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Abstract

Dynamic survival models are a useful extension of the popular Cox model as
the effects of explanatory variables are allowed to change over time. In this
paper a new auxiliary mixture sampler for Bayesian estimation of the model
parameters is introduced. This sampler forms the basis of a model space
MCMC method for stochastic model specification search in dynamic survival
models, which involves selection of covariates to include in the model as well
as specification of effects as time-varying or constant. The method is applied
to two well-known data sets from the literature.

Some key words: piecewise exponential model, time-varying effects, non-
centered parameterization, variable selection, model choice, Cox model

1 Introduction

For survival data the predominately used model to assess the effect of explanatory
variables is the Cox model, where the hazard function is modelled as

λ(t | z) = λ(t) · exp(z′β).

Here z is a vector of covariates and β is the vector of unknown parameters. The
Cox model relies on the assumption that the hazard ratio for two individuals with
covariate values z and z∗ respectively is constant over time and only depends on the
difference between their linear predictors

λ(t | z)
λ(t | z∗) = exp

(
(z− z∗)′β

)
.

This is an assumption which is not necessarily true in applications where the
effect of covariates may vary over time, e.g. a certain treatment may have a positive
short-term effect which vanishes in the long run. Thus models where the covariate
effects are allowed to change over time are often more appropriate. A common
approach to model time-varying effects is by piecewise constant functions, as these
are flexible enough to capture any shape of the covariate effects, see Verweij and
van Houwelingen (1995) for a frequentist and Gamerman (1991), Arjas and Gasbarra
(1994) and Sinha et al. (1999) for a Bayesian approach.

In the dynamic survival model, introduced by Gamerman (1991) the baseline log-
hazard as well as the effects of covariates are modeled by piecewise constant functions
and a specification of the stochastic evolution over time. Whereas Gamerman (1991)
used a random walk with process disturbances specified only up to their second
moments, recently Hemming and Shaw (2002, 2005) considered the normal dynamic
survival model with Gaussian process disturbances. Closely related to this model
specification is the model of Hennerfeind et al. (2006) who use penalized splines for
baseline log-hazard and covariate effects with a correlated normal prior process for
the spline coefficients.

Estimation of the dynamic survival model was accomplished in Gamerman (1991)
using linear Bayes approximation. In a fully Bayesian approach posteriors for all
parameters of normal dynamic survival models can be obtained by MCMC methods
which however require a Metropolis-Hastings-Algorithm, see Hemming and Shaw
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(2005). In this paper a new approach for estimation of the normal dynamic survival
model relying on data augmentation is proposed. This new auxiliary mixture sam-
pler involves only draws from standard densities and needs no further tuning. By
introducing two sequences of latent variables a representation of the normal dynamic
survival model as a Gaussian state space model is obtained, where the multidimen-
sional latent state vector consisting of baseline log-hazard and time-varying covariate
effects can be sampled in one move. Auxiliary mixture sampling was introduced for
Bayesian analysis of stochastic volatility models by Shephard (1994) and was ap-
plied in this context to different models by a couple of authors (Kim et al., 1998;
Chib et al., 2002; Omori et al., 2007). Frühwirth-Schnatter and Wagner (2006b,a)
introduced auxiliary mixture sampling for Bayesian analysis of parameter-driven
models for count data based on the poisson distribution and Frühwirth-Schnatter
and Frühwirth (2007) apply auxiliary mixture sampling to binary and multinomial
logit models.

Dynamic survival models are very flexible but model specification is a complex
task as one has to decide not only which covariates to include in the final model
but also whether the effect of a certain covariate is constant or varies over time.
A classical model choice and variable selection strategy for similar models based
on the conditional AIC was only recently implemented in Hofner et al. (2008). In
a Bayesian setting model selection can be accomplished by model space MCMC
methods, e.g. the reversible jump algorithm (Green, 1995) or the stochastic variable
selection approach (George and McCulloch, 1993, 1997). Konrath et al. (2008)
consider Bayesian regularisation together with a hard shrinkage rule for variable
selection.

The stochastic variable selection approach, usually applied for model selection in
regression models, was recently extended to model selection in state space models by
Frühwirth-Schnatter and Wagner (2008). Based on the data augmentation scheme
introduced in this paper its implementation is feasible also for the normal dynamic
survival model. Thus it is possible to start with a general model specification where
all covariates are included with their effects specified as time-varying. By exploring
the model space during MCMC covariate effects are identified as constant rather
than time-varying or even as zero leading to a parsimonious model specification.

The rest of the paper is organized as follows: Section 2 describes the model
specification. Data augmentation by auxiliary variables and the resulting sampling
scheme are discussed in Section 3. In Section 4 the noncentered parameterization
of the model is introduced and variable selection is incorporated. The methods are
applied on two data sets from the literature in Section 5. Finally Section 6 concludes
by summarizing the results and discussing possible extensions.

2 The Normal Dynamic Survival Model

2.1 Model specification

As survival data usually are subject to right-censoring, we assume that each in-
dividual i, i = 1, . . . , n, has a survival time ti and a censoring time ci which
are independent random variables. Observed data consist of the observation time
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yi = min(ti, ci), a failure indicator di, taking the value 1 for complete and 0 for
censored observations, and a vector of K covariates (zi1, . . . , ziK). Extending Cox’s
proportional hazards model, not only the baseline hazard but also covariate effects
are assumed to be functions of time, i.e.

λ(t|zi) = exp
(
β0(t) +

K∑

k=1

zikβk(t)
)

The dynamic survival model, as proposed by Gamerman (1991), is a piecewise
exponential model for lifetimes, with correlated prior processes for the baseline log-
hazard and the covariate effects. It is based on a given partition of the time axis
S = {s0, s1, . . . , sJ}, 0 ≤ s0 < s1 < · · · < sJ . These division points form J intervals
(s0, s1], . . . , (sJ−1, sJ ]. The baseline log-hazard β0(t) as well as the covariate effects
βk(t) are defined for k = 0, . . . , K via the piecewise constant functions

βk(t) = βkj, for t ∈ Ij = (sj−1, sj].

To model stochastic evolution each βk(t) is assumed to follow a random walk.
Whereas Gamerman (1991) specified process disturbances only up to their second
moments, recently Hemming and Shaw (2002) considered the normal dynamic sur-
vival model with Gaussian random walks,

βkj = βk,j−1 + ωkj ωkj ∼ N (0, θk) . (1)

The random walk priors are smoothness priors which penalize abrupt jumps of
baseline log-hazard and covariate effects in subsequent intervals. Baseline log-hazard
and time-varying effects can also be interpreted as a linear combination of J B-spline
basis functions of degree zero with knots {s0, s1, . . . , sJ},

βk(t) =
J∑

j=1

βkjI(sj−1,sj ](t)

and thus the normal dynamic survival model is a special case of the model considered
in Hennerfeind et al. (2006).

The division points {s0, s1, . . . , sJ} should be chosen fine enough to capture the
shape of baseline hazard and time-varying effects. Usually sJ is taken to be the
last observed failure or censoring time. Hemming and Shaw (2002) use equally
spaced time points and Gamerman (1991) and Hemming and Shaw (2005) use a
data-dependent division where the division points are the observed failure times.

In this paper I consider estimation and model selection for the normal dynamic
survival model where the piecewise constant hazard of subject i is defined by

λ(t|zi; t ∈ Ij) = λij = exp(z′iβj) (2)

βj = βj−1 + ωj ωj ∼ N (0,Q(θ)) . (3)

Here zi = (1, zi1, . . . , ziK) is the vector of covariates and βj = (β0j, . . . , βKj)
′ denotes

the effects in interval Ij, j = 1, . . . , J , β0j being the baseline log-hazard in Ij. The
components of the state vector β are assumed to evolve independently, hence Q(θ) =
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diag(θ0, . . . , θK). In this model an evolution variance θ0 = 0 implies a constant
baseline hazard, and θk = 0 a constant effect of covariate zk. If all evolution variances
θk, k = 0, . . . , K are zero, the model reduces to the exponential regression model

λ(t|zi) = exp(z′iβ),

with fixed covariate effects β = (β0, . . . , βK).

2.2 Likelihood

The likelihood of the normal dynamic survival model defined in equations (2) - (3)
is the product of individual likelihood contributions L(yi, di|zi) = S(yi|zi)λ(yi|zi)

di

where S(y|.) and λ(y|.) denote the survival and the hazard function. The survival
function of an observation yi ∈ Il can be expressed through conditional survival
functions, see Hemming and Shaw (2005), as

S(yi|zi) =
[ l−1∏

j=1

S(sj|T > sj−1, zi)
]
S(yi|T > sl−1, zi)

Hence

L
(
yi, di|λi1, . . . , λij

)
=

[ l−1∏
j=1

exp
(−λij(sj−sj−1)

)]
exp

(−λil(yi−sl−1)
)
(λil)

di . (4)

3 Auxiliary mixture sampling

Estimation of the unknown parameters of normal dynamic survival model, i.e. the
state vector β and the process variances θ, is feasible by MCMC methods. Hemming
and Shaw (2002) use Gibbs sampling with a single move random walk Metropolis-
Hastings-step to sample the state vector from the conditional posterior p(β|y,d,θ).
In this paper a simple Gibbs scheme based on data augmentation and avoiding
Metropolis-Hastings steps is proposed. Building on the ideas of Frühwirth-Schnatter
and Wagner (2006a) and Frühwirth-Schnatter and Frühwirth (2007) two sequences of
latent variables are introduced which lead to a representation of the normal dynamic
survival model as a conditional Gaussian state space model where direct sampling
of β in one move is possible.

3.1 Splitting the observation time into episodes

The factorization of the likelihood into independent contributions from the time
intervals Ij suggests to split an observation time yi ∈ Il into episodes uij, j = 1, . . . , l
experienced under the regime of the constant hazard λij. The total observation time

yi is the sum of these episodes, yi =
∑l

j=1 uil. Consider e.g. an observation time
yi ∈ I2 which is the sum of the time ui1 = s1 − s0 spent under hazard rate λi1 and
the time ui2 = yi − s1 spent under hazard rate λi2, see Figure 1 for illustration.
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Figure 1: Hazard in the piecewise exponential model

Each episode uij except the last is just the length of the interval Ij, uij =
sj − sj−1, j = 1, . . . , l − 1. The likelihood contributions of these episodes are of the
form

exp
(− λijuij

)
, j = 1, . . . , l − 1

and are equal to the likelihood contribution of a right-censored Ex (λij) observation.
The last episode subject i experiences is uil = yi−sl−1 with a likelihood contribution
given as

exp
(− λiluil

)
(λil)

di . (5)

Dependent on the censoring indicator di, (5) corresponds to the likelihood either of
a complete (for di = 1) or a right-censored Ex (λil) observation.

3.2 Data Augmentation

In the first data augmentation step all episodes not ending by the occurrence of
the interesting event are interpreted as right-censored. For each censored episode
uij an unobserved complete survival time τij is introduced. The residual lifetime
ξij = τij − uij, conditional on {τij > uij}, follows the Ex (λij)-distribution, due to
the no-memory property of the exponential distribution. Therefore the complete
auxiliary survival times τij are given as

τij = uij + ξij, ξij ∼ Ex (λij) for j = 1, . . . , l − 1 (6)

and

τil =

{
uil if di = 1,

uil + ξil, ξil ∼ Ex (λil) if di = 0.
(7)

Using the auxiliary survival times τij the normal dynamic survival model defined
in equations (2) and (3) can be represented as a dynamic generalized linear model
(West et al., 1985) with exponentially distributed observations

τij|βj ∼ Ex
(
exp

(
z′iβj

))
, (8)

βj = Fβj−1 + ωj, ωj ∼ N (0,Q(θ)) , (9)

with F = I.
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Taking logarithms the observation equation of this model is transformed into the
linear model

− ln τij = ziβj + εij

where the error εij has a type I extreme value distribution. As shown in Frühwirth-
Schnatter and Frühwirth (2007) the density of the type I extreme value distribution
can be approximated very accurately by a mixture of ten normal components

pε(ε) = exp(−ε− e−ε) ≈
10∑

r=1

wrfN(ε; mr, vr). (10)

In this approximation the weights wr, means mr and the variances vr are fixed,
therefore only the component indicators rij ∈ {1, . . . , 10} have to be introduced as
a second sequence of latent variables to obtain the Gaussian state space model

− ln τij = z′iβj + mrij
+ εrij

, εrij
∼ N

(
0, vrij

)
.

Let nj denote the number of individuals at risk at the beginning of interval Ij, and
assume that the observation times are arranged decreasingly, so that y1 is the largest
and yn is the smallest observed time. Defining a multivariate observation vector xj

of dimension nj as

xj =




− ln τ1j −mr1j

...
− ln τnj ,j −mrnj,j


 ,

and εj = (εr1j
, . . . , εrnj,j

) the model can be written in the following linear Gaussian
state space form:

xj = Zjβj + εj, εj ∼ N (0,Vj) , (11)

βj = βj−1 + ωj, ωj ∼ N (0,Q(θ)) , (12)

where Vj = diag(vr1j
, . . . , vrnj,j

) and Zj is an nj × (K + 1) matrix containing the
design vectors z1, . . . , znj

for all individuals at risk at time sj−1 as its rows

Zj =




z′1
...

z′nj


 .

Thus, instead of the original dynamic survival model we arrive at a partially
Gaussian state space model, where the transition equation is the same as for the
original model. The model for the log-hazard however is replaced by a Gaussian
observation equation with a multivariate response vector xj, where xj is determined
from the auxiliary survival times of the risk population at the beginning of interval
Ij.
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3.3 Prior distributions

Priors have to be chosen for the initial value of the state vector β0 and the process
variances. We assume independent normal priors for the elements of β0

βk0 ∼ N (bk, Bk)

and independent inverse Gamma priors for the process variances

θk ∼ IG (ck0, Ck0) , k = 0, . . . , K.

3.4 Sampling scheme

With this prior choice a simple MCMC sampling scheme combining data augmen-
tation with Bayesian estimation of Gaussian state space models as in Frühwirth-
Schnatter (1994) can be implemented to sample jointly the latent process β, the
variances θ = (θ0, . . . , θK) and the auxiliary variables xj and Rj = (r1j, . . . , rnj ,j)
for j = 1, . . . , J :

Select starting values for θ and the augmented variables xj and Rj for j =
1, . . . , J and repeat the following steps:

(a) Sample the latent states β conditional on the process variances θ and the
auxiliary variables xj and Rj: Sample the whole sequence β by forward-
filtering backward sampling (FFBS, Frühwirth-Schnatter (1994); Carter and
Kohn (1994); de Jong and Shephard (1995)) for the conditionally Gaussian
state space form (11) and (12).

(b) Sample θk, k = 0, . . . , K conditional on β from the inverse Gamma distribution
IG (ck, Ck) , where

ck = ck0 + J/2

Ck = Ck0 +
J∑

j=1

(βkj − βk,j−1)
2

(c) Sample the auxiliary variables xj and Rj conditional on β

(c1) Sample the auxiliary variables τij conditional on the corresponding hazard
λij = exp(z′iβj), i = 1, . . . , nj; j = 1, . . . J as described in equations (6) -
(7).

(c2) Sample the component indicators rij conditional on τij and λij from the
following discrete distribution

Pr{rij = r∗|τij, λij} ∝ wr∗ ϕ(ln τij − ln λij; mr∗ , s
2
r∗), r∗ = 1, . . . , 10.

Here ϕ(x; µ, σ2) denotes the probability density function of the N (µ, σ2)
distribution at x, see Frühwirth-Schnatter and Wagner (2006a) for details.

Starting values for xj and Rj can be obtained by performing sampling step (b)
with a starting value λ0

ij for the hazards. In the applications I used the same hazard
rate for all subjects at risk in an interval, λ0

ij = λ0
j , where λ0

j was determined as the
number of failures in interval Ij divided by the sum of observation times spent in Ij.
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4 Model Selection

Model selection in the normal dynamic survival model means not only to select
which covariate to include in the model but also to decide whether the effect of a
certain covariate is constant or varies over time. To perform model selection we
use a non-centered parameterization of the augmented state space model defined in
equations (11) and (12).

4.1 The noncentered parameterization

Let bj = Q−1/2(βj−β0) denote the standardized latent process. Obviously b starts
in b0 = 0 and its stochastic evolution is described by

bj = bj−1 + ω̃j ω̃j ∼ N (0, I) (13)

Using the standardized state vector bj observation equation (11) can be written as

xj = Zjβ0 + ZjQ
1/2bj + εj, εj ∼ N (0,Vj) . (14)

This noncentered parameterization is not identified as in the observation equation

xij =
K∑

k=0

zikβk0 +
K∑

k=0

zikbkj(±
√

θk) + εij (15)

for each k = 0, . . . , K the sign of
√

θk and the sequence bkj, j = 1, . . . J may be
changed without changing the likelihood.

As discussed in Frühwirth-Schnatter and Wagner (2008) the likelihood function
of the noncentered parameterization of a state space model is bimodal in the direc-
tion of a process standard deviation if the respective component of the state vector is
stochastic, and symmetric with a mode at 0 for a constant component. This means
that p(x|θ,b) will be bimodal in the direction of

√
θk if the effect of covariate k

varies over time and symmetric with a mode
√

θk = 0 at if the effect is constant.
Note that non-identifiability of the noncentered parameterization concerns only the
sign of a component of the state vector and the corresponding process standard
deviation: the effect of covariate k in each interval j given as βk0 + bkj(±

√
θk) is

identified. However, this non-identifiability has to be taken into account in the
MCMC sampling scheme to guarantee exploration of the whole posterior space.

4.2 The parsimonious normal dynamic survival model

In the observation equation of the noncentered parameterization (15) the mean of
the auxiliary variable xij is equal to the log-hazard log λij of subject i in interval Ij.
This log hazard has two components, the first resulting from the initial covariate
effects βk0, the second from the modification of these initial effects in interval Ij,
bkj(±

√
θk)

To perform model selection we introduce for each covariate effect k = 1, . . . K
two indicator variables δk and γk. The first of these indicators δk is 0 iff the initial
effect β0k = 0 and thus selects the effect of covariate zk at time 0. The second
indicator γk is defined as γk = 0 iff θk = 0 and selects effects that vary over time.
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We will include a constant baseline hazard effect in each model, hence β00 is
not selected. However an additional indicator γ0, defined as γ0 = 0 iff θ0 = 0, is
introduced to select between a constant and a time-varying baseline hazard. The
final model for variable selection is then given as:

xij = β00 +
K∑

k=1

δkzikβk0 +
K∑

k=0

γkzikbkj(±
√

θk) + εij, εij ∼ N
(
0, vrij

)
(16)

bkj = bk,j−1 + ω̃kj, ω̃kj ∼ N (0, 1) . (17)

The variable selection model can be written as the following state space model

xj = Zj(δ)β0 + Hj(γ)bj + εj, εj ∼ N (0,Vj) (18)

bj = bj−1 + ω̃j, ω̃l ∼ N (0, I) (19)

where Zj(δ) and Hj(γ) depend on the indicators and are given as

Zj(δ) = Zj diag(1, δ) Hj(γ) = ZjQ
1/2 diag(γ).

4.3 Priors

To complete model specification prior distribution for all unknown model parameters
(δ,γ,β0, θ) have to be chosen.

4.3.1 Prior distribution for the indicators

In the variable selection model (16) – (17) there is a choice between two modeling
options for the baseline log-hazard namely constant, γ0 = 0, or time-varying, γ0 = 1.
For each covariate k = 1, . . . , K there are three different modeling options which
are interesting from a practical point of view: no effect of the covariate, a constant
effect or a time-varying effect. We identify these cases by the values ζ1 = (0, 0),
ζ2 = (1, 0) and ζ3 = (1, 1) for the indicator pair (δk, γk).

Assuming independence of indicators for k = 0, 1, . . . , K leads to a prior

p(δ,γ) = p(γ0)
K∏

k=1

p(δk, γk).

Let p(γ0 = 1) = η0 and p((δk, γk) = ζl) = ηl for l = 1, . . . , 3. As a first prior,
we consider fixed prior probabilities η0 = 1

2
and ηl = 1

3
, l = 1, . . . , 3. This prior,

denoted as prior 1 in the following, assigns equal probability p = 0.5 · 3−K to all
models under consideration.

A second prior is obtained by putting a hyper-prior on the inclusion probabilities
as in Smith and Kohn (2002) and Frühwirth-Schnatter and Tüchler (2008). For
model selection in regression models Ley and Steel (2007) showed that a prior where
the inclusion probability is random clearly outperforms priors with fixed inclusion
probabilities. Conjugate priors are a Beta prior for η0 and a Dirichlet prior for
(η1, η2, η3). For η0 ∼ Beta (1, 1) and (η1, η2, η3) ∼ Dirichlet (1, 1, 1) the resulting
prior is

p(δ,γ) =
1

2
· 2

∏3
l=1 Γ(hl + 1)

Γ(K + 3)
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where h0 = γ0 and hl =
∑K

k=1 I{(δk,γk)=ζl}. This prior is uniform on (h0, h1, h2, h3) as

p(h0, h1, h2, h2) =

(
K

h1 h2 h3

)
p(δ,γ) =

1

(K + 1)(K + 2)
.

As prior 3 we specify a prior of the form p(δk, γk) = p(δk)p(γk|δk) where Pr{γk =
1|δk = 0} = 0. This prior somehow reflects the strategy of Hofner et al. (2008), who
in a first step select covariates into the model and in a second step for each of the
selected covariate choose a modeling alternative (fixed or time-varying effect). A
flexible prior is obtained by assuming that

Pr{δk = 1|ηδ} = ηδ, k = 1, . . . K

Pr{γk = 1|δk = 1, ηγ} = ηγ, k = 1, . . . K

Pr{γ0 = 1|ηγ} = ηγ.

If both hyper-parameters ηδ and ηγ are iid Uniform on [0,1], the resulting prior
is p(δ,γ) = p(δ)p(γ|δ) where

p(δ) = B(1 +
K∑

k=1

δk, 1 + K −
K∑

k=1

δk)

p(γ|δ) = B(1 + γ0 +
∑

k:δk=1

γk, 1 + (1− γ0) +
∑

k:δk=1

(1− γk)),

if B(·, ·) is the Beta function. Note that this prior leads to a uniform distribution
over the number of covariates included for δ

p(
K∑

k=1

δk = hδ) =
1

K + 1
.

The resulting conditional prior for p(γ|δ) is a uniform distribution over the number
of regressors with potentially time-varying effect. As the log-baseline hazard is
included in each model, the number of these regressors is

∑
δk + 1 and

p(γ0 +
∑

k:δk=1

γk = hγ|δ) =
1∑K

k=1 δk + 2
.

4.3.2 Prior distributions for the effects

Conditional on the state vector, the observation equation (16) of the variable se-
lection model defines a Gaussian regression model with heteroscedastic errors and
known error variances. Denoting by α the parameter vector

α = (β00, . . . , β0K ,±
√

θ0, . . . ,±
√

θK),

this regression model can be written as

xij = (wδ,γ
ij )′αδ,γ + εij, εij ∼ N

(
0, vrij

)
(20)
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If all indicators take the value 1 then αδ,γ = α and the design vector wδ,γ
ij is of the

form
w′

ij =
(
1, zi1, . . . , ziK , b0j, zi1b1j, . . . , ziKbKj

)
.

Otherwise the restricted parameter vector αδ,γ and the predictor vector wδ,γ
ij contain

only those elements for which the corresponding indicator is equal to 1.
Let x, R and ε denote the vectors obtained by stacking the vectors xj, Rj =

(r1j, . . . , rnj ,j) and εj, j = 1, . . . , J , V the diagonal matrix containing the variances

of the error terms and Wδ,γ the regressor matrix with rows equal to (wδ,γ
ij )′ in

appropriate order. Using this notation the regression model for all N =
∑J

j=1 nj

auxiliary variables can be written as

x = Wδ,γα + ε, ε ∼ N (0,V) .

Conditional on the indicators δ and γ we specify a fractional prior with fraction
b = N for αδ,γ , as in Frühwirth-Schnatter and Tüchler (2008):

p(αδ,γ |b,x,R) = N

(
aδ,γ

N , (Aδ,γ
N )

1

b

)
, (21)

where

(Aδ,γ
N )−1 = (Wδ,γ)

′
V−1Wδ,γ (22)

aδ,γ
N = Aδ,γ

N (Wδ,γ)
′
V−1x (23)

4.4 Sampling scheme

The noncentered parameterization together with the prior choices allows for a simple
MCMC sampling scheme to sample jointly the indicators (δ, γ), the unrestricted
elements of the parameter vector α, the state process b = (b1, . . . ,bJ) and the
auxiliary variables x and R.

The sampling scheme consists of the following steps:

(a) Sample the indicator pair (δk, γk) from

p(δk, γk|b,x,R, δ\k, γ\k) ∝ p(x|δ,γ,b,R)p(δk, γk, δ\k,γ\k)

where δ\k and γ\k denote the elements of the indicator vectors except δk and
γk.

(b) Sample all unrestricted elements of the initial values of β0 and all unrestricted
variance parameters

√
θk jointly from the multivariate normal distribution

posterior N
(
aδ,γ

N ,Aδ,γ
N

)
conditional on the state vector b and the auxiliary

variables (x,R).

Set all remaining initial values of β0 and all remaining variances equal to 0.

(c) Sample b = (b1, . . . ,bJ) from the state space form p(b|δ,γ,α,x,R) given in
equations (18) and (19).
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(d) For each k=0, . . . , K: Perform a random sign switch for
√

θk and bkj, j =
1, . . . , J

(e) Sample the auxiliary variables xj and Rj conditional on αδ,γ and bj as in
subsection 3.4.

Details on sampling steps (a) and (c) are given below.

4.4.1 Sampling the indicators and the unrestricted parameters

Sampling the indicators (δ,γ) requires to marginalize over the parameters which
are subject to model selection, see George and McCulloch (1997) for a full account.
This is feasible for the noncentered parameterization of the normal dynamic survival
model as the auxiliary mixture sampling scheme leads to a conditionally Gaussian
regression model, where the marginal likelihood can be derived analytically.

To sample the indicators marginally with respect to αδ,γ we combine the prior
(21) with the remaining (1 − b) proportion of the likelihood p(x|αδ,γ ,b,R)(1−b).
Integration with respect to αδ,γ yields the marginal likelihood

p(x|δ,γ,b,R) = b(qδ+qγ)/2

( |V|−1

(2π)N

)(1−b)/2

· exp

(
−(1− b)

2
S

)
,

where
S = x′V−1x− (aδ,γ

N )
′
(Aδ,γ

N )−1aδ,γ
N ),

qδ and qγ are the number of nonzero elements in δ and γ respectively and aδ,γ
N and

Aδ,γ
N are given in (23) and (22).
For sampling the indicators a random order for updating the indicator pairs

(δk, γk) is used.

4.4.2 Sampling the state vector

In sampling step (c) forward-filtering-backward-sampling (FFBS, Frühwirth-Schnatter
(1994); Carter and Kohn (1994); de Jong and Shephard (1995)) is used to sample
the state vector b = (b1, . . . ,bJ). If at least one indicator γk = 0 a reduced state
space form is used. As the observation equation is independent of any component of
the state vector b where the corresponding γk = 0, FFBS is applied to the reduced
state vector of the components where γk = 1 and all other components are sampled
from the prior (17).

5 Case studies

5.1 Gastric cancer data

As a first application I use a data set of patients with gastric cancer, analyzed previ-
ously by Gamerman (1991) and Hemming and Shaw (2005). The data are survival
times of 90 patients, randomly allocated to a therapy. Treatment was chemother-
apy in the first group, and in the second group a combination of chemotherapy and
radiation was applied. Overall 10 observation times were right censored.
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Table 1: Gastric data: Estimated process variances (centered parameterization)

Parameter Mean Std.dev. 95%H.P.D. intervals
θ0 0.0240 0.0251 [ 0.0020 0.0651]
θ1 0.0536 0.0506 [ 0.0030 0.1514]
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Figure 2: Gastric data: Estimated survival function and Kaplan-Meier-estimates for
the treatment group (blue) and the control group (red)

In this setting it is of interest whether there is a treatment effect of combined
therapy as compared to chemotherapy alone (which serves as control) and whether
this effect varies over time. The covariate vector is zi = (1, z1i) where z1i indicates
whether patient i underwent combined therapy or not. The parameter vector β
therefore has 2 components. The fact that the estimated survival functions for
treatment and control group cross (see Figure 2), indicates that a Cox model with
constant treatment effect might not be appropriate.

5.1.1 Fitting a dynamic survival model

To fit a dynamic survival model, the failure times in the data were used as division
points of the time axis, as in Gamerman (1991) and Hemming and Shaw (2005). The
auxiliary mixture sampler of section 3.4 was run for 50000 iterations after a burn-in of
20000. Prior moments for the initial values β0 were bk = 0 and Bk = 100, k = 0, 1.
For the process variances proper, but uninformative inverse Gamma priors with
parameters c0k = C0k = 0.01, k = 0, 1 were chosen.

Table 1 reports point estimates and standard errors as well as 95%-highest pos-
terior density intervals for the process variances θ0 and θ1 of baseline log-hazard and
treatment effect. As already noted in previous analyses the process variance of the
treatment effect is higher than for the baseline log-hazard.

The estimated survival functions for the fitted normal dynamic survival model
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Figure 3: Gastric data: Posterior means and 95% credible regions for the baseline
log-hazard (left) and the effect of combined treatment (right)

.

are compared to the Kaplan-Meier estimates in Figure 2.
The estimated baseline log-hazard and the effect of combined therapy are shown

in Figure 3. The baseline log-hazard increases early followed by a sharp decline. The
estimated treatment effect declines from an effect with positive sign to a negative
sign in the long run. Risk of death is thus higher for patients treated with com-
bined therapy during the first 200 days but lower than for those treated only with
chemotherapy later on. As the credible intervals include a straight line, a constant
baseline hazard, as assumed in Gamerman (1991) and a constant treatment effect
cannot be ruled out.

5.1.2 Unrestricted noncentered parameterization

A fit of the unrestricted noncentered parameterized model provides a useful tool
for exploratory analysis as the posterior of process standard deviations gives insight
whether an effect is time-varying or not. To fit the noncentered parametrized model
sampling steps (b) - (e) of the sampler described in section 4.4 were run for 50000
iterations after a burnin of 20000. As convergence of the sampler was rather slow,
a coarser division of the time axis was used, where every fifth failure time defines
an interval endpoint. Histograms of the posterior densities for the process standard
deviations ±√θi, i = 0, 1 are plotted in Figure 4. Both posteriors are bimodal,
pointing to a model where both baseline log-hazard and treatment effect vary over
time.

5.1.3 Stochastic Model Specification Search

Stochastic model specification search was carried out using the fractional prior and
three different priors for the model indicators discussed in section 4.3.1. MCMC
sampling was carried out for M = 100000 draws after a burn-in of 20000 draws.
The first 10000 draws of the burn-in were drawn from the unrestricted model, model
selection began after these first 10000 draws.

Results of the variable selection procedure are summarized in Table 2 and 3.
Note that prior 1 and prior 2 in this case where only the effect of one covariate is
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Figure 4: Gastric data: posterior densities of ±√θ0 (left) and ±√θ1 (right)

Table 2: Gastric data: number of draws from each model
model δ1 γ0 γ1 prior 1 prior 3

1 0 0 0 5534 10300
2 0 1 0 6992 10089
3 1 0 0 2218 2215
4 1 0 1 25236 13163
5 1 1 0 2739 1565
6 1 1 1 57281 62668

considered coincide and all 6 models considered have equal prior probability. This
is not the case for prior 3, which assigns a prior probability of 1/4 to models 1 and
2, 1/6 to models 3 and 6 and 1/12 to models 4 and 5. The most frequently visited
model in Table 2 is robust against the prior choice, but the frequency with which
this model is selected varies, in particular models 4 and 5 are visited less frequently
under prior 3.

If the selected model is defined as comprising all parameters where the posterior
mean of the corresponding indicator is greater than 0.5, the same model, namely
the model where both log-baseline and treatment effect are time-varying, results for
both priors.

5.2 Worcester heart attack data

As a further application I analyzed the data of the Worcester heart attack study
described in Hosmer and Lemeshow (1999). The main goal of the study was to
describe trends over time in the incidence and survival rates following hospital ad-

Table 3: Gastric data: posterior means of indicators
Prior δ1 γ0 γ1

1 0.8747 0.6701 0.8252
3 0.7961 0.7432 0.7583
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Table 4: Description of variables in the Worcester heart attack study data
Variable Description
age age at hospital admission in years (centered at 67 years)
gender 0=male, 1=female
sho cardiogenic shock complications (0=no,1=yes)
cpk peak cardiac enzyme measured in international units (IU)
chf left heart failure complications (0=no, 1=yes)
miorder myocardial infection order (0=first, 1=recurrent)
mitype myocardial infection type (0=Q wave, 1=not Q wave or indeterminate)

Table 5: WHAS data: time intervals and number of events in month 1.
j 1 2 3 4 5 6 7 8 9
interval endpoint sj (in days) 1 2 3 4 7 10 14 21 30
number of events 8 16 10 7 7 14 12 12 7

mission for acute myocardial infarction. The data set provided by Hosmer and
Lemeshow (1999) is a sample of the main data set with information on 481 patients.
Additionally to length of follow-up, defined as days from hospital admission and
status of last follow-up (dead or alive), several covariates were available which are
described in Table 4.

5.2.1 Fitting a dynamic survival model in centered parameterization

As some of the covariates are related to the myocardial infarction, a time-varying
effect for these covariates might be more plausible than a simple proportional hazards
model. In a first analysis a dynamic survival model with time-varying effects for
all covariates was fitted. As many deaths occur early, the time axis was partitioned
into intervals of increasing lengths, starting with a finer division of one day length,
followed by intervals of half a week, a week, one month, 3 months, half a year to
intervals of one year length (from year 3 to year 10). The number of events in these
time intervals ranges from 3 (in year 10) to 18 (in year 6). Table 5 summarizes the
division of the time axis and the number of events for the first month.

For the initial values of the random walks (for baseline log-hazard and covariate
effects), independent normal distributions with mean 0 and prior variance 100 were
chosen. For the process variances inverse Gamma priors with parameters c0 =
0.1 and C0 = 0.01 were used. The auxiliary mixture sampler for the centered
parameterization was run for 50 000 iterations after a burn-in of 20 000.

Posterior means of log-baseline and covariate effects are displayed in Figure 5
with 95% credible regions. Baseline log-hazard and most of the covariate effects
show large changes in the beginning, many of them a sharp decline, and level off in
the long run. Due to the general model specification credible intervals are rather
wide making it hard to assess whether an effect is constant over time or not.

The effect of age is fairly constant with positive sign which means a negative
effect, i.e. risk of death after myocardial infarction increases with age. Risk is higher
for female than for male patients during the first 3 months, but approximates those
of men later on. The adverse effect of cardiogenic shock complications (sho) shows
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Figure 5: WHAS data: Posterior means and 95% credible regions for the baseline
log-hazard (a) and the effects of age (b), gender (c), sho (d), cpk (e), chf (f),
miorder (g) and mitype (h).
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Figure 6: WHAS data: posterior densities of the process standard deviations ±
√

θ
for baseline log-hazard (a) and the effects of age (b), gender (c), sho (d), cpk (e),
chf (f), miorder (g) and mitype (h).

a decline in the beginning but remains high even in the long run and is significantly
positive until year 3 after infarction. For cardiac enzyme (cpk) there is evidence
for a time-varying effect: higher values lead to a higher risk during the first 4 days,
but a lower risk for those surviving more than 5 years with even a beneficial effect
in the long run. Left heart failure complications (chf) have a negative effect (i.e.
higher risk) during the first two years: Risk increases at the beginning, reaching
its maximum in the third month, then declines. Persons experiencing a recurrent
infarction miorder have a higher risk during the first three months, but this effect
wears off in the long run. Finally for q-wave infarctions mitype there is sharp decline
of the risk during the first 3 months which gives evidence to a time-varying effect.

5.2.2 Model Selection

As a next step the unrestricted model in the noncentered parametrization was fit
under a fractional prior using steps (b)-(e) of the MCMC sampler described in section
4.4 with all indicators fixed to one. Histograms of the posterior densities (based
on 100000 iterations after a burnin of 20000) for the process standard deviations
±√θk, k = 0, . . . , 7 are shown in Figure 6.

The posterior of the process standard deviation is bimodal with two clearly sep-
arated modes for log-baseline, cpk and mitype. The posterior ordinate at ±√θk = 0
is practically zero, indicating a time-varying baseline and time-varying effects of cpk
and mitype. For miorder, gender and chf the posterior for the process standard
deviation has also two modes, but values of ±

√
θ close to zero have a positive pos-

terior probability. For age and sho the posterior is unimodal indicating a constant
effect of these covariables.

For stochastic model specification search the MCMC sampling scheme of section
4.4 was run for M = 200000 draws after a burn-in of 20000 draws. The first 10000
draws of the burn-in were drawn from the unrestricted model, model selection began
after these first 10000 draws. Results of the variable selection procedure under the
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Table 6: WHAS data: posterior means of indicators
Prior baseline age gender sho cpk chf miorder mitype

1 δ 1.00 0.19 1.00 0.93 1.00 0.77 0.90
γ 1.00 0.23 0.06 0.12 0.90 0.35 0.38 0.81

2 δ 1.00 0.46 1.00 0.99 1.00 0.90 0.95
γ 1.00 0.28 0.18 0.16 0.97 0.38 0.50 0.85

3 δ 1.00 0.43 1.00 0.90 0.99 0.89 1.00
γ 1.00 0.35 0.21 0.25 0.87 0.51 0.60 0.97

fractional prior and three different choices for the prior on the indicators discussed
in Subsection 4.3.1 are summarized in Table 6.

For all priors the selected model (based on indicators with posterior mean >
0.5) includes a time-varying log-baseline hazard and time-varying effects of cpk and
mitype, whereas the effects of age and sho are selected as constant and the effect
of gender is not selected at all. For chf and miorder the resulting specification
is different for the three priors: under prior 1 a constant effect is selected for both
variables, prior 2 selects a constant effect for chf, but a time-varying effect for
miorder. Under prior 3 both effects are time-varying.

6 Concluding remarks

In this paper a new auxiliary mixture sampler for dynamic survival models is pro-
posed, which is easy to implement and needs no tuning. Its convenience results from
representing the log-hazard model as a partial Gaussian model for auxiliary variables
which allows to deal with any form of the linear predictor where Gibbs sampling
for the equivalent model with Gaussian errors is feasible. Sampling algorithms for
Gaussian models are easily adapted to survival models with the same linear predictor
by adding two steps of data augmentation. This is demonstrated for the noncen-
tered parameterization of the log-hazard model, by implementing stochastic model
specification search for state space models as proposed in Frühwirth-Schnatter and
Wagner (2008). For survival data stochastic model specification search is attractive
as additionally to variable selection the form of each effect, constant vs. time-varying
has to be specified. Three different priors for the model indicators were proposed
and investigated in the applications.

The auxiliary mixture sampler has a wider application, as e.g. inclusion of normal
frailties, unstructured or structured normal spatial effects or nonlinear effects of
covariates modelled by P-splines as in Hennerfeind et al. (2006) is straightforward.
The key property that has to be maintained for application of the auxiliary mixture
sampler is the piecewise constant structure of the log-hazard as a function of time.
Also model specification search for random effects described for normal and logit
models in Frühwirth-Schnatter and Tüchler (2008) and Tüchler (2008) could be
incorporated easily for dynamic survival models.

As a further extension missing information different from right-censoring, e.g.
interval interval censoring, can be dealt with by introducing complete auxiliary

19



survival times conditional on the available information.
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Frühwirth-Schnatter, S. (1994). Data augmentation and dynamic linear models.
Journal of Time Series Analysis, 15:183–202.
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