
with ever increasing gaps above ν = 100:

ν = {2, 3, . . . , 100, 102, . . . , 150, 155, . . . , 200, 220, . . . , 300,

320, 340, . . . , 500, 550, . . . , 1000, 1100, . . . , 2000,

2200, 2400, . . . , 5000, 5500, . . . , 10000, 11000, . . . , 20000,

22000, 24000, . . . , 30000, 35000, . . . , 100000}.

An approximation was accepted only if the Kullback-Leibler divergence dKL of the
mixture density from the target density was below a threshold tKL and if the maxi-
mum absolute difference dmax between the two densities was below a threshold tmax.
We chose tKL = 10−5 and tmax = 5 · 10−4, which are the approximate values of dKL

and dmax for ν = 1. Thus all approximations are at least as good as the one for ν = 1,
which has been shown to be excellent (Frühwirth-Schnatter and Frühwirth, 2007).
At the same time, we tried to find the smallest number of components required. The
mixture approximation for ν = νi was therefore computed in the following way:

(1) Take the parameters of the mixture for ν = νi−1 as starting values and mini-
mize the objective function for ν = νi. If necessary, restart the minimization
until dKL ≤ tKL and dmax ≤ tmax.

(2) Save the estimated parameters.

(3) Reduce the number of components by 1.

(4) Compute new starting values by merging the component with the smallest
weight and its neighbour with the smaller weight.

(5) Minimize the objective function.

(6) If dKL ≤ tKL and dmax ≤ tmax, go to step 2.

(7) Otherwise, store the saved parameters.

In order to achieve optimal precision for small values of ν, at least nine components
were kept for ν < 20. Figure 3 shows the Kullback-Leibler divergence dKL in the
range 1 ≤ ν ≤ 100000. For ν > 30000 a single Gaussian passes the acceptance
criteria.

A.3 Parametrization of the mixtures

For small values of ν the mixture parameters change substantially when ν is in-
creased. The parameters are therefore stored individually for 1 ≤ ν ≤ 19. For
ν ≥ 20 it is possible to parametrize the mixtures as a function of ν without sac-
rificing the accuracy of the approximation. This allows a more compact represen-
tation of the mixture parameters as well as the computation of mixtures that have
not been estimated explicitly, including approximations to log-Gamma distributions
with non-integer shape parameter.
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Figure 3: Kullback-Leibler divergence of the estimated mixtures from the standard-
ized negative log-Gamma distribution as a function of the shape parameter ν, for
1 ≤ ν ≤ 100000. R(ν) is the number of components in the mixtures.

Table 8: The five ranges of parametrization of the mixtures

range νmin νmax components

1 20 49 4
2 50 439 3
3 440 1599 2
4 1600 10000 2
5 10000 30000 2

The parametrization was performed separately in the five ranges of ν summarized
in Table 8. A second-order polynomial was fitted to the mixture weights, and a
rational function with quadratic numerator and linear denominator to the means and
variances. Figure 4 shows the Kullback-Leibler divergence of the parametrized and
of the original estimated mixtures from the respective target distributions. It can
be seen that there is virtually no loss in accuracy when using the parametrization.
A Matlab function implementing the parametrization has been written and is
available from the authors. The unstandardized mixture for shape parameter ν is
obtained in the following way:

[p,m,v,nc]=compute mixture(nu);

the input nu being the desired value of ν. The output vectors p,m,v return the
weights, the means, and the variances, respectively, of the unstandardized mixture,
and nc returns the number of mixture components. A similar implementation in the
C language is included in the GMRFLib library (Rue and Held, 2005, Appendix).
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