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Abstract

A single purpose design may be quite inefficient for handling a real-life
problem. Therefore, we often need to incorporate more than one design cri-
terion and a common approach is simply to construct a weighted average,
which may depend upon different information matrices. Designs based upon
this method have been termed compound designs. The need to satisfy more
than one design criterion is particularly relevant in the context of random
fields. It is evident that for precise universal kriging it is important not only
to efficiently estimate the spatial trend parameters, but also the parameters
of the variogram or covariance function. Both tasks could for instance be
comprised by applying corresponding design criteria and constructing a com-
pound design from there. Modern techniques for such first and second order
characteristics will be suggested and reviewed in the presentation. A new
hybrid stochastic exchange type optimization algorithm is proposed and an
illustrating example of the design of a water-quality monitoring network is
provided.
Key words: Optimum design; Monitoring network; Efficiency; Equidistant
design; Parameterized covariance functions.

1 Introduction and Setup

Probably the main reason why optimum design principles are not frequently
used in spatial data analysis is that the observations are correlated. Con-
sequently, the corresponding optimal design questions must cope with the
existence and detection of an error correlation structure, problems largely un-
accounted for by traditional optimal design theory. In all of these situations
there arise a number of issues, which require special techniques - for a recent
discussion see Müller W.G. and Stehĺık M. (2008). A statistical model we
consider in the paper is the so called random field, given by

Y (x) = η(x, β) + ε (x) (1)

with design points (coordinates of monitoring sites) ξ = {x1 6= x2 6= · · · 6= xn}
forming a so-called replication-free design taken on a compact design space
X . The parameters β are unknown and the variance-covariance structure of
the errors depends on parameters θ. In the paper we consider the following
cases:

Case 1 We are interested only in the trend parameters β and consider θ
as known or a nuisance.

Case 2 We are interested only in the covariance parameters θ.
Case 3 We are interested in both sets of parameters.
Furthermore, in the article we consider for the sake of simplicity the lin-

ear(ized) model η(x, β) = fT (x)β. The paper can be seen as an extension of
Müller W.G. (2005), which is concentrated on case 1. The example from this
paper, the design of the water-quality network in the Südliche Tullnerfeld in
Austria, will be employed here as well.

We assume that the errors ε(x) are correlated and the correlation between
two measurements depends on the distance d = ||x − x′|| between pairs of
particular design points x and x′ (isotropic fields). Perhaps the most widely
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used parametric model that satisfies the above conditions is the so-called
spherical covariance function

cov(x, x′; θ) =





θ1 + θ2, d = 0
θ2

{
1− 3

2( d
θ3

) + 1
2( d

θ3
)3

}
, 0 < d ≤ θ3

0, d > θ3

.

This function decreases monotonically from a ‘nugget effect of θ1 near the
origin to a ‘sill value’ of θ1 + θ2, which is attained at the ‘range’ θ3.

Recently, the so called Matérn model family is more and more frequently
employed for its flexibility due to a smoothness parameter θ2. It is given by

cov(x, x + d) = σ2 ·
{

1
2θ2−1Γ(θ2)

(
d

θ1

)θ2

Kθ2

(
d

θ1

)}
, (2)

where Kθ2 denotes a modified Bessel function of order θ2. It encompasses a
number of widely used models, e.g. the so called exponential (by θ2 = 1/2)

cov(x, x + d) = σ2e
− d

θ1 , (3)

and a recent review of its history and properties can be found in Guttorp, P.
and Gneiting, T. (2006) . If we further assume that the errors are Gaussian,
we obtain a special case of Ornstein-Uhlenbeck process when the covariance
is exponential (3).

The main purpose of statistical analysis is estimation of parameters β, θ
and/or prediction of Y based upon the parametric models. Having estimated
the spatial trend by a linear response a universal kriging estimator is typically
used (see Müller W.G. , 2007). Universal kriging can be viewed as a two
stage procedure involving GLS estimation of the trend surface and best linear
prediction, as pointed out by Fedorov V.V. (1989). For a reverse two-stage
interpretation see Cressie N.A.C. (1993).

The related optimum design question, which will be the core problem of the
present paper is then how to select the inputs such, that we gain the maximum
available information from the experiment. In the following we will define
optimality of a design always strictly in the tradition of Kiefer (see e.g. Kiefer,
J. (1959)), where the inputs are selected such, that a prespecified design
criterion (e.g. the determinant of the trend parameters variance-covariance
matrix, so-called D-optimality) is optimized. The classic Fisher information
M(β) = E

[
(∂ ln f(x,β)

∂β )2
]
, which is the basis for the D-optimality assumes

differentiability with respect to the parameter (see e.g. Rao CR. 1965). This
opens a problem of interpretation of the formally defined (e.g. by one-sided
limits) information matrix for such values (see Stehĺık M. (2004)). Still,
the classic Fisher information can be well defined over some open set. Thus
the D-optimality criterion has the form Φ(M) = det(M), for details in this
context see Stehĺık M. and Müller W.G. (2008). Note that there exists a
well developed theory for standard i.i.d. regression based on Kiefers (1959)
concept of design measures, cf. Atkinson, A.C., Donev, A.N., and Tobias,
R. (1992, 2007) for a recent textbook.
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2 General Approaches for Multipurpose De-

signs

At many points of the previous section it became clear that a single purpose
design may be quite inefficient for handling a real-life problem. Therefore
we often need to incorporate more than one design criterion and a common
approach is simply to construct a weighted average

Φ̄[ξ|α] = αΦ[M(ξ)] + (1− α)Φ′[M ′(ξ)], (4)

(cf. Läuter, E. (1976)), which may depend upon different information ma-
trices M and M ′. The weighting parameter 0 ≤ α ≤ 1 has to be selected
by the user and it is not very clear (due to the generally different scaling
of Φ[·] and Φ′[·]), which choice of α corresponds to an intended weighting.
Related ideas for combining the purposes of parameter estimation and model
discrimination already appear in Fedorov, V.V. (1972). Designs based upon
(4) and its straightforward generalization to more than two terms have been
termed compound designs; they also prove useful for the situation of multiple
(e.g. pollution or seismic) sources influencing the response (see e.g. Steinberg,
D.M., Rabinowitz, N., Shimshoni, Y., and Mizrachi, D. , 1995).

Another method to satisfy multiple design criteria is the one of constrained
optimum designs (for a survey, see Cook, D. and Fedorov, V. , 1995). Instead
of (4) one could for instance choose to find

ξ∗ = arg max
ξ∈Ξ

Φ[M(ξ)] s.t. Φ′[M ′(ξ)] > κ(α),

i.e. an optimum design for criterion Φ[·] which ensures sufficiently good es-
timation with respect to the second criterion Φ′[·] (or vice versa). A dis-
advantage of constrained optimum designs is the asymmetric involvement of
the considered goals. The relationship between constrained and compound
designs is explored in detail in Cook, R.D. and Wong, W.K. (1994). Two
different ways of combining criteria have been suggested recently by Mcgree
et al. (2008), but contrary to their claim, also there a specific weighing is
implicated. It is sometimes argued for ”standardizing” the criteria Φ and Φ′

(see e.g. Biedermann et al. (2007) or also Mcgree et al. (2008)) by employing

Φ̃[ξ|α] = αΦ[M(ξ)]/Φ[M(ξ∗)] + (1− α)Φ′[M ′(ξ)]/Φ′[M ′(ξ∗)]

instead of (4), which is not a major issue here as will be seen below.

2.1 D−optimal designs for estimating trend and co-
variance parameters

The need to satisfy more than one design criterion is particularly relevant in
the context of collecting spatial data. Recalling the discussion in Section 1 it
is evident that e.g. for precise universal kriging it is important not only to
efficiently estimate the spatial trend parameters β, but also the parameters θ
of the variogram or covariance function. Both tasks could for instance be com-
prised by applying corresponding design criteria Φ[M(·, β)] and Φ′[M ′(·, θ)]
and constructing a compound design from Φ̄[·]. Techniques, such as (4) and
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its alternatives, for combining designs for first and second order characteristics
have been reviewed in Müller W.G. (2007). For an indication of how many
different criteria could be combined to a sensible overall criterion see a recent
application by Park, S.Y., Choi, J.H., Wang, S., and Park, S.S. (2006).

Simultaneous optimization according to (4) can still be an unfeasible task,
even with today’s computer technology. A straightforward alternative is to
firstly construct an optimum design for trend estimation with n0 < n sites
by applying classic algorithms and then to use an augmentation rule for the
n−n0 remaining sites to cover variogram fitting. What then seems of decisive
importance is a good choice of n0, the number of sites to be allocated to the
trend estimation design. If kriging is the ultimate aim of the analysis it might
be helpful to determine which relative allocation (to variogram estimation and
to prediction itself) gives the best overall performance of the kriging procedure
(a first attempt to assess this performance by simulation and its application
to monitoring network design can be found in Haas, T.C. , 1992). Zhu, Z. and
Stein, M. (2006) e.g. find that only 3 to 10% of the observations need to be
assigned to estimation rather than prediction.

Another similar approach to multipurpose design was recently devised by
Lesch, S.M. (2005), who suggests to combine space-filling and information
based procedures in the spirit of constrained optimum designs. He provides
simulation results for a variety of settings motivated by a salinity survey
application.

However, one can, if one is willing to make distributional assumptions,
employ ML-estimators. For the full parameter set {β, θ} the information
matrix then exhibits the block diagonal form

E

{
−∂lnL(β,θ)

∂β∂βT −∂lnL(β,θ)
∂β∂θT

−∂lnL(β,θ)
∂θ∂βT −∂lnL(β,θ)

∂θ∂θT

}
=

(
M(ξ; θ, β) 0

0 M ′(ξ; θ)

)
.

Here
M(ξ) =

1
n

∑

x∈ξ

∑

x′∈ξ

f(x)[C−1(ξ)]x,x′f
T (x′), (5)

and

{M ′(x, ξ)}ii′ = {C−1(ξ)}x,.
∂C(X )

∂θi
C−1(ξ)

∂C(X )
∂θi′

{C−1(ξ)}.,x.

We also use now the notation [C(ξ)]ii′ = c(xi, xi′ ; θ) to emphasize the depen-
dence of C on the design and we assume knowledge of θ.

Again all the entries can be condensed to a design criterion Φ. If we now
want to determine a D-optimal design for the whole parameter set, we can
obviously - due to the orthogonality of the first and second order parameters
- simply use the product of the respective determinants as an optimum design
criterion. More generally a weighted version would yield

Φ̄′[ξ|α] = |M(ξ)|α · |M ′(ξ)|(1−α). (6)

It is obvious that (6) conforms with (4) after logarithmic transformation.
Also unless we are not simultaneously optimizing for α, standardizing the
criteria will not effect the resulting ξ∗.

Most importantly (6) encompasses the three interesting cases identified in
Section 1, namely α = 1 corresponds to Case 1, α = 0 corresponds to Case 2
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and any other α to a specific instance of Case 3. Thereby we are allowed to
tackle all cases within a common framework.

Note that Xia G., Miranda M.L. and Gelfand A.E. (2006) suggest to
use the traces rather than the determinants, but eventually continue with
considering only the first block. Also note that for such designs the impact
of the amount of correlation on the design criterion can be quite paradoxical.
Müller W.G. and Stehĺık M. (2008) illustrate this point by showing that
depending on the amount of local correlation (governed by θ), the criterion
values increase and decrease respectively.

2.2 Design algorithms (with a new proposal)

For solving the respective optimization problem the techniques described in
Sections 3.1 and 3.2 of Müller W.G. (2005) can be adapted. It is therefore
natural to suggest in a particular situation to construct designs by adding
points

x+ = arg max
x∈X\ξ

φ(x, ξ)

maximizing and deleting points

x− = arg min
x∈ξ

φ(x, ξ)

minimizing the so-called sensitivity function, the directional derivative of Φ̄.
Starting with an arbitrary ξ and doing this iteratively leads to a standard
exchange type algorithm as proposed by Fedorov, V.V. (1972), which eventu-
ally leaves us with an improved design corresponding to the prescribed finite
number of observations (exact design). These algorithms can be quite de-
manding, especially in the spatial case with large designs and candidate sets
(see Royle (2002) for a comprehensive review), thus in this paper we have
used the following

hybrid stochastic version:

• Make the best exchange between a point from ξ and a randomly (uni-
formly weighted) chosen point x∗ ∈ X \ ξ.

• If there is no improvement multiply weights by the distances ‖xi−x ∗ ‖,
normalize weights and draw anew. Repeat this step if necessary.

• The above could be complemented by using a stochastic acceptance op-
erator (decreasing temperature, similar to what was e.g. proposed in
Zhou (2008)) to improve performance.

Alternatively Pázman, A. and Laca, J. (2008) employ the techniques based
upon approximate information matrices. Specifically, they suggest to replace
their diagonal entries by ε (ξ(x)− κ)2 /ξ(x) and supplement the directional
derivative φ(x, ξ) = g(x, ξ)/ξ by

g′(ξ, x) = −tr{∇′Φ′ ·M ′(x, ξ)},
where ∇′Φ′ is the respective submatrix of the gradient. This allows them to
eventually propose a much simplified exchange algorithm with an allocation
rule (compare with (9) in Müller W.G. (2005))

x(s) = arg max
x∈X̄s

ε[g(x, ξ(s)) + g′(x, ξ(s))]

[
1−

(
κ

ξ(x)

)2
]

[1− ξ(x)], (7)
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and some heuristics on how to operate the tuning parameter ε. They still do
not, however, report an extensive set of simulations or examples, that allow a
judgement about the usefulness of this procedure.

A very different ‘direct’ approach can again be taken if the complete proba-
bilistic structure of the random field model is known. An information theoretic
approach based upon the Shannon entropy, which was firstly formalized by
Caselton, W.F. and Zidek, J.V. (1984), is then possible. Their basic idea
was that the uncertainty about some aspect (say parameter estimation, pre-
diction, etc.) must be somehow reduced by the data and that a design that
produces such data should minimize the overall entropy

E [y] = E[− log p(y) | p̃(y)].

Here, y is the collection of potential measurements and p(·) its probability
density function, p̃(·) represents the state of complete ignorance and is usually
chosen as an improper density p̃(·) ∝ 1. A comprehensive overview over this
technique and some discussion contrasting it to those presented so far is given
in Section 11 of Le, N.D. and Zidek, J.V. (2006).

2.3 A digression into prediction

Rather than estimating underlying parameters it is frequently the aim to pre-
dict the random field at given unsampled sites or over a continuous region as
precise as possible. Usually then minimizing the maximum kriging variance at
these sites or over a region X , interpreted as the unconditional mean squared
prediction error for the best linear unbiased predictor, is undertaken, i.e.

min
ξ

max
x∈X

E[(ŷ(x|ξ)− y(x))2]. (8)

If the covariance parameters are estimated from the same dataset, the re-
sulting additional uncertainty needs to enter the criterion. This uncertainty
is frequently approximated by the trace tr

{
M−1

θ Var[∂ŷ(x0)/∂θ]
}
, cf. Harville

and Jeske (1992) and Zimmerman and Cressie (1992). Consequently, Zim-
merman (2006) regards

min
ξ

max
x∈X

{
Var[ŷ(x)] + tr

{
M−1

θ Var[∂ŷ(x)/∂θ]
}}

(9)

as the design problem, which he terms EK-(empirical kriging-)optimality.
These designs are much more demanding to achieve than parameter estima-
tion designs, since they require embedded optimizations over the candidate
sets.

Note that in the D-optimal uncorrelated case we have φ(x, ξ) = Var[ŷ(x)]
and thus by the celebrated equivalence theorem by Kiefer and Wolfowitz
(1960) this special case will yield the same optimal designs for (6) and (9).
We conjecture that in the general case one can find a specific α, such that one
can - if not achieve - but come very close to such an equivalence as well. That
is we do believe that optimal designs for estimation can be reasonably use-
ful for predictions purposes, which would decisively reduce the computational
burden.
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3 Examples

3.1 1 dimensional example

Let us first motivate the development by the simpler one-dimensional setup.
Case 1 In Kisělák J. and Stehĺık M. (2008) it is shown, that the equidistant

design is D-optimal in the case of Ornstein-Uhlenbeck process with constant
trend. Their Theorem 4 is also providing the form of the FIM for parameter
β when the process is OU with constant trend, i.e.

Mβ(n) = 1 +
n−1∑

i=1

erdi − 1
erdi + 1

,

where r = 1/θ. This theorem is some extension of the Theorem 3.6 in Dette
H., Kunert J. and Pepelyshev A. (2007). Therein is proved, that for r → 0 the
exact n-point D-optimal design in the linear regression model with exponential
covariance converges to the equally spaced design.

Case 2 The form of the FIM for parameter r when the process is OU is
given by

Mr(n) =
n−1∑

i=1

d2
i (e

2rdi + 1)
(e2rdi − 1)2

,

where r = 1/θ. This was also independently observed by Zagoraiou and Baldi-
Antognini (poster, Moda 8, 2007) and personally communicated.

For a proof first notice that an Ornstein-Uhlenbeck process possesses a
Markovian property and thus the structure of the inverse covariance matrix
is tridiagonal (see for details Kisělák J. and Stehĺık M., 2008). From this fact
and the structure of Mθ we conjecture Mr =

∑n−1
i=1 g(di, r), where g(di, r)

is a differentiable function of both variables. We have g(di, r) = d2
i (e2rdi+1)

(e2rdi−1)2

(see Stehĺık M. , 2005). To complete this proof, we can now use either the
fundamental theorem of calculus and the fact, that

∂Mr

∂di
|di=x = −2x (−e(4 r x) + 1 + x r e(4 r x) + 3 x r e(2 r x))

(e(2 r x) − 1)3

or complete induction.
Note that typically, when no nugget effect is present, the D-optimal design

will be collapsing unto a single point (see Müller W.G. and Stehĺık M. , 2008
and Stehĺık M., Rodŕıguez-Dı́az J.M., Müller, W.G. and López-Fidalgo, J. ,
2008).

Case 3 If we are interested in estimating of both parameters simultane-
ously, typically, the correlation parameter has a higher impact on the design.
This can also lead to the collapsing of the design or some counterintuitive
behavior.

3.2 Spatial case

Here we will employ the same example as given in Müller W.G. (2005):
The Südliche Tullnerfeld is a part of the Danube river basin in central Lower
Austria and due to its homogeneous aquifer well suited for a model-oriented
geostatistical analysis. It consists of 36 official water quality measurement
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stations, which are irregularly spread over the region. A graphical represen-
tation of the sites (after rescaling to a unit of approximately 31 kms so that
X = [−1, 1]2) on a 21 times 95 point grid is given in Figure 1. Note that due
to the irregularity of the region only a fraction of the grid is actually used.
The data set used in some calculations contains daily averages of chloride (Cl)
concentrations in mg/l over the period 1992-1997 on all time points, for which
at least one measurement was taken. As a spatial trend we take again a simple

Figure 1: Chloride monitoring network in the Südliche Tullnerfeld (Austria).

plane, i.e. f(x) =
(
1
x

)
and for the covariance function we employ an isotropic

spherical covariance model with local parameter guesses θ̂ = {4.89, 1.86, 0.81}
as given in Müller W.G. (2005).

Case 1 α = 1: Resulting designs have already been presented therein (e.g.
Figure 2), essentially the same emerge from using the present algorithm with
efficiency improvements of around 30%.

Note that for the OU processes Stehĺık and Kisělák have observed that a
triangular design will be close to the 3-point D-optimal designs. Moreover, a
number of authors have investigated the problem of spatial sampling design
assuming the correlation parameters to be known. For instance Yfantis, E.A.,
Flatman, G.T. and Behar, J.V. (1987), who provided empirical evidence, that
when using kriging as prediction method and the average of maximum krig-
ing variance as criterion, the equilateral triangular grid is apparently nearly
optimal.

Case 2 α = 0: For the construction of a local guess for M ′ one requires
the covariance function and its derivatives for the preestimated spherical var-
iogram. The latter are given by

∂c(.)
∂θ1

=
{

1, h = 0
0, else

,
∂c(.)
∂θ2

=





1, h = 0
1− 3h

2θ3
+ h3

2θ3
3

0 < h < θ3

0, else
,

and
∂c(.)
∂θ3

=

{
3θ2h
2θ2

3

(
1− h2

θ2
3

)
0 < h < θ3

0, else
.

By again applying our hybrid exchange type algorithm from Section 2.2 and
employing Φ[M ′] = detM ′(ξ) a reasonably good design is found after only
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30 exchanges, yielding a value of Φ[M ′(ξ∗)] = 226704 × 105, which is a vast
improvement over the Φ[ξ′(A)] = 3954 × 105 of the existing design. The
resulting ξ∗ is displayed in Figure 2 and shows the in these instances usual
separation of large and small distances (cf. Müller and Zimmerman (1999)).
Case 3 α = 0.5

Figure 2: D-optimal network for estimating covariance parameters only.

Figure (3) displays the network after optimizing criterion (6) and clearly
shows the balance between the two concurring criteria. It results in an about
7-fold improvement in the compound criterion. However, a fairer efficiency
comparison, not distorted by the scaling effect, is found when we reduce the
numbers of design points, such that we can still achieve the same criterion
value as with the initial network. This leads to what is displayed in figure (4):
an equivalent network with 21 sites (15 less than what we started with).

Figure 3: D-optimal compound design network, 36 sites, α = 0.5.
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Figure 4: D-optimal compound design network, 21 sites, α = 0.5.
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