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Abstract

The aim of this paper is to provide guidelines for homogeneity testing of the
exponential distribution against the general (subpopulation model) or more
component subpopulation alternatives. We introduce the exact likelihood
ratio test of homogeneity in the subpopulation model, ELRH, and the exact
likelihood ratio test of homogeneity against the 2-component sample mixture,
ELR2. The ELRH is asymptotically optimal in the Bahadur sense when
the alternative consists of sampling from a fixed number of components and
thus ELRH is in some setups superior to frequently used tests based on EM
algorithm like the modified likelihood ratio test, the ADDS test and the D-
test among others. We demonstrate this fact by both theoretical comparisons
and simulations. A real data example illustrates the methods discussed.

Keywords: Homogeneity testing, exponential distribution, likelihood ra-
tio, subpopulation model, exact distribution, asymptotic efficiency, exact slopes,
mixture models

1 Introduction

The exponential distribution is one of the most widely used lifetime distributions in
reliability engineering. It has a density of the form

f(yi|θi) = θi exp(−θiyi), yi > 0,

where 1/θi > 0 is a scale parameter of exponential distribution. There is a big
body of literature on the theory and applications of the exponential distribution
(see Balakrishnan and Basu, 1996). The problem of testing for heterogeneity or
overdispersion has received more attention than tests of the number of components
(see Susko, 2003). The assumption that the data are generated by a mixture of expo-
nential distributions is widely used in the analysis of lifetime data. The hazard rate
of a one-component exponential distribution is constant, whereas the hazard rate
of a mixture of exponentials decreases. Therefore the mixture model is frequently
adopted to fit the distribution of a time to failure where the observed failure rate
seems to decline with time. Often the mixture can be explained by competing risks.
The components in the mixture correspond to the distinct causes of failure which
are taken to act in a mutually exclusive manner. For example, Choi (1979) used
a two-component mixture model to study the toxicity of chemical agents. For a
survey of mixtures of exponentials see McLachlan (1995).

The aim of this paper is to introduce the efficient procedure for testing exponen-
tial homogeneity against alternatives of exponential heterogeneity. The likelihood-
ratio decision procedure related to the hypothesis H0 : θ ∈ Θ0 versus H1 : θ ∈
Θ1 \Θ0, ∅ 6= Θ0 ⊂ Θ1 ⊂ Θ, is based on the ratio

supθ∈Θ0
Ly(θ)

supθ∈Θ1
Ly(θ)

where Θ0 ⊂ Θ1, θ is the parameter of interest and Ly(θ) is the likelihood of θ under
the observed data y. Alternatives to homogeneity are often specified as mixture
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models. The likelihood of a sample y1, . . . , yN of iid observations from a 2 component
mixture is given as

f(y1, . . . , yN) =
N∏

i=1

[pθ1 exp(−θ1yi) + (1− p)θ2 exp(−θ2yi)] , 0 < p < 1

and the likelihood of a sample from a general k− component mixture of exponential
components is

f(y1, . . . , yN) =
N∏

i=1

(
k∑

j=1

pjθj exp(−θjyi)

)
,

where 0 < pj < 1,
∑

j pj = 1. For the mixture alternative, there exist a very concrete
justification for using the likelihood ratio tests: the likelihood ratio test is consistent
against all alternatives with decreasing failure rate (see Randles, 1982; Tchirina,
2005).

In this paper, we consider two exact likelihood ratio tests, the exact likelihood
ratio test of homogeneity (ELRH) for the general subpopulation model proposed
by Stehĺık (2003) and the exact likelihood ratio test for 2 subpopulations (ELR2),
proposed by Stehĺık and Ososkov (2003). Generalization to testing for k subpop-
ulations, ELRk, is theoretically easy to implement, however it is computationally
expensive and computational difficulty increases with k. However, some applications
of ELRk can be found in physics, see e.g. Efimova et al. (1989).

In the subpopulation model the number of subpopulations has to be specified,
so the ”N subpopulation” model would be defined by the joint density

f(y1, . . . , yN) =
N∏

i=1

θi exp(−θiyi) (1)

which is the alternative tested in the ELRH test. The ELR2 test uses the alternative
of two subpopulations, which can be specified by (1) and two nonempty index sets
M1,M2 such that

M1 ∪M2 = {1, ..., N},M1 ∩M2 = ∅ (2)

∀j ∈ M1 : θj = θ1,∀j ∈ M2 : θj = θ2, θ1 6= θ2. (3)

Note that the alternative in the subpopulation model is exponential heterogeneity
in the sample, whereas the mixture alternative can be interpreted as exponential
heterogeneity in the population.

The reason why we consider the subpopulation model is, besides simplicity, the
fact that as soon the difference between the number of components in the mix-
ture model under H0 and H1 respectively is greater than 1, the likelihood ratio
tests involves nonstationary random fields, for which very few theoretical results are
available (see Garel, 2007). The ELRH-test is asymptotically optimal in the Ba-
hadur sense when the alternative consists of the subpopulation model with a finite
number of populations (see Stehĺık, 2006; Rubĺık, 1989a,b). ELRH and ELR2 tests
have nonstandard asymptotic distributions but their exact distribution can easily
be simulated. Notice, that our setup encompasses also the case of the Weibull dis-
tribution with known shape parameter. The exact tests of homogeneity when the
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shape parameter of the Weibull is unknown are not known to the authors. Tests for
exponentiality against Weibull alternative are given in Meintanis (2007) and Henze
and Meintanis (2005).

The paper is organized as follows. In section 2 the exact likelihood ratio homo-
geneity tests ELRH and ELR2 are introduced and discussed. In section 3 a compar-
ative power study of tests of homogeneity is provided together with the theoretical
explanation of the obtained results. Here other tests for homogeneity in exponential
mixtures are dispersion score (DS) tests (also known under the name C(α)-tests;
see chapter 4 of Lindsay (1995)) and recently proposed modified likelihood ratio test
(MLRT) introduced by Chen et al. (2001), which is a penalized LRT and has stan-
dard χ2 asymptotics, the ADDS test by Mosler and Seidel (2001), a combination
of the dispersion score test with a properly chosen goodness-of-fit procedure and
the D-test by Charnigo and Sun (2004), based on the L2 distance between the es-
timated densities of a homogeneous and a heterogeneous model. Charnigo and Sun
(2004) also introduce a penalized and several weighted variants of the D-test. An
illustrative example follows in Section 4. To maintain the continuity of explanation
the technicalities and proofs are put into Appendix.

2 Homogeneity testing

2.1 The ELRH test

For a sample of N independent observations y = (y1, . . . , yN), where yi ∼ Exponential (θi)
we consider the LR homogeneity test against the general alternative (subpopulation
model), i.e.

H0 : θ1 = . . . = θN versus nonH0.

The exact distribution of the LR test of homogeneity against the general alterna-
tive, the ELRH test, was derived in Stehĺık (2006) for the exponential and Weibull
distribution and for the generalized gamma distribution in Stehĺık (2008). LR tests
have good properties (see e.g. Lehmann, 1964; Manoukian, 1986) and in regular
cases they are optimal (see also Appendix). The LR statistics − ln ΛN is derived in
Theorem 3 of Stehĺık (2006) for y1, . . . , yN i.i.d. from the exponential distribution.
It has the form

N ln(
N∑

i=1

yi)−N ln N −
N∑

i=1

ln yi.

A very important property of the LR test of homogeneity is its scale invariance, i.e.
its distribution under H0 is independent of the unknown scale parameter. This is
an advantage in comparison to some asymptotical tests and tests depending on the
true but unknown value of θ. The critical values are easy to obtain by simulation,
e.g. from the standard exponential distribution or the Dirichlet distribution. Table
1 gives the critical values for N = 20, 50, 100, 500 obtained by simulation. M =
1000000 samples of size N were generated yielding a sample of c1, . . . , cM for the
test statistic − ln ΛN under homogeneity. The values c1−α are determined as the
respective order statistic c1−α = c(

M(1−α)
). These values are used throughout the

paper.
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Table 1: Critical values for the ELRH
N α = 0.1 α = 0.05 α = 0.01

10 8.5279 9.7994 12.4814
20 15.7276 17.3881 20.7894
50 35.7658 38.2121 43.0112
100 67.6812 70.9487 77.4036
500 311.3698 318.2312 331.4319
1000 609.4173 619.1025 637.3055

The log LR under homogeneity is a monotonous function of the statistic NNy1...yN

(y1+...+yN )N

which is clearly scale independent. The LR homogeneity statistic is also a monotonous
transformation of the so called Moran’s statistics T+

N and T−
N , where

T+
N = C +

1

N

N∑
i=1

ln
xi

x̄
,

T−
N = −T+

N , C ≈ 0.57721566 is the Euler constant and x̄ is the arithmetic mean.
This is a scale-free exponentiality test for which large deviations are studied in
Tchirina (2005). The test of homogeneity provided in this paper are asymptotically
optimal in the Bahadur sense (see Rubĺık, 1989a,b; Stehĺık, 2003) when the underly-
ing distribution is exponential and when the alternative of the homogeneity consists
of sampling from a fixed number m of populations with relative sample sizes nj/N
tending to positive limits pj (subpopulation model).

2.1.1 Simulation Study

A simulation study was conducted to determine the power of the test for a mixture
of two exponential components with pdf

f(y) = p exp(−y) + (1− p)θ exp(−θy)

for θ = 1, 2, . . . , 10 and different component weights p = 0.1, 0.5, 0.9. We used two
different sizes of the test, namely α = 0.01 and α = 0.05 and N = 20, 50, 100. For
each parameter combination M = 10000 samples were generated and the proportion
of rejections of the ERLH test was determined.

Results given in Table 2 show that the ELRH test holds the chosen size α also
for small samples. The power of the ELRH test increases with θ, for fixed θ the
highest power is obtained for equal component weights, whereas for p = 0.9 the
power can be rather low, in particular considerably lower than for p = 0.1. This
behaviour of the power is not specific to the ELRH test but has been noted for
different homogeneity tests in Mosler and Haferkamp (2007). It can be explained by
interpreting the mixture as a contaminated distribution: if p = 0.1 the density of the
second component with parameter θ is predominant. The mixture with component 1
leads to a modification of the Exponential (θ) in the tail region. If however p1 = 0.9,
the first component is predominant, and mixing has an impact on the density close
to the mode which is 0. Mosler and Haferkamp (2007) refer to the first case as
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’upper’ and to the second case as ’lower’ contamination. Lower contamination is
hard to detect as the mixture distribution is hardly different from the (homogeneous)
exponential distribution.

2.2 The ELR2 test

In this section we will discuss the efficient testing procedure of the number of com-
ponents m in the Exponential mixture for m = 2 firstly introduced by Stehĺık and
Ososkov (2003). Testing for the number of components involves inference for an
overfitting mixture model and in this case represents a nonregular problem (see
Frühwirth-Schnatter, 2006, Section 4.2).

Here we consider the LR homogeneity testing with more a complex alternative
H1, which is the approximation to a finite scale mixture. In physics, such testing
corresponds to the testing of the number m of secondary particles obtained after
the collision (under the condition that the reasonable conservation of energy had
been present during the collision). Then homogeneity corresponds to one particle
(m = 1), and m > 1 corresponds to m particles (cf Efimova et al., 1989; Stehĺık and
Ososkov, 2003). We consider the alternative of the form H1 : m = 2. The hypothesis

H0 : m = 1 versus H1 : m = 2 (4)

in the mixture model can be approximated (following Stehĺık and Ososkov (2003))
by the hypothesis of the subpopulation model

H0 : θ1 = ... = θn versus H1 : ∃M1,M2,M1 ∪M2 = {1, ..., N}, (5)

M1 ∩M2 = ∅,M1,M2 6= ∅,∀j ∈ M1 : θj = θ1,∀j ∈ M2 : θj = θ2, θ1 6= θ2

e.g. by the null hypothesis of the homogeneity with the modified alternative, which
is actually a subset of the alternative of the hypothesis of the homogeneity. We
construct the LR test of the hypothesis (5) which approximates the hypothesis (4).

2.2.1 The exact LR test

Let y1, ..., yN be independently distributed with exponential densities. The LR of
the test of the hypothesis (5) has the form

ΛN(y) =
maxθ1=...=θN

f(y, θ)

maxH1 f(y, θ)
,

where y = (y1, ..., yN), θ = (θ1, .., θN). To compute the denominator maxH1 f(y, θ) we
proceed as follows. Suppose that {yi1 , .., yiK}, 0 < K < N are the observations from
the exponential distribution with the scale parameter θ1 and the other observations
are distributed according to the exponential distribution with the scale parameter
θ2. Following Stehĺık and Ososkov (2003) we obtain the formula

ΛN(y) = min
0<K<N,p∈P (K)

{ NN

KK(N −K)N−K

(yi1 + ... + yiK )K(yiK+1
+ ... + yiN )N−K

(y1 + ... + yN)N
}, (6)
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Table 2: Simulated power for the ELRH-test

θ 1 2 3 4 5 6 7 8 9 10

α = 0.05
p = 0.1

N=20 0.0533 0.0681 0.1166 0.1628 0.2312 0.2882 0.3287 0.3796 0.4302 0.4679
N=50 0.0481 0.0703 0.1612 0.2878 0.4142 0.5036 0.6050 0.6509 0.7260 0.7556
N=100 0.0580 0.0989 0.2349 0.4226 0.5770 0.6954 0.8064 0.8641 0.9080 0.9299
N=1000 0.0565 0.2859 0.8403 0.9930 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p = 0.5
N=20 0.0620 0.0841 0.1914 0.2922 0.3823 0.4861 0.5845 0.6632 0.7430 0.7843
N=50 0.0471 0.1141 0.3188 0.5089 0.7146 0.8289 0.8974 0.9522 0.9752 0.9844
N=100 0.0517 0.1742 0.5130 0.7717 0.9338 0.9781 0.9982 0.9970 1.0000 1.0000
N=1000 0.0568 0.7281 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p = 0.9
N=20 0.0527 0.0625 0.0819 0.0875 0.1089 0.1215 0.1353 0.1598 0.1583 0.1805
N=50 0.0484 0.0621 0.0964 0.1201 0.1554 0.1847 0.2309 0.2584 0.2745 0.3085
N=100 0.0461 0.0902 0.1206 0.1734 0.2472 0.2856 0.3467 0.3887 0.4369 0.4611
N=1000 0.0545 0.1800 0.4803 0.7556 0.9082 0.9703 0.9907 0.9970 0.9991 0.9998

α = 0.01
p = 0.1

N=20 0.0098 0.0161 0.0324 0.0597 0.0893 0.1501 0.1869 0.2278 0.2615 0.3111
N=50 0.0079 0.0184 0.0468 0.1221 0.2235 0.3110 0.4164 0.5109 0.5645 0.6447
N=100 0.0120 0.0305 0.0877 0.2212 0.3811 0.5342 0.6431 0.7461 0.8074 0.8756
N=1000 0.0101 0.1070 0.6498 0.9718 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000

p = 0.5
N=20 0.0098 0.0244 0.0595 0.1218 0.1755 0.2492 0.3277 0.4023 0.4660 0.5278
N=50 0.0117 0.0348 0.1164 0.2785 0.4628 0.6320 0.7386 0.8438 0.8867 0.9341
N=100 0.0124 0.0672 0.2631 0.5558 0.7881 0.9114 0.9710 0.9911 0.9964 0.9994
N=1000 0.0127 0.4710 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p = 0.9
N=20 0.0105 0.0162 0.0211 0.0190 0.0401 0.0388 0.0423 0.0563 0.0508 0.0621
N=50 0.0092 0.0156 0.0236 0.0346 0.0403 0.0639 0.0663 0.0941 0.1018 0.1148
N=100 0.0096 0.0233 0.0388 0.0564 0.0842 0.1080 0.1383 0.1642 0.2066 0.2359
N=1000 0.0118 0.0553 0.2205 0.5011 0.7221 0.8726 0.9423 0.9734 0.9893 0.9958
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where P (K) denotes all partitions of {1, .., K} in two nonempty subsets. The main
advantages of the test statistic (6) is that under the H0 it does not depend on
the unknown value of the parameter θ. The distribution of the LR test statistics
− ln ΛN where ΛN is given by the formula (6) under the null hypothesis is derived in
Stehĺık and Ososkov (2003). The main advantage of this representation is that the
distribution of the LR statistics − ln ΛN can be obtained very easily by simulation
requiring only draws from a standard exponential distribution. For the alternative
of the two-component mixture form, i.e. for the testing problem

H0 : θ0 exp(−θ0x) versus HA : pθ0 exp(−θ0x) + (1− p)θ exp(−θx), θ > θ0, 0 < p ≤ 1, (7)

where θ0 is known and θ, p are unknown parameters we will get the similar asymp-
totical behavior as was derived by Hartigan (1985). He discovered the divergence
of the LR test statistics for testing homogeneity in normal mean mixture models
with an unbounded mean parameter. Liu et al. (2003) have proved in the setup (7)
that limN→∞ P (2ΛN − log log N + log(16π2) ≤ x) = exp(− exp(−x/2)). They also
try to determine whether it is feasible to approximate 2ΛN − log log N + log(16π2)
by the extreme value distribution for a large N. Unfortunately, as they reported in
Liu et al. (2003) this approximation is quite poor even for a sample size as large as
5000. Therefore we suggest to use ELR2 (subpopulation model) with critical values
simulated from the exact distribution. The following subsection provides some notes
on determination of ELR2 test statistics.

2.2.2 Determination of the Likelihood ratio statistic

The determination of the likelihood-ratio statistic of the ELR2 test

− ln ΛN(y) = −min0<K<N,p∈P (K){N ln N −K ln K − (N −K) ln(N −K) +

+K ln(
∑K

n=1 yin) + (N −K) ln(
∑N−K

n=1 yin)−N ln(
∑N

n=1 yn)}

is not so straight forward as for the homogeneity test of section 2, as the minimum
of

N ln N−K ln K−(N−K) ln(N−K)+K ln(
K∑

n=1

yin)+(N−K) ln(
N−K∑
n=1

yin)−N ln(
N∑

n=1

yn)

over all possible classifications into 2 non-empty groups has to be found. For deter-
mining this minimum

N ln N −N ln(
N∑

n=1

yn)

is irrelevant and therefore the minimum of

H(y, K) = {−K ln K − (N −K) ln(N −K) + K ln(
K∑

n=1

yin) + (N −K) ln(
N−K∑
n=1

yin)}

for 0 < K < N, p ∈ P (K) is of interest. For N observations there are 2N−1 − 1
different classifications into 2 nonempty groups. Hence direct minimization over all
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Figure 1: The function H(x|K)

classifications is feasible only for small N. However minimizing first H(y|K) for fixed
K = 1, . . . , N − 1 and then determining the minimum of these N − 1 values poses
no problem. Given the data y, their sum S =

∑N
n=1 yi is fixed. For fixed K we

therefore consider minimization of

H(x|K) = K ln x + (N −K) ln(S − x)

as a function of x. This function is continuous and strictly concave, as the second
derivative

∂2H(x|K)

∂x2
= −

(K

x2
+

N −K

(S − x)2

)

is negative for 0 < x < S. The maximum of H(x|K) is attained at x = KS/N and
the minimum lies on one of the boundaries, see Figure 1. For the likelihood ratio
statistic, x can only take certain discrete values, as x =

∑K
n=1 yin . Miminum and

maximum of x are the sum of the smallest and largest K order statistics respectively:

min(x) =
K∑

i=1

y(i) max(x) =
K∑

i=1

y(N−i+1)

Due to the symmetry

K ln(
K∑

i=1

y(N−i+1))+(N−K) ln(
N∑

i=K+1

y(N−i+1)) = K ′ ln(
K′∑
i=1

y(i))+(N−K ′) ln(
N∑

i=K′+1

y(l))

for K ′ = N −K the minimum value of H(x|K) is

Hmin = min
0<K<N

(−K ln K−(N−K) ln(N−K)+K ln(
K∑

i=1

y(i))+(N−K) ln(
N∑

i=K+1

y(i))

which can be determined very simply as only sums of order statistics are involved.
The ELR2 test statistic is given as

ln ΛN(y) = N ln N −N ln(
N∑

n=1

yn) + H.
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Critical values can be obtained similarly to the homogeneity test by generating
M samples of size N from the standard exponential distribution, computing the
test statistic for each sample and determining c1−α by the respective order statistic
c1−α = c(M(1−α)).

3 Comparative power study of homogeneity tests

3.1 Simulation Setup

A simulation study with a similar setup as in Mosler and Haferkamp (2007) was
performed to compare the power of the exact likelihood ratio tests ELRH and ELR2
to other different tests for the hypotheses

H0 : y1, . . . , yN ∼ Exponential (θ) (8)

against the alternative

H1 : y1, . . . , yN follow a mixture of two exponential components (9)

To be consistent with the simulation setup in Mosler and Haferkamp (2007) we
generate proportions N1, N −N1 in such a way that N1 has a binomial distribution
Binomial(N, p). We used three typical mixture proportions, p = 0.1, 0.5, 0.9 and
two sample sizes N = 100 and N = 1000. The parameter of the first mixture
component is θ1 = 1 and for θ2 a range of values greater than θ1 was chosen. These
settings correspond to upper contamination (p = 0.1), fifty-fifty mixtures and lower
contamination (p = 0.9). For each parameter setting M = 10000 samples of N
observations from the mixture distribution with density

f(y) = p exp(−y) + (1− p)θ exp(−θy)

were generated. We compared the proportion of rejections of the null hypothesis for
the following tests: the modified likelihood ratio test of Chen et al. (2001) (MLRT);
the D-test introduced by Charnigo and Sun (2004) (DTEST) and 2 weighted variants
of the D-test (W1D and W2D); the Anderson Darling test (AD), the Dispersion
Score test (DST), the combination of AD and DS-test introduced by Mosler and
Haferkamp (2007) (ADDS) and the exact likelihood ratio tests against the general
alternative (ELRH) and for testing against the 2 component subpopulation model
(ELR2).

We also made comparisons to penalized D-test (PenD), but PenD does not hold
the size for N < 1000 and then it starts to hold it only approximately. Therefore we
decided to delete it from our comparisons. Furthermore, as was personally communi-
cated to us by Richard Charnigo, the PenD test is rather anticonservative, especially
when looking at data from other (i.e., non-exponential) distributions. However this
phenomenon dissipates with larger sample sizes. For small N the same problem oc-
curs for the D-test, because of estimating the nuisance scale parameter. Here we can
take an advantage of scale invariance of pivotal statistics based ELRH and ELR2
tests.

Critical values for the AD and DS were determined by simulation from M =
50000 samples as in Mosler and Haferkamp (2007). The ADDS-test uses critical
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Figure 2: Proportion of rejections of the null hypothesis for different homogeneity
tests for N = 10, α = 0.05 and p = 0.1 (left), p = 0.5 (middle) and p = 0.9 (right)
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Figure 3: Proportion of rejections of the null hypothesis for different homogeneity
tests for N = 100, α = 0.01 and p = 0.1 (left), p = 0.5 (middle) and p = 0.9 (right)

values for the AD and the DS-test. The interpretation of the behavior of simulated
power can be based on exact slopes of the sequence of tests.

3.2 Results

Results of this simulation study for N = 10, N = 100 and N = 1000 are shown in
Figures 2–4. Tables 3 and 4 report the simulated powers of the different homogeneity
tests (α = 0.01) of exponential mixtures together ordered by decreasing powers for
N = 100 and N = 1000, respectively.

For upper contaminations the DST outperforms the other tests for all three
sample sizes, followed by W2D- and ADDS-test for N = 10 and ADDS and MRLT
for N = 100 and N = 1000. The ERL-tests are among those with lowest power,
with ERLH performing better than ELR2. Only the D-test has smaller power than
ELRH for N = 10 and N = 1000.

In fifty-fifty mixtures MLRT performs well for all sample sizes. The weighted
variants of the D-tests (W1D and W2D) have relatively high power for large samples
(N = 100 and N = 1000), but only for smaller values of θ for N = 10. In small
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Figure 4: Proportion of rejections of the null hypothesis for different homogeneity
tests for N = 1000,α = 0.01 and p = 0.1 (left), p = 0.5 (middle) and p = 0.9 (right)

samples of mixtures with θ > 20 the ERL2-test is one attaining the highest power,
but in larger samples the ERL tests again are among those with lowest power.

All tests have problems to detect heterogeneity in the lower contamination case,
in particular for small sample size. In this situation however ERL tests clearly
outperform their competitors for larger θ. For N = 100 and small θ the D-Test and
for N = 1000 its weighted variants attain highest power among the compared tests.
The dispersion score test is the test with lowest power in a wide range of settings
with dramatically lower power than the best test for larger θ.

Particularly we can observe this as a consequence of subexponential model used
by the ELR tests and a mixture model by MLRT. All other tests use some kind of
’distance’ between the densities which is small for lower contamination.

3.3 Theoretical explanation of the test behavior

Let us have an m-subpopulation model, i.e, the set of overall parameters Θ consists
of the m-tuples θ = (θ1, ..., θm), where θj is the parameter of the j-th population.
Let us suppose that in the k-th experiment the size of sample from the j-th popu-
lation is n

(j)
k , j = 1, ..., m and k = 1, 2, .... Let the product measure P∞

θj
corresponds

to the (infinite) sampling from the distribution Pθj
(in our case Pθj

has density
θj exp(−θjyj), yj > 0 with respect to Lebesgue measure). The product measure
Pθ = P∞

θ1
× ...×P∞

θm
, can be used for description of limiting distribution of indepen-

dent sampling from these m populations. Thus nk =
∑m

j=1 n
(j)
k is the total sample

size in the k-th experiment. Here we employ the assumption of a finite subpopula-
tion plan given by Rubĺık (1989b) which together with other regularity conditions
guarantees the asymptotical optimality in the Bahadur sense (AOBS) of ELRH test
(see Appendix):

i) if k 6= l then n
(j)
k 6= n

(j)
l for some j

ii) limk→∞ nk = +∞
iii) limk→∞

n
(j)
k

nk
= pj ∈ (0, 1], j = 1, ..., m

For θ = (θ1, ..., θm), θ? = (θ?
1, ..., θ

?
m) ∈ Θ let K(θ, θ?) =

∑m
j=1 pjK(θj, θ

?
j ) where
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Table 3: Simulated power for different tests of homogeneity in exponential mixtures
n = 100

Rank Test Power Test Power Test Power Test Power Test Power
p = 0.1

θ = 1 θ = 2 θ = 3 θ = 5 θ = 10
1 dtest ( 0.016 ) dst ( 0.072 ) dst ( 0.293 ) dst ( 0.746 ) dst ( 0.978 )
2 adds ( 0.012 ) adds ( 0.058 ) adds ( 0.260 ) adds ( 0.711 ) adds ( 0.973 )
3 mlrt ( 0.011 ) mlrt ( 0.049 ) mlrt ( 0.220 ) mlrt ( 0.679 ) mlrt ( 0.965 )
4 adt ( 0.010 ) w2d ( 0.041 ) w2d ( 0.183 ) w2d ( 0.625 ) w2d ( 0.953 )
5 elr2 ( 0.010 ) w1d ( 0.028 ) w1d ( 0.108 ) w1d ( 0.494 ) w1d ( 0.919 )
6 dst ( 0.010 ) elrh ( 0.024 ) adt ( 0.093 ) adt ( 0.461 ) adt ( 0.915 )
7 elrh ( 0.010 ) dtest ( 0.021 ) elrh ( 0.087 ) elrh ( 0.367 ) elrh ( 0.860 )
8 w2d ( 0.009 ) elr2 ( 0.020 ) elr2 ( 0.070 ) elr2 ( 0.301 ) dtest ( 0.826 )
9 w1d ( 0.009 ) adt ( 0.020 ) dtest ( 0.048 ) dtest ( 0.278 ) elr2 ( 0.808 )

p = 0.5
θ = 1 θ = 2 θ = 3 θ = 5 θ = 7

2 dtest ( 0.013 ) mlrt ( 0.098 ) mlrt ( 0.431 ) mlrt ( 0.922 ) mlrt ( 0.993 )
3 adds ( 0.011 ) dst ( 0.093 ) w2d ( 0.417 ) w1d ( 0.908 ) w1d ( 0.991 )
4 elrh ( 0.010 ) w2d ( 0.093 ) w1d ( 0.371 ) w2d ( 0.907 ) adt ( 0.990 )
5 adt ( 0.010 ) adds ( 0.084 ) adds ( 0.341 ) adt ( 0.869 ) adds ( 0.987 )
6 mlrt ( 0.010 ) w1d ( 0.074 ) dst ( 0.328 ) adds ( 0.869 ) w2d ( 0.987 )
7 dst ( 0.009 ) dtest ( 0.059 ) adt ( 0.290 ) dtest ( 0.851 ) dtest ( 0.987 )
8 elr2 ( 0.009 ) adt ( 0.051 ) dtest ( 0.276 ) elr2 ( 0.833 ) elr2 ( 0.986 )
9 w1d ( 0.008 ) elrh ( 0.051 ) elr2 ( 0.253 ) elrh ( 0.785 ) elrh ( 0.973 )

10 w2d ( 0.008 ) elr2 ( 0.050 ) elrh ( 0.248 ) dst ( 0.755 ) dst ( 0.907 )
p = 0.9

θ = 1 θ = 2 θ = 5 θ = 10 θ = 30
1 dtest ( 0.014 ) dtest ( 0.024 ) dtest ( 0.120 ) dtest ( 0.272 ) elrh ( 0.613 )
2 adt ( 0.010 ) mlrt ( 0.021 ) elr2 ( 0.095 ) elr2 ( 0.244 ) elr2 ( 0.514 )
3 adds ( 0.010 ) w2d ( 0.019 ) mlrt ( 0.092 ) elrh ( 0.230 ) adt ( 0.474 )
4 elr2 ( 0.010 ) elrh ( 0.018 ) w1d ( 0.088 ) mlrt ( 0.193 ) dtest ( 0.466 )
5 mlrt ( 0.010 ) dst ( 0.018 ) elrh ( 0.082 ) adt ( 0.183 ) adds ( 0.423 )
6 dst ( 0.010 ) adds ( 0.018 ) adt ( 0.070 ) w1d ( 0.177 ) mlrt ( 0.411 )
7 elrh ( 0.010 ) elr2 ( 0.017 ) w2d ( 0.068 ) adds ( 0.162 ) w1d ( 0.293 )
8 w1d ( 0.008 ) w1d ( 0.017 ) adds ( 0.065 ) w2d ( 0.104 ) w2d ( 0.105 )
9 w2d ( 0.007 ) adt ( 0.013 ) dst ( 0.041 ) dst ( 0.057 ) dst ( 0.072 )
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Table 4: Simulated power for different tests of homogeneity in exponential mixtures
n = 1000

Test Power Test Power Test Power Test Power Test Power
p = 0.1

θ = 1 θ = 1.5 θ = 2 θ = 2.5 θ = 3
1 w1d ( 0.013 ) dst ( 0.056 ) dst ( 0.400 ) dst ( 0.861 ) dst ( 0.985 )
2 w2d ( 0.013 ) mlrt ( 0.041 ) mlrt ( 0.319 ) mlrt ( 0.802 ) mlrt ( 0.974 )
3 dtest ( 0.013 ) w2d ( 0.041 ) adds ( 0.311 ) adds ( 0.802 ) adds ( 0.974 )
4 dst ( 0.011 ) w1d ( 0.037 ) w2d ( 0.287 ) w2d ( 0.761 ) w2d ( 0.962 )
5 adt ( 0.011 ) adds ( 0.035 ) w1d ( 0.256 ) w1d ( 0.718 ) w1d ( 0.947 )
6 elr2 ( 0.010 ) dtest ( 0.030 ) dtest ( 0.215 ) dtest ( 0.656 ) dtest ( 0.923 )
7 mlrt ( 0.010 ) elrh ( 0.022 ) adt ( 0.094 ) adt ( 0.421 ) adt ( 0.796 )
8 elrh ( 0.010 ) elr2 ( 0.022 ) elrh ( 0.093 ) elrh ( 0.331 ) elrh ( 0.647 )
9 adds ( 0.009 ) adt ( 0.019 ) elr2 ( 0.075 ) elr2 ( 0.246 ) elr2 ( 0.517 )

p = 0.5
θ = 1 θ = 1.2 θ = 1.5 θ = 2 θ = 2.5

1 adt ( 0.013 ) dst ( 0.022 ) dst ( 0.141 ) w2d ( 0.781 ) w2d ( 0.996 )
2 w1d ( 0.012 ) w1d ( 0.022 ) w2d ( 0.140 ) w1d ( 0.774 ) w1d ( 0.995 )
3 w2d ( 0.012 ) w2d ( 0.022 ) w1d ( 0.136 ) mlrt ( 0.767 ) mlrt ( 0.995 )
4 dtest ( 0.011 ) dtest ( 0.020 ) mlrt ( 0.131 ) dtest ( 0.756 ) dtest ( 0.995 )
5 elr2 ( 0.009 ) mlrt ( 0.019 ) dtest ( 0.123 ) dst ( 0.740 ) dst ( 0.988 )
6 dst ( 0.009 ) elrh ( 0.015 ) adds ( 0.095 ) adds ( 0.676 ) adds ( 0.986 )
7 elrh ( 0.009 ) elr2 ( 0.014 ) elrh ( 0.068 ) adt ( 0.563 ) adt ( 0.978 )
8 mlrt ( 0.009 ) adds ( 0.013 ) elr2 ( 0.061 ) elrh ( 0.464 ) elrh ( 0.926 )
9 adds ( 0.008 ) adt ( 0.013 ) adt ( 0.059 ) elr2 ( 0.441 ) elr2 ( 0.923 )

p = 0.9
θ = 1 θ = 2 θ = 3 θ = 5 θ = 10

1 w1d ( 0.013 ) w1d ( 0.080 ) w1d ( 0.274 ) elr2 ( 0.776 ) elrh ( 0.996 )
2 w2d ( 0.012 ) w2d ( 0.079 ) w2d ( 0.268 ) elrh ( 0.724 ) elr2 ( 0.995 )
3 dtest ( 0.012 ) dtest ( 0.075 ) dtest ( 0.266 ) adt ( 0.715 ) adt ( 0.993 )
4 adt ( 0.011 ) mlrt ( 0.063 ) elr2 ( 0.255 ) adds ( 0.637 ) adds ( 0.985 )
5 elrh ( 0.010 ) dst ( 0.057 ) elrh ( 0.231 ) w1d ( 0.599 ) w1d ( 0.862 )
6 elr2 ( 0.010 ) elrh ( 0.055 ) mlrt ( 0.225 ) dtest ( 0.595 ) dtest ( 0.861 )
7 mlrt ( 0.009 ) elr2 ( 0.053 ) adt ( 0.222 ) w2d ( 0.591 ) w2d ( 0.857 )
8 dst ( 0.008 ) adds ( 0.046 ) adds ( 0.186 ) mlrt ( 0.543 ) mlrt ( 0.842 )
9 adds ( 0.007 ) adt ( 0.042 ) dst ( 0.154 ) dst ( 0.347 ) dst ( 0.570 )
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the Kullback-Leibler information is defined by the formula

K(θj, θ
?
j ) :=





∫
ln

dPθj

dPθ?
j

dPθj
, if Pθj

<< Pθ?
j
,

+∞, otherwise.

Let Θ0 ⊂ Θ1 ⊂ Θ. Then according to the Bahadur-Raghavachari inequality for
the exact slope the inequality (see Appendix) cT (θ) ≤ 2K(θ, Θ0) holds. Here
K(θ, Θ0) := inf{K(θ, θ?) : θ? ∈ Θ0}. If cT (θ) = 2K(θ, Θ0) for all θ ∈ Θ1 \ θ0,
then the statistic is called AOBS.

In our simulation setup, i.e. testing the null hypothesis (8) against the alter-
native (9), we have the point of alternative θA = (1, θ) and θ? = (θ, θ) ∈ Θ0 with
proportions p and 1− p, respectively. Thus K(θ, θ?) = pK(1, θ) + (1− p)K(θ, θ) =
p(− ln θ + θ − 1), θ > 1. Notice that the function K(θ, θ?) = p(− ln θ + θ − 1) is
increasing for θ > 1 and thus also the exact slope cT is increasing with θ, since
ELRH is AOBS (see Stehĺık, 2003; Rubĺık, 1989a,b). Notice also, that the exact
slope is increasing with p. It can be worth a further consideration whether this is
the reason why in the lower contamination ELRH and ELR2 outperforms the other
tests, at least for a large θ (see also Figure 5) and the Figure 2.

We can summarize our conclusions:
1) The power is increasing with θ.
2) The power of ELRH and ELR2 tests is relatively better for lower contami-

nation than for upper contamination

3.4 Comparison of ELRH and ELR2 to the other tests through
slopes

To obtain the slopes of other tests, we can use the Theorem of Bahadur (see
Bahadur, 1967) and Groeneboom and Oosterhoff (see Groeneboom and Ooster-

hoff, 1977) which says that if limn→∞ 1
n

log Ln
Pθ→ −1

2
cT (θ) ∀ θ ∈ Θ1 then

NT (α, β, θ) ∼ 2 log 1
α

cT (θ)
for α ↓ 0+. We can compute NT (α, β, θ) through simulation

and then compare the simulated slopes of other tests to exact slopes of ELRH. Here
NT (α, β, θ) denotes the sample size necessary for the sequence {TN} in order to
attain power β at the level α for a point θ ∈ Θ \Θ0 of the alternative space.

To get an idea of the slopes of the different tests we tried to approximate
NT (α, β, θ). We simulated the power of each tests at level α = 0.01 for differ-
ent sample sizes N = 10, 11, .., 20, 25, ..., 100, 200, .., 500, 1000 and different values of
θ. As an approximation to NT (α = 0.01, β = 0.5, θ) we used the minimum sample
size N∗(θ) where the simulated power β̂ was greater than 0.5. Figure 5 shows the
values c(θ) = −2 ln α/N∗(θ) as a function of θ.

Note that despite the multimodal alternatives, for which a good description of
test behavior can be obtained through the full variation metrics between distribution
measures (see Hazan et al., 2003), in our setup the alternatives (scale exponential
mixtures) are unimodal. Here we have found the Kullback-Leibler distance to be
more adequate, since the ELRH test is under reasonable regularity conditions (i,ii,
and iii) AOBS. Also note, that the performed simulations are not superfluous to
the theoretical findings, since the justification of behavior 1) and 2) is based on
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Figure 6: Proportion of rejection of the null hypothesis for different homogeneity
tests for N = 10 and θ1 = 0.1; θ2 = 1 (left),θ1 = 1; θ2 = 10 (middle) and θ1 =
10; θ2 = 100 (right)

the asymptotical considerations (the nice behavior of ELRH and ELR2 tests work
remarkably well also for small samples, e.g. N = 10 and N = 100 as it can be seen
from the Figures).

3.5 Comparison of the tests for two subpopulations

To gain further insight into the behaviour of the different tests we conducted a
simulation study for the subpopulation model. Samples of size N = 10 and N = 100
were generated from two subpopulations of size N1 and N −N1 respectively, where
all integers from 0 to N were considered for N1. We used 3 different combinations for
the parameters in the two subpopulations for each sample size, namely θ1 = 0.1, 1, 10
and θ2 = c θ1. We chose c = 10 for N = 10 and c = 3 for N = 100. For each value
of N1, M = 10000 samples were generated and the number of rejections of the null
hypothesis was counted. Figures 6 and 7 show the proportion of rejections, i.e. the
simulated power of all tests as a function of the size of the first subpopulation N1.

Note that for N1 = 0 and N1 = N the sample is drawn from a homogeneous
population and hence the proportion of rejections of the null hypothesis should
approximately equal the size of the test α = 0.05, which is indicated in the Figure
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Figure 7: Proportion of rejection of the null hypothesis for different homogeneity
tests for N = 100 and θ1 = 0.1; θ2 = 0.3 (left), θ1 = 1; θ2 = 3 (middle) and
θ1 = 10; θ2 = 30 (right)

by the black line.

4 Illustrative Example

We have processed the inter arrival times for CAT bonds discussed thoroughly in
Č́ıžek et al. (2005). Under homogeneity the inter arrival times are iid exponential.
The null hypothesis of a homogeneous exponential distribution is rejected by the
ADT- and ADDS-test at significance levels α = 0.01 and α = 0.05 but not by
all other tests (MLRT, D-test, W1D, W2D, DST, ELRH, ELR2). Thus, we can
conclude in coherence with Č́ıžek et al. (2005) that the arrival process is not a
homogeneous Poisson process. It could be a renewal process or a non homogeneous
Poisson process as in the CAT chapter in Č́ıžek et al. (2005).

5 Conclusions

In the present paper we construct the efficient testing procedure of the hypotheses
of homogeneity in the exponential mixture. We illustrate and explain that the ELR-
tests are best for lower contamination but not for upper contamination. We also
discuss the properties of such tests and describe a procedure for the computation of
the critical values. We compare the performance of the exact likelihood ratio tests
in the 2 component mixture alternative. In this case the ELRH can be used like
the omnibus test for homogeneity, and can be, as shown in this paper, in some set-
tings superior to other tests proposed for homogeneity in a mixture model, among
them modified likelihood ratio tests, dispersion score (DS) tests (C(α)-tests). While
these approaches work well, e.g., in normal mixtures, the diagnosis of exponential
mixtures poses additional problems: the modified likelihood ratio and the disper-
sion score tests have no power on a large class of alternatives (see Mosler and Seidel,
2001). Another widely used approach is to use a LRT statistic 2 ln θ = 2(l(θ̂1)−l(θ̂0))
where θ̂0 and θ̂1 are the ML estimates of the parameters under the null and the al-
ternative hypothesis respectively and θ denotes likelihood ratio. For this plug-in
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LRT parameter estimation is usually accomplished by the EM algorithm, however
the calculation of the test statistic and the Monte-Carlo simulation of its null distri-
bution depend heavily on the particular implementation of the EM algorithm (see
Seidel et al., 2000). However, this is not the case of ELRT.

The main reasons, why to use the ELRH and ELRk tests are following
a) these tests are not dependent on the unknown common scale parameter under

homogeneity (like other usual tests or EM based procedures)
b) the quantiles can be easily simulated
c) these tests can be used for any sample sizes
d) the difference between the number of components, respectively, under H0

and H1 can be arbitrary, what is not the case of LR tests, where one looks for an
asymptotical distributions

Probably the main advantages of the ELRT are simplicity of computation of test
statistic and critical values for ELRH and ELR2 (e.g. no EM algorithm and simple
test statistics).
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Appendix

Asymptotical optimality in the Bahadur sense

In this section we briefly discuss the asymptotical optimality in the Bahadur sense.
Consider a testing problem H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 \ Θ0, where Θ0 ⊂ Θ1 ⊂ Θ.
Further consider sequence T = {TN} of test statistics based on y1, ..., yN which are
iid according to an unknown member of a family {Pθ : θ ∈ Θ}. We assume that
large values of test statistics give evidence against H0, which is the case of our test
statistics of homogeneity − ln ΛN . For θ and t denote FN(t, θ) := Pθ{TN < t} and
GN(t) := inf{FN(t, θ) : θ ∈ Θ0}. The random quantity LN = 1 − GN(TN) is called
the attained level or the p-value. Suppose that for every θ ∈ Θ1 the equality

lim
N→∞

−2 ln LN

N
= cT (θ)

holds a.e. Pθ. Then the nonrandom function cT defined on Θ1 is called the Bahadur
exact slope of the sequence T = {TN}. According to the theorem of Raghavachari
and Bahadur (see Raghavachari, 1970) the inequality

cT (θ) ≤ 2K(θ, Θ0) (10)
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holds for each θ ∈ Θ1. Here K(θ, Θ0) := inf{K(θ, θ0) : θ0 ∈ Θ0} and K(θ, θ0)
denotes the Kullback-Leibler information number. If (10) holds with the equality
sign for all θ ∈ Θ1, then the sequence T is said to be asymptotically optimal in the
Bahadur sense. The maximization of cT (θ) is a nice statistical property. The class
of such statistics is apparently narrow, though it contains under certain conditions
the LR statistics (see Bahadur, 1965, 1967; Rubĺık, 1989a,b). Rubĺık proved AO of
the LR statistic under regularity condition which is shown to be fullfiled by regular
normal, exponential and Laplace distribution under additional assumption that Θ0

is a closed set and Θ1 is either closed or open in metric space Θ. For more extensive
discussion on asymptotical optimality see also the monograph Nikitin (1995).
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Stehĺık, M. (2003). Distributions of exact tests in the exponential family. Metrika 57,
145–164.
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