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Abstract

A random effects model is presented to estimate multivariate data of mixed
data types. Such data typically appear in studies where different response
variables are measured repeatedly for one subject. It is possible to relate
normal, binary, multinomial and count data by our joint model. Further
flexibility with respect to model specification is obtained by including modern
variable selection techniques. Auxiliary mixture sampling leads to a Gibbs
sampling type scheme which is easy to implement since no additional tuning
is needed. The method is illustrated by transaction data of a costumer cohort
acquired by an apparel retailer.

Keywords: Auxiliary mixture sampling; Generalized linear models; MCMC;
Random effects model; Variable Selection

1 Introduction

In this paper we model multidimensional data which arise when different response
variables are measured repeatedly for one subject. Usually these responses are
not of the same type but are measured on different scales, yielding mixed data
with continuous and discrete outcomes. Since measurements are taken repeatedly
over time on each subject under study not only dependencies between the response
components but also within-subject dependencies have to be taken into account.
For repeated measurements of a single data type the usual approach is to use linear
random effects models for normal or general random effects models for discrete
data. However, combination of different data types to a joint model is a challenging
problem. In the present paper we specify a random effects model which combines
normal, binary, multinomial and count outcomes. We account for within subject
dependencies by defining a random effects specification for the linear predictors
of the single data types. These single response types are then linked by adding
covariances between random effects of the different data types.

Such a general model for mixed data was not estimated in the literature before.
This is mainly due to computational difficulties which arise when combining differ-
ent data types. Clustered data of mixed type received attention in particular for a
binary and a normal response component in the context of toxicity studies (Fitz-
maurice and Laird, 1995; Catalano and Ryan, 1992; Regan and Catalano, 1999b,a).
One approach is to model the joint distribution of both outcomes as the product
of a marginal and a conditional distribution, see Cox and Wermuth (1992) for a
discussion of different factorizations. Correlation of repeated measurements for one
subject is taken into account in the marginal model as well as in the conditional
model, estimation is accomplished by generalized estimation equations. The same
type of approach is taken by Yang, Jian, and Zhang (2007) for bivariate longitudinal
data where one component is continuous and the other is Poisson count. Within
subject correlation is taken into account for each response type by assuming a com-
pound symmetry covariance matrix for observations of one subject. A different
modeling approach, taken in Regan and Catalano (1999b); Gueorguieva and Agresti
(2001) and Faes, Aerts, Molenberghs, Geys, Teuns, and Bijnens (2008), is based on
the interpretation of binary response as a dichotomization of an underlying normal
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variable and assuming a bivariate normal distribution for the normal response and
the underlying normal variable. Correlation between the two responses and intra-
cluster or within subject correlation can be taken into account by either explicit
modeling of the covariance structure as in Regan and Catalano (1999b) or by a ran-
dom effects specification where random effects and/or errors are assumed to follow
a general bivariate normal distribution as in Gueorguieva and Agresti (2001). In
principle this approach allows a full random effects specification for multivariate re-
sponses, however due to computational aspects so far researchers focused their work
on simplified models. Faes et al. (2008) consider this problem in a classical setting
and use pseudo-likelihood for joint estimation of all pairwise bivariate generalized
linear mixed models.

In our paper we estimate a full random effects model. By using data augmenta-
tion we combine not only the normal responses but also the discrete ones to a linear
model. The novel method of auxiliary mixture sampling then leads to a Gibbs
sampling type scheme. Until recently Bayesian estimation of generalized linear
models for categorical or count data was only possible if Metropolis-Hastings steps
were included. Auxiliary mixture sampling for single data types was developed in
Frühwirth-Schnatter and Wagner (2006) and Frühwirth-Schnatter, Frühwirth, Held,
and Rue (2009) for Poisson counts, and in Frühwirth-Schnatter and Frühwirth (2007)
for binomial and multinomial responses.

With many covariates at hand specification of random and fixed effects is a
complicated problem. Recently variable selection tools are used to solve such model
selection problems, see e.g. George and McCulloch (1997) for a description of the
stochastic search variable approach, Smith and Kohn (2002) for covariance selection
for normal data, and Frühwirth-Schnatter and Tüchler (2008) and Tüchler (2008)
for covariance selection in normal and logistic random effects models, respectively.
In our paper variable and covariance selection enable us to start with a very general
model specification. All predictor variables at hand may be included and all effects
may be specified as random effects. During the course of MCMC sampling those
effects with zero means are detected and those effects which are fixed rather than
random are restricted to fixed effects. Since the different data types are related
through the variance-covariance matrix covariance selection also reveals whether
such a relationship is present or not. If all covariances between effects of certain
data types were selected as zero no relation between these data types would be
present and the joint model would split into separate models.

The paper is structured as follows. In Section 2 we define the model. It is
transformed into a Gaussian random effects model by auxiliary mixture sampling in
Section 3.1 and variable and covariance selection is incorporated in Section 3.2. The
prior and the simulation steps are described in Sections 3.3 and 3.4, respectively.
The method is applied to simulated data in Section 4, and Section 5 gives a real-data
example. Section 6 summarizes the results.

2 Random Effects Model for Mixed Data

Let Y = (Y 1, . . . , Y K)′ denote a multivariate response variable which is observed for
i = 1, . . . , N subjects on t = 1, . . . , Ti occasions. The components Y k, k = 1, . . . , K
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may be either normal, binary, multinomial or Poisson counts. Let ykit denote the
observation of the k-th component measured for subject i at time point t, let yk

i

denote the sequence of Ti observations for the k-th component of subject i, and let
yi summarize all TiK observations of subject i.

To relate the mean µk
it = E(ykit) to the linear predictor ηkit we introduce a distinct

link function gk(µ
k
it) = ηkit, k = 1, . . . , K for each component depending on the type of

the k-th response component. For Poisson components we use the log-link-function

µk
it = exp(ηkit),

for binary components we consider the logit link function

µk
it =

exp(ηkit)

1 + exp(ηkit)
,

whereas for normal components ykit we use the identical link

µk
it = ηkit

and assume a constant variance ykit ∼ N
(
µk
it, σ

2
k

)
.

We consider the following random effects specification for the linear predictors
ηk
i of the sequence yk

i :
ηk
i = Xiβ

k
i .

Xi is a design matrix of dimension Ti×d, where d equals the number of covariates in
the model. βk

i are normally distributed random effects. We assume that the same
covariates are used for each of the K response components, whereas the random
effects are allowed to differ between components.

Dependency between repeated measurements is described by the random ef-
fects βk

i shared for all measurements of one response component. To take into
account dependency between the components we assume that the random effects
βi = ((β1

i )
′, . . . , (βK

i )
′)′ of one subject follow a multivariate normal distribution

βi ∼ NdK (β,Q) ,

with mean β and variance-covariance matrix Q. Note that assuming pairwise inde-
pendence between the random effects

Cov(βk
i ,β

k′

i ) = 0 for k ̸= k′; i = 1, . . . , N,

would correspond to separate modeling of each of the K components using linear
random effects models for the normal and generalized random effects models for the
discrete responses.

3 Inference Procedure

3.1 Data Augmentation

3.1.1 The Augmented Model

Bayesian estimation of the model defined in Section 2 can be performed by a sim-
ple Gibbs sampler as long as all response components are Gaussian. For discrete
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outcomes auxiliary mixture sampling leads to an augmented Gaussian model for
which a Gibbs sampling scheme is available. Auxiliary mixture sampling for Pois-
son counts is developed in Frühwirth-Schnatter and Wagner (2006) and Frühwirth-
Schnatter et al. (2009), whereas binary and multinomial logit models are estimated
in Frühwirth-Schnatter and Frühwirth (2007).

Auxiliary mixture sampling is based on data augmentation and allows a model
representation as a linear Gaussian random effects model in the auxiliary variables
ỹk
i :

ỹk
i = X̃k

iβ
k
i + ε̃ki , k = 1, . . . K (1)

where the error term ε̃ki is distributed as N
(
0,Σk

i

)
with a diagonal matrix Σk

i .
The joint model for all outcome components is obtained by combining the separate
models (1) to the following Gaussian random effects model:

ỹi =

 ỹ1
i
...

ỹK
i

 = X̃iβi + ε̃i, ε̃i ∼ N (0,Σi) , (2)

βi ∼ NdK (β,Q) , (3)

where X̃i andΣi are block diagonal matrices with entries X̃1
i , . . . , X̃

K
i andΣ1

i , . . . ,Σ
K
i ,

respectively. This linear random effects model implies the marginal model

ỹi ∼ N
(
X̃iβ, X̃iQX̃′

i +Σi

)
.

We are now going to discuss the derivation of model (1) for the various data
types. For ease of exposition we use superscripts n, b and c to indicate normal,
binary and count components, respectively.

For a normal response Y n no data augmentation is needed and hence ỹn
i =

yn
i , X̃

n
i = Xi and Σn

i = σ2
nI. Data augmentation is needed for the discrete data

types and we describe details in the following two subsections.

3.1.2 Data augmentation for binary and multinomial components

For a binary component Y b with outcomes ybit ∈ {0, 1} auxiliary mixture sampling
is based on the interpretation of logit models in terms of utilities as in McFadden
(1974). Let uit,0 be the utility of choosing category 0 and uit be the utility of choosing
category 1, which is modeled as

uit = xitβ
b
i + εbit. (4)

Then ybit = 1, iff uit > uit,0, and ybit = 0 otherwise. The binary logit random effects
model results as the marginal distribution of yb

i , if uit,0 and εbit follow a type I extreme
value distribution, see Scott (2009). The latent utilities are introduced as missing
variables in a first data augmentation step. The extreme value distribution of εbit
can be approximated very accurately by a mixture of ten normal components

pε(ε) = exp(−ε− e−ε) ≈
10∑
r=1

wrfN(ε;mr, s
2
r),

4



where the weights wr, the means mr, and the variances s2r, r = 1, . . . , 10, have been
determined numerically by minimizing the Kullback-Leibler distance between the
density of the type I extreme value distribution and the mixture approximation, see
Frühwirth-Schnatter and Frühwirth (2007) for more details. As the weights, means
and variances (wr,mr,s

2
r) are fixed numbers rather than unknown parameters, only

the component indicators rbit ∈ {1, . . . , 10} have to be introduced for each utility uit

in the second data augmentation step to obtain the linear Gaussian model

uit = xitβ
b
i +mrbit

+ ε̃rbit , ε̃rbit ∼ N
(
0, s2rbit

)
.

Conditional on the component indicators we define the auxiliary variables ỹbit =
uit −mrbit

and stack the elements ỹbit for each subject to obtain the vector ỹb
i . The

model for this auxiliary response vector is the linear random effects model

ỹb
i = X̃b

iβ
b
i + ε̃bi ,

where ε̃bi ∼ NTi

(
0,Σb

i

)
, Σb

i is a diagonal matrix with elements s2
rbit
, and X̃b

i = Xi.

Extension to a multinomial component Y m where ymit takes a value in one of
L + 1 unordered categories is straightforward. For each observation ymit , however
L + 1 latent utilities (um

it,0, u
m
it,1, . . . , u

m
it,L) have to be introduced as missing data in

the first data augmentation step, see Frühwirth-Schnatter and Frühwirth (2007).

3.1.3 Data augmentation for Poisson components

For a count response Y c data augmentation is based on the interpretation of a
Poisson count ycit as the number of jumps of an unobserved Poisson process with
intensity µc

it in the time interval [0,1], see Frühwirth-Schnatter and Wagner (2006)
and Frühwirth-Schnatter et al. (2009). In the first data augmentation step the inter-
arrival time between the last jump before and the first jump after 1, denoted τ cit,1,
is introduced. For observations ycit > 0 it is required to add the arrival time of the
last jump before 1, denoted by τ cit,2, as a further latent variable.

As τ cit,1 follows an exponential distribution E (µc
it) and τ cit,2 follows a Gamma

distribution Γ(ycit, µ
c
it), the original Poisson regression model can be transformed

into the linear model

− log τ cit,1 = xitβ
c
i + εcit,1, (5)

− log τ cit,2 = xitβ
c
i + εcit,2, (6)

where the distribution of εcit,1 is a type I extreme value distribution and εcit,2 is
distributed as the negative logarithm of a Gamma random variable with integer
shape parameter ν = ycit. For y

c
it = 0 we are dealing only with τ cit,1. The non-normal

densities of εcit,1 and εcit,2 can be approximated by a mixture of normal components

pε(ε; ν) =
exp(−νε− e−ε)

Γ(ν)
≈

R(ν)∑
r=1

wr(ν)fN(ε;mr(ν), s
2
r(ν)).

The mixture approximation was derived numerically for integer values of ν, see
Frühwirth-Schnatter et al. (2009) for details. The number of components R(ν)
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needed to obtain an accurate approximation depends on ν. The weights wr(ν),
means mr(ν) and variances s2r(ν) depend on ν as well, and are fixed. Therefore only
the component indicators rcit,j have to be introduced for each auxiliary observation
in the second data augmentation step. Conditional on the auxiliary variables, the
Poisson model reduces to the linear Gaussian model

− log τ cit,j = xitβ
c
i +mrcit,j

+ ε̃rcit,j , ε̃rcit,j ∼ N(0, s2rcit,j).

We stack the auxiliary responses ỹcit,j = − log τ cit,j −mrcit,j
for each subject to obtain

vector ỹc
i . The length of ỹc

i is no longer Ti as for the original response y
c
i but Ti+ni,

where ni is the number of nonzero counts for subject i. The conditional Gaussian
random effects model is given by

ỹc
i = X̃c

iβ
c
i + ε̃ci , ε̃ci ∼ NTi+ni

(0,Σc
i) ,

where X̃c
i is chosen to match ỹc

i and Σc
i is a diagonal matrix with elements equal to

the variances s2rcit,j .

3.2 Model Selection

We are now going to include variable selection with respect to elements of the random
effects mean β and covariance selection with respect to elements of the variance-
covariance matrix Q. A zero diagonal element in Q renders the corresponding effect
a fixed effect and all off-diagonal elements are automatically identified as zero by
the algorithm. A zero off-diagonal element indicates that no correlation is present
between two random effects. Covariances between effects of different data types
build the link between the different response types. Selecting solely zero covariances
between different data types reduces the joint model to separate models each for
one data type.

The random effects model (2), (3) is specified in the centered parameterization.
The mean and variance-covariance matrix of the random effects appear in the latent
equation. To carry out covariance selection we apply the Cholesky decomposition
with lower-triangular Cholesky factors C to the variance-covariance matrix, Q =
CC′, and rewrite the model in the equivalent non-centered parameterization:

ỹi =

 ỹ1
i
...

ỹK
i

 = X̃iβ + X̃iCzi + ε̃i, ε̃i ∼ N (0,Σi) , (7)

zi ∼ NdK (0, I) , (8)

where βi = Czi, see Meng and van Dyk (1998).
To select variables in β we define for each element βg of β an indicator δg, which

takes the value 0 if element βg is restricted to 0, whereas δg = 1 indicates that βg

is unrestricted. The vector δ consists of all dK indicators. We include only the
unrestricted elements in vector βδ and denote the corresponding design matrix X̃δ

i .
To carry out covariance-selection we follow the ideas of Frühwirth-Schnatter and

Tüchler (2008). We stack the columns of the lower-triangular matrix C to obtain
a vector of regression coefficients with design matrix Wi. Wi is constructed by
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combining the individual effects zi and the matrix X̃i, see the Appendix for details.
We define an indicator vector γ of dimension dK(dK +1)/2 to select restricted and
unrestricted elements in C. We denote the vector of all unrestricted elements Cγ

and its design matrix Wγ
i .

The augmented model for variable and covariance selection reads:

ỹi =

 ỹ1
i
...

ỹK
i

 = X̃δ
iβ

δ +Wγ
i C

γ + ε̃i, ε̃i ∼ N (0,Σi) . (9)

The vector of all individual data vectors is denoted ỹ, and the vector of all individual
effects is denoted z. The diagonal matrix of all individual model error variances
equals Σ, and all individual design matrices are subsumed under X̃δ and Wγ ,
respectively.

The likelihood for the augmented model is given as

l(ỹ|δ,γ,Σ,β,C,z,R) ∝
N∏
i=1

1

|Σi|1/2
exp

(
−1

2
(ỹi − X̃δ

iβ
δ −Wγ

i C
γ)′Σ−1

i (ỹi − X̃δ
iβ

δ −Wγ
i C

γ)

)
.

3.3 Prior

The prior for the indicator vector δ equals the following Beta function:

p(δ) = Beta(pδ + 1, dK − pδ + 1), (10)

where pδ is the number of non-zero parameters in β. This implies a prior dependence
between the elements of the vector δ, see Smith and Kohn (2002).

The prior for vector γ is constructed in the same way and reads:

p(γ) = Beta(pγ + 1, dK(dK + 1)/2− pγ + 1), (11)

for dK(dK + 1)/2 free elements and pγ non-zero elements in the lower-triangular
matrix C.

Given the indicators δ and γ we specify a fractional prior with fraction b =∑N
i=1 Ti for the joint parameter vector of the unrestricted means and Cholesky fac-

tors, see Frühwirth-Schnatter and Tüchler (2008):

p(βδ,Cγ |z,Σ, ỹb) = N
(
aN ,AN

1

b

)
, (12)

where

A−1
N = [Xδ Wγ ]′Σ−1[Xδ Wγ ], (13)

aN = AN [X
δ Wγ ]′Σ−1ỹ. (14)

If the k-th component is normal, the prior of its specific error variance is the
usual inverted Gamma prior:

σ2
k ∼ G−1 (c0k/2, C0k/2) .

We use σ2 to address the collection of the error variances of all normal components.
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3.4 MCMC Sampling scheme

An MCMC scheme to sample the model parameters βδ and Cγ , the indicators
δ and γ, the individual effects z, the observation error variance for each normal
component σ2

k, and the augmented data ỹ and R = (R1, . . . ,RN) (where Ri =
(rkit), t = 1, . . . , Ti; k = 1, . . . , K) is easy to implement as it requires only draws from
standard densities. We give details of these steps in the Appendix.

(i) Perform the data augmentation steps described in Section 3.1 for binary and
count components of the response vector to obtain ỹ and R.

(ii) Sample each element δg of the indicator vector δ separately conditional on δ\g
(all other elements of δ), γ, z, σ2, R and ỹ.

(iii) Sample each element γh of the indicator vector γ separately conditional on
γ\h (all other elements of γ), δ, z, σ2, R and ỹ.

(iv) Sample the non-zero elements βδ and Cγ together in one block conditional on
δ, γ, z, σ2, R and ỹ from a multivariate normal distribution.

(v) Sample the individual effects z conditional on βδ, Cγ , σ2, R and ỹ from
multivariate normal distributions.

(vi) Sample the model error variance σ2
k for each normal response conditional on

δ, γ, z and yk from an inverted Gamma distribution.

4 Simulation example

We generated data for a normal and a Poisson component for N=300 subjects at
T=6 time-points and 2 covariates x1 and x2, where x1 ∼ U [−1, 1] and x2 is a
binary variable with P (x2 = 1) = 0.5. The vector of regression coefficients, which
includes also an intercept for the normal as well as the Poisson component was set to
β = (3, 0,−0.3, 0.5, 0.2, 0) and σ2 = 0.5. For the random effects variance-covariance
matrix we used

Q =


0.16 0 −0.12 0.12 0 −0.12
0 0.16 0 0 0.12 0

−0.12 0 0.25 −0.09 0 0.17
0.12 0 −0.09 0.09 0 −0.09
0 0.12 0 0 0.09 0

−0.12 0 0.17 −0.09 0 0.13

 .

Q has a sparse structure with high correlations between each random effect for
the normal component and the respective random effect for the Poisson component.
This is a situation where joint modeling of the two components in combination with
model selection is particularly useful. As pointed out in Section 2 a block-diagonal
structure of Q with no correlation between normal and Poisson component would
result in separate random effects models for each component. Jointly modeling both
components should allow to reveal the correct correlation structure in this situation.
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Using the fractional prior for model selection only the parameters for the in-
verted Gamma prior for the model error variance of the normal component have to
be chosen. We use the uninformative prior G−1 (0, 0), i.e. p(σ2) ∝ 1/σ2. Implemen-
tation of the MCMC scheme described was carried out in MATLAB (Version 7.2.0).
The sampler was run for 20,000 iterations after a burn-in of 10,000. The first 1,000
draws of the burnin were drawn from the unrestricted model. 5 chains with different
starting values were run and found to converge very quickly.

In Table 1 we give posterior estimates and HPD-regions of the mean parameters
β for the normal and for the count part. The last column equals the posterior
probabilities of the mean parameters to be unrestricted. These probabilities are
obtained as posterior means of the indicators δg.

Table 1: Mixed Model: estimates, 95% HPD intervals and probabilities to be unre-
stricted for β.

variable β̂ HPD(β̂) Pr(δg = 1)
normal response

intercept 2.93 (2.87, 3.00) 1.00
x1 0.00 (-0.01, 0.05) 0.11
x2 -0.24 (-0.33, -0.16) 1.00
σ2 0.47 (0.43, 0.51)

count response
intercept 0.47 (0.41, 0.52) 1.00
x1 0.12 (0.05, 0.20) 0.98
x2 -0.01 (-0.09, 0.03) 0.23

Posterior estimates of the Cholesky factor C and the posterior probabilities of
each element of C to be unrestricted are reported in Table 2. We follow Frühwirth-
Schnatter and Tüchler (2008) and interpret the pattern of restricted elements in C:
The rank of Q equals three on average. All effects are random and rank reduction
is caused by linear dependence among these random effects.

The variance-covariance matrix may be derived from the Cholesky factor C and
the identity Q = CC′. Its estimates together with posterior probabilities to be
unrestricted are given in Table 3. We observe that the pattern of our data gener-
ating Q is reproduced very well. The nonzero elements of Q are unrestricted with
probability 1, whereas the zero elements have a probability smaller than 0.5 to be
included in the model.

To evaluate the sensitivity with respect to the parameters of inverse Gamma
prior for σ2, we repeated the analysis with parameters c0 = 0.001, C0 = 0.001,
c0 = 0.01, C0 = 0.01, c0 = 0.1, C0 = 0.1 and c0 = 0.5, C0 = 2 and found essentially
the same results. To illustrate the benefit of a joint model we fitted separate models
for the normal and count response. Results are given in Table 4 and Table 5,
respectively.

The mean structure is similar to that of the joint model, except for the effect of
x1 on the count response which is included in the model only in 41.4% of the draws.
Substantial discrepancy however can be seen for the covariance structure. Whereas
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Table 2: Mixed model: Estimates (upper row) and posterior probabilities to be
unrestricted (lower row, in italic) for C.

0.43
1.00

0.00 -0.51
0.05 1.00

-0.32 -0.02 0.37
1.00 0.23 1.00

0.37 0.00 0.01 0.00
1.00 0.11 0.20 0.19

-0.01 -0.23 0.00 0.00 -0.00
0.20 1.00 0.09 0.02 0.18

-0.36 -0.00 0.17 -0.00 -0.00 -0.00
1.00 0.09 0.95 0.03 0.02 0.24

in the mixed model the correlation structure is estimated correctly, this is not the
case for the separate models: for the normal response a correlation between x1 and
x2 is falsely included with inclusion probability 0.58, and for count response only
the intercept is selected as random effect.

5 Application

Our data come from an apparel retailer who collected information about the buying
behaviour of costumers. The data set comprises monthly data over five years for
2,157 costumers. We included a continuous response about the costumers’ monthly
profitability contributions and a count response about the number of different items
purchased in the respective time periods. The two response variables were related to
three covariates measuring marketing activities. These variables are the fraction of
spendings the costumer made on weekends (weekend), the fraction of shopping trips
the costumer made with coupon redemption (coupon) and the number of mailings
the costumer received in the time period (mail).

For MCMC estimation of the random effects model we specified an inverted
Gamma prior for the model error variance of the normal component, G−1 (0, 0). The
Gibbs sampler was run for 40,000 iterations after a burn-in of 10,000. The first
1,000 draws of the burnin were drawn from the unrestricted model. Convergence
was checked by running 4 chains from different starting values.

In Table 6 we give posterior estimates and HPD-regions of the mean parameters
β for the normal and for the count part. The last column equals the posterior prob-
abilities of the mean parameters to be unrestricted. These probabilities are obtained
as posterior means of the indicators δg. Consistent with marketing managerial ex-
pectations we obtain a high effect of the number the coupon redemptions on the
profitability contribution as well as on the number of items purchased. Interestingly
the effects of weekend and mail are rather small and for the count response part
they have only a probability of 0.55 and 0.22 to be included. In Figure 1 we give
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Table 3: Mixed model: Estimates (upper row) and posterior probabilities to be
unrestricted (lower row, in italic) for Q.

Normal response Count response
intercept x1 x2 intercept x1 x2

Normal response intercept 0.18
1.00

x1 0.00 0.26
0.05 1.00

x2 -0.14 0.01 0.24
1.00 0.27 1.00

Count response intercept 0.16 0.00 -0.11 0.14
1.00 0.16 1.00 1.00

x1 -0.01 0.12 0.01 -0.00 0.06
0.20 1.00 0.42 0.31 1.00

x2 -0.15 0.00 0.18 -0.13 0.01 0.17
1.00 0.13 1.00 1.00 0.34 1.00

Table 4: Separate Models: estimates, 95% HPD intervals and probabilities to be
unrestricted for β.

variable β̂ HPD(β̂) Pr(δg = 1)
normal response

intercept 2.94 (2.87, 3.01) 1.00
x1 0.00 (-0.01, 0.05) 0.10
x2 -0.25 (-0.34, -0.16) 1.00
σ2 0.47 (0.43, 0.51)
intercept 0.33 (0.26, 0.39) 1.00
x1 0.03 (0.00, 0.10) 0.41
x2 -0.01 (-0.07, 0.00) 0.17

paths for the mean of coupon for the normal component and of mail for the count
component. We find a very stable behaviour for the coupon variable whereas the
uncertainty about the mail variable is also reflected in the sample path. Its mean
is unrestricted only for 22 percent of the iterations.

In Table 7 we give the posterior estimates of the Cholesky factor C and the
posterior probabilities of each element of C to be unrestricted. From the pattern of
restricted elements in C we can conclude, that the rank of Q equals four on average.
All effects are random and rank reduction is caused by linear dependence among
these random effects.

Results for the elements of the variance-covariance matrix Q = CC′ together
with posterior probabilities to be unrestricted are given in Table 8. We see that
many elements of Q are unrestricted with probability 1, whereas the others have
a very low probability to be included in the model. It is easy to obtain posterior
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Table 5: Separate models: Estimates (upper row) and posterior probabilities to be
unrestricted (lower row, in italic) for Q.

Normal response Count response
intercept x1 x2 intercept x1 x2

Normal response intercept 0.19
1.00

x1 0.00 0.26
0.16 1.00

x2 -0.14 0.03 0.25
1.00 0.58 1.00

Count response intercept 0.18
1.00

x1 0.00 0.00
0.03 0.08

x2 -0.02 -0.00 0.01
0.41 0.02 0.45

correlations from the covariance matrices in each sample step. We derive pairwise
high correlations with coefficients of almost 1 between the random effects of the count
and the normal part for the intercept, the weekend, the coupon and mail effect.
We expect an increased profit value as the number of items purchased increases.

The correlation between the random effects for weekend and mail is positive.
People who like to go shopping on weekends also tend to have a positive reaction
to mailings. Interestingly both variables are negatively correlated with the subject
specific intercepts. This has important managerial implications. High mailing fre-
quencies might lead to diminishing returns on profit values and might reduce the
number of items purchased for high-profit-costumers, whereas an increased mailing
activity might stimulate low-profit-costumers’ interest. Similar conclusions might
be drawn for the effect of the fractions of spendings made on weekends. As we will
see below this correlation between subject specific effects of mail and weekend does
not become obvious if we estimate only separate models.

We are now going to compare the mixed model with separate models for the
normal and count response, respectively. We estimate both models and give results
in Table 9 and Table 10, respectively. When comparing the mixed model with
the two separate models we do not find much difference in the mean structure
but substantial differences in the covariance structure. For the normal as well as
for the count model the effects of mail are fixed now, and for the count part the
mail variable is totally deleted during 62 percent of the iterations. For weekend
the probability to be a random effect is 0.53 and only 0.04, respectively. The two
separate models would suggest that the number of mailings as well as the fraction of
spendings made on weekend have a small positive effect on the profit value as well as
on the number of items purchased. Only from the mixed model it becomes obvious
that the employment of the marketing action mail or a high fraction of spendings on
weekends might even lead to reduced average profit values and numbers of purchased

12
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Figure 1: Sample paths of the coupon effect for the normal response (left) and the
mail effect for the count response (right)

Table 6: Mixed Model: estimates, 95% HPD intervals and probabilities to be unre-
stricted for β.

variable β̂ HPD(β̂) Pr(δg = 1)
normal response

intercept 4.65 (4.62, 4.68) 1.00
weekend 0.06 (0.03, 0.09) 1.00
coupon 0.71 (0.68, 0.74) 1.00
mail 0.05 (0.02, 0.08) 0.96
σ2 0.62 (0.61, 0.63)

count response
intercept 0.50 (0.47, 0.52) 1.00
weekend 0.01 (0.00, 0.04) 0.55
coupon 0.37 (0.34, 0.39) 1.00
mail 0.00 (-0.00, 0.03) 0.22

items for some customers.

6 Conclusions

We present a random effects model for jointly estimating panel data of mixed re-
sponse types. We may incorporate normal, binary, multinomial and Poisson count
data into our model. Contrary to existing methods our estimation procedure is very
easy to implement and works for very general model specifications. Auxiliary mix-
ture sampling leads to an MCMC scheme which involves solely standard densities.
Variable and/or covariance selection may be added to the estimation procedure and
enables us to specify all variables at hand as random effects from the start. If neces-
sary these variables are restricted to fixed effects or even excluded during the course
of the selection procedure.
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Table 7: Mixed model: Estimates (upper row) and posterior probabilities to be
unrestricted (lower row, in italic) for C.

-0.34
1.00

0.13 0.28
1.00 1.00

0.00 -0.00 0.29
0.09 0.03 1.00

0.14 -0.01 0.00 0.23
1.00 0.21 0.00 1.00

-0.21 0.00 -0.00 -0.00 0.00
1.00 0.02 0.04 0.02 0.02

0.08 0.18 -0.00 -0.00 0.00 -0.00
1.00 1.00 0.02 0.04 0.00 0.02

0.00 0.00 0.19 0.00 -0.00 0.00 -0.00
0.02 0.04 1.00 0.02 0.00 0.00 0.02

0.10 -0.01 -0.00 0.18 -0.00 -0.00 0.00 0.00
1.00 0.21 0.02 1.00 0.00 0.00 0.00 0.02

Table 8: Mixed model: Estimates (upper row) and posterior probabilities to be
unrestricted (lower row, in italic) for Q.

Normal response Count response
intercept weekend coupon mail intercept weekend coupon mail

Normal intercept 0.11
response 1.00

weekend -0.04 0.09
1.00 1.00

coupon -0.00 0.00 0.08
0.09 0.12 1.00

mail -0.05 0.01 0.00 0.08
1.00 1.00 0.10 1.00

Count intercept 0.07 -0.03 -0.00 -0.03 0.04
response 1.00 1.00 0.13 1.00 1.00

weekend -0.03 0.06 0.00 0.01 -0.02 0.04
1.00 1.00 0.14 1.00 1.00 1.00

coupon -0.00 0.00 0.06 0.00 -0.00 0.00 0.04
0.02 0.06 1.00 0.05 0.07 0.08 1.00

mail -0.03 0.01 0.00 0.06 -0.02 0.01 -0.00 0.04
1.00 1.00 0.12 1.00 1.00 1.00 0.06 1.00
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Table 9: Separate Models: estimates, 95% HPD intervals and probabilities to be
unrestricted for β.

variable β̂ HPD(β̂) Pr(δg = 1)
normal response

intercept 4.64 (4.61, 4.66) 1.00
weekend 0.07 (0.04, 0.09) 1.00
coupon 0.73 (0.70, 0.75) 1.00
mail 0.05 (0.03, 0.07) 1.00
σ2 0.68 (0.67, 0.70)

count response
intercept 0.49 (0.47, 0.52) 1.00
weekend 0.03 (0.00, 0.05) 0.80
coupon 0.38 (0.35, 0.40) 1.00
mail 0.01 (0.00, 0.03) 0.38

Table 10: Separate models: Estimates (upper row) and posterior probabilities to be
unrestricted (lower row, in italic) for Q.

Normal response Count response
intercept weekend coupon mail intercept weekend coupon mail

Normal intercept 0.05
response 1.00

weekend 0.00 0.01
0.01 0.53

coupon 0.02 0.00 0.02
0.92 0.02 1.00

mail -0.00 -0.00 -0.00 0.00
0.03 0.01 0.03 0.06

Count intercept 0.01
response 1.00

weekend 0.00 0.00
0.01 0.04

coupon 0.01 0.00 0.02
1.00 0.01 1.00

mail 0.00 -0.00 0.00 0.00
0.01 0.00 0.01 0.08

reading the manuscript and for his competent comments.
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8 Appendix

8.1 Constructing Wi

Let zi = (zi,1, . . . , zi,dK)
′ denote the individual effects for subject i. Conditional on

zi the design matrix for the first column of C is constructed from all dK columns
of X̃i and the first element of zi and equals X̃i(1:dK) · zi,1. To construct the design
matrix for the lower triangular part of the second column of C we have to combine
only the last dK − 1 columns of X̃i with the second element of zi: X̃i(2:dK) · zi,2.
We proceed in that way until the design matrices for all lower triangular columns
of C are constructed. Finally we stack all these matrices and obtain the new design
matrix

Wi = [X̃it(1:dK)zi,1 X̃i(2:dK)zi,2 . . . X̃i(dK)zi,dK ].

The vector of the regression coefficients which belongs toWi has dimension dK(dK+
1)/2 and consists of the lower triangular elements of C stacked columnwise.

8.2 Sampling the utilities for binary data

The data augmentation step is based on model (4) and is valid for any specification
of a linear predictor, like for example for a random effects specification ηb

it = xitβ
b
i .

As the errors in (4) follow a type I extreme value distribution the latent utilities uit

are derived from exponential distributions

exp(−uit) ∼ E (exp(ηit) + 1) if yit = 1,

exp(−uit) ∼ E (exp(ηit) + 1) + E (exp(ηit)) if yit = 0.
(15)

and it is easy to generate the utilities from

uit = − log

(
− log(Uit)

1 + exp(ηit)
− log(U∗

it)

exp(ηit)
I{yit=0}

)
, (16)

where Uit and U∗
it are uniform random variables and I{·} denotes the indicator func-

tion.

8.3 Sampling the arrival and inter-arrival times for count
data

For count data the data augmentation step based on model (5), (6) requires sampling
of the auxiliary variables τ cit,1 and τ cit,2.

If ycit = 0, τ cit,1 is the waiting time for the first jump of the corresponding Poisson
process with intensity µc

it, which is known to occur after t = 1. The residual inter-
arrival time ξit after t = 1 follows the exponential distribution, ξit ∼ E (µc

it), and
therefore

τ cit,1 = 1 + ξit.

For ycit > 0, τ cit,1 is the inter-arrival time between the last jump before and the
first jump after t = 1. In this case a further auxiliary variable τ cit,2, the arrival time
of the ycit-th jump, is required and τ cit,1 is given as

τ cit,1 = 1− τ cit,2 + ξit.
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From the properties of the Poisson process it follows that τ cit,2 is the maximum of ycit
uniform random variables and hence has a Beta distribution

τ cit,2 ∼ B (ycit, 1) .

8.4 Sampling the indicators R

Sampling the indicators R amounts to sampling the component indicators of the fi-
nite normal mixture withR(ν) components and fixed parametersmr(ν), s

2
r(ν), wr(ν); r =

1, . . . , R(ν) given in Frühwirth-Schnatter et al. (2009). For each binary observation
ν equals 1 and the component indicator rbit is sampled conditional on the latent
utility uit and the linear predictor ηbit from the discrete distribution

Pr(rbit = r∗|uit, η
b
it) ∝ wr∗(1)φ(uit − ηbit;mr∗(1), s

2
r∗(1)), r∗ = 1, . . . , R(1).

Here φ(x;µ, σ2) denotes the probability density function of theN (µ, σ2) distribution
at x. For a count observation the component indicator rcit,1 is sampled from

Pr(rcit,1 = r∗|τ cit,1, ηcit) ∝ wr∗(1)φ(− log τ cit,1 − ηcit;mr∗(1), s
2
r∗(1)), r∗ = 1, . . . , R(1).

For observations ycit > 0 a second component indicator rcit,2 has to be sampled from

Pr(rcit,2 = r∗|τ cit,2, ηcit) ∝ wr∗(y
c
it)φ(− log τ cit,2 − ηcit;mr∗(y

c
it), s

2
r∗(y

c
it)) r∗ = 1, . . . , R(ycit).

8.5 Variable and Covariance Selection

Selection of unrestricted elements in β and C amounts to sampling of the indicators
δ and γ, respectively.

To generate a draw from δg|δ\g,γ, z,R, ỹ we specify the following conditional
prior, where pδ is equal to the number of non-zero elements in δ, before sampling
the new value of δg. If the old value δoldg = 1, then we obtain

p(δg = 0|δ\g) = (dK − pδ + 1)/(dK + 1), p(δg = 1|δ\g) = pδ/(dK + 1).

If δoldg = 0, then

p(δg = 0|δ\g) = (dK − pδ)/(dK + 1), p(δg = 1|δ\g) = (pδ + 1)/(dK + 1).

The conditional priors for p(γh|γ\h) may be derived in the same way with the
total number of free elements being dK(dK + 1)/2.

To sample the indicators marginally with respect to βδ and Cγ we combine (12)
with the remaining (1 − b) proportion of the likelihood p(ỹ|βδ,Cγ ,z, σ2

k,R)(1−b).
Integration with respect to θδ and Cγ yields the conditional distribution

p(ỹ|δ,γ, z, σ2
k,R) = b(pδ+pγ)/2

(
1

2π

)(1−b)/2
∑N

i=1 Ti

|Σ|−(1−b)/2 exp

(
−(1− b)

2
S

)
,(17)

where

S = (ỹ − [X̃δ Wγ ] aN)
′ ·Σ−1 · (ỹ − [X̃δ Wγ ] aN), (18)

and aN is given in (14). To sample the indicators δ and γ a Gibbs sampler or the
fast sampling scheme by Smith and Kohn (2002) may be used. When sampling γ
we have to ensure identification of the Cholesky factors C as in Frühwirth-Schnatter
and Tüchler (2008).
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8.6 Sampling the parameters of the random effects model

8.6.1 Sampling βδ, Cγ

We sample the non-zero elements βδ and Cγ together in one block. By combining
prior (12) with the remaining (1 − b) proportion of the conditional likelihood we
obtain the normally distributed joint posterior:

p(βδ,Cγ |z, σ2
k,R, ỹ) ∼ N (aN ,AN) ,

with the posterior moments given in (13) and (14).

8.6.2 Sampling z

The individual effects zi are conditionally independent for subjects i = 1, . . . , N and
are generated from a multivariate normal distribution:

p(zi|βδ,Cγ ,Σi,Ri, ỹi) ∼ N (pi,Pi) ,

P−1
i = (X̃iC)′Σ−1

i (X̃iC) + I,

pi = Pi(X̃iC)′Σ−1
i (ỹi − X̃δ

iβ
δ).

8.6.3 Sampling σ2
k

For each normal component k we sample σ2
k from the inverted Gamma posterior

G−1 (cNk/2, CNk/2) with cNk =
∑N

i=1 Ti + c0k and CNk = C0k +
∑N

i=1

∑Ti

t=1(yit −
[xδ

itw
γ
it]aN)

2.
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