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Abstract

We consider a multidimensional, continuous time model where the obser-
vation process is a diffusion with drift and volatility coefficients being modeled
as continuous time, finite state Markov chains with a common state process.
For the econometric estimation of the states for drift and volatility and the
rate matrix of the underlying Markov chain, we develop both an exact con-
tinuous time as well as an approximate discrete time MCMC sampler and
compare these approaches with ML estimation. For simulated data, MCMC
outperforms ML estimation for difficult cases like high rates. Finally, for daily
stock index quotes from Argentina, Brazil, Mexico, and the US we identify
four states differing not only in the volatility of the various assets, but also in
their correlation.

Keywords: Bayesian inference, data augmentation, hidden Markov model,
switching diffusion
JEL classification codes: C11, C13, C15, C32

1 Introduction

Discrete time Markov switching models have been vastly used in many areas in-
cluding econometrics, biosciences, image processing, and speech processing, see
Frühwirth-Schnatter (2006) for a recent overview. Applications in financial econo-
metrics, where the latent state process Y is usually interpreted as some unobservable
underlying economic variable, include modeling of exchange rate dynamics (Engel
and Hamilton, 1990), interest rates and term structures (Garcia and Perron, 1996;
Bansal and Zhou, 2002), stock market returns (Schaller and Van Norden, 1997), and
the business cycle (Kim and Nelson, 1999). Typically, these applications deal with
univariate time series, exceptions are the recent papers by Guidolin and Timmer-
mann (2006, 2007), where multivariate modeling and asset allocation are considered.
Rydén et al. (1998) demonstrate that even very simple discrete time Markov switch-
ing models are able to capture a number of stylized facts (both distributional and
temporal) observed in asset returns. Investigating potential patterns of volatility,
skewness, kurtosis, and autocovariance, Timmermann (2000) extends the analysis
of Rydén et al. (1998) and approves that this model is in many respects very well
suited to the application to financial time series.

In recent years, also interest in continuous time Markov switching models has
been increasing. Assume, for instance, that the dynamics of a price process S =
(St)t∈[0,T ] of n stocks are describes as

dSt = Diag(St)(µt dt + σt dWt), S0 = s0,

where Diag(St) denotes the diagonal matrix with diagonal St = (S1
t , . . . , S

n
t ). Here

W = (Wt)t∈[0,T ] is an n-dimensional Brownian motion, s0 is the initial price vector,
µ = (µt)t∈[0,T ] the drift process, σ = (σt)t∈[0,T ] the volatility process, and T > 0 the
time horizon. Suppose that µ and σ can take d possible values and that switching
between these values is governed by a state process Y which is a continuous time
Markov chain with state space {1, . . . , d} and rate matrix Q. Then the corresponding
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return process R = (Rt)t∈[0,T ], defined by dRt = (Diag(St))
−1 dSt, satisfies

dRt = µt dt + σt dWt (1)

and represents a multivariate continuous time Markov switching model (MSM).
Although in most applications data is observed only in discrete time, in a variety
of problems it is convenient to use such a continuous time model since it allows the
derivation of closed form solutions.

At first sight, such a continuous time MSM might seem too simplistic for ap-
plications in finance like modeling stock returns, as it obviously does not allow e.g.
for jumps in the price process. However, inheriting the properties of the discrete
time model analyzed in Rydén et al. (1998) and Timmermann (2000), it turns out
to be surprisingly flexible and powerful; in particular, it represents a substantial
improvement over the still heavily used Black-Scholes model with constant drift and
volatility. Recent applications of this model include short rate models (Elliott et al.,
2001), option pricing (Guo, 2001a,b; Buffington and Elliott, 2002a,b; Chan et al.,
2005; Liu et al., 2006; Yao et al., 2006), portfolio optimization (Honda, 2003; Zhou
and Yin, 2003; Sass and Haussmann, 2004; Bäuerle and Rieder, 2005), investment
problems (Zhang, 2001; Guo et al., 2005), and risk measures for derivatives (Elliott
et al., 2008).

Concerning estimation of MSMs, there exists by now a huge literature on this
issue for discrete time models, see Cappé et al. (2005) for a recent overview. Rydén
et al. (1998), for instance, propose to maximize the likelihood using optimization
methods. Another maximum likelihood (ML) approach is the expectation maximiza-
tion (EM, Dempster et al., 1977) algorithm (used e.g. in Engel and Hamilton, 1990;
Elliott et al., 1997). Robert et al. (1993) implement a Bayesian framework relying
on Markov chain Monte Carlo (MCMC) methods. Recent work in that direction
includes Rosales et al. (2001); Scott (2002).

In contrast to that, relatively few papers are dealing with the estimation for
continuous time MSM, despite the increasing interest in this model. EM algorithms
are described in James et al. (1996) and Sass and Haussmann (2004). However, this
approach requires constant and known volatility σ: even for constant but unknown
σ it is impossible to employ the EM algorithm to estimate the volatility jointly with
the other parameters, since the change of measure involved in deriving the filters
used in the EM algorithm requires known σ (cf. Elliott et al., 1995). Furthermore,
for a general continuous time MSM given discrete observations, no finite dimensional
filters are known and hence the conditional expectations used in the EM algorithm
cannot be computed. Roberts and Ephraim (2008) develop an EM algorithm for a
slightly different model, where the state process Y is modeled in continuous time,
however, using observation intervals of length ∆t, drift and volatility are allowed to
depend only on the ∆t-skeleton of Y , i.e. just as in the discrete time model, µ and σ
can jump only at times t = m ∆t for m = 0, 1, . . . , N . Elliott et al. (2008) propose
a moment based regression method, which yields good estimates, provided that the
number of observations is very large (depending on the noise level, they present
results for 10 000 to 20 000 observations for simulated data and 30 000 to 150 000
for market data). MCMC approaches for the same model as considered in Roberts
and Ephraim (2008) for univariate observations are pursued in Liechty and Roberts
(2001) for constant σ and more general in Ball et al. (1999).
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Hence, we see a gap in the literature: neither there are efficient methods available
that are exactly tailored to the multivariate continuous time MSM (1) nor there are
investigations to which extent discrete time approximations are reliable and how
problems arising with them can be overcome. In the present paper, we try to fill ex-
actly this gap. We consider joint modeling of several stock prices using multivariate
continuous time MSMs and take a Bayesian approach to estimate parameters using
MCMC methods. Extending the work of Ball et al. (1999) and Liechty and Roberts
(2001), we construct a sampler tailored to a multivariate continuous time MSM.
Second, we adapt a discrete time sampler as described e.g. in Frühwirth-Schnatter
(2006) to serve as an approximation for the continuous time model. We look at the
approximation error and discuss extensively the problem of obtaining the (continu-
ous time) rate matrix corresponding to a (discrete time) transition matrix. Such a
rate matrix might not exist. We show that the MCMC approach allows for a nice
solution of this embedding problem. We compare the proposed discrete and contin-
uous time methods on simulated data. We are particularly interested in estimating
parameters in multidimensional MSMs with high rates and considerable noise, based
on not too many observations (less than, say, 5 000), as this is the typical situation
one faces for many financial time series.

The rest of the paper is organized as follows. In Section 2, the stock return model
which is a continuous time multidimensional MSM is introduced in more detail. In
Section 3, MCMC estimation for continuous time state processes (referred to as
CMCMC) is described. In Section 4, we present the approximating discrete time
model and the corresponding MCMC algorithm (referred to as DMCMC). For both
algorithms, we define prior distributions and describe the proposals and sampling
methods used. We deal with the approximation error and the problem of computing
the rate matrix corresponding to a transition matrix. In Section 5, we deal with
issues concerning the practical application of the methods presented in Sections 3
and 4. We discuss the selection of the number of states and the problem of label
switching. Furthermore, we show numerical results for simulated data using different
estimation methods. Finally, in Section 6, we consider market data from daily stock
index quotes from Argentina, Brazil, Mexico, and the US. The estimated complexity
(number of states) of this multivariate setting is in line with the findings in similar
settings known from the literature where only data from one country is analyzed.
The detailed estimates also have a straightforward economic interpretation.

2 Continuous Time Markov Switching Model

In this section we present the market model which is a multidimensional continuous
time MSM. On a filtered probability space (Ω,F = (Ft)t∈[0,T ], P), over time [0, T ]
we assume the n-dimensional return process R = (Rt)t∈[0,T ] to evolve like

Rt =

∫ t

0

µs ds +

∫ t

0

σs dWs,

where W = (Wt)t∈[0,T ] is an n-dimensional Brownian motion with respect to F .
The drift process µ = (µt)t∈[0,T ] and the volatility process σ = (σt)t∈[0,T ], taking
values in Rn and Rn×n, respectively, are continuous time, time homogeneous, ir-
reducible Markov processes with d states, adapted to F and independent of W ,
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driven by the same state process Y = (Yt)t∈[0,T ]. We denote the possible values of µ
and σ by B = (µ(1), . . . , µ(d)) and Σ = (σ(1), . . . , σ(d)), respectively. We assume the
volatility matrices σ(k) to be nonsingular and use the notations C(k) = σ(k) (σ(k))>

for the covariance matrices, τ
(k)
i =

(
C

(k)
ii

)1/2
for the volatilities of a single asset,

τ (k) = (τ
(k)
1 , . . . , τ

(k)
n )> for the vector of volatilities, and ρ

(k)
ij = C

(k)
ij /

(
τ

(k)
i τ

(k)
j

)
for

the correlation between two assets. Sometimes we will interpret B as a matrix with
elements Bik = µ

(k)
i .

The state process Y , which is a continuous time, time homogeneous, irreducible
Markov chain adapted to F , independent of W , with state space {1, . . . , d}, allows
for the representations

µt = µ(Yt) =
d∑

k=1

µ(k) I{Yt=k}, σt = σ(Yt) =
d∑

k=1

σ(k) I{Yt=k}.

The state process Y is characterized by the rate matrix Q ∈ Rd×d as follows:
Setting λk = −Qkk =

∑d
l=1,l 6=k Qkl, in state k the waiting time for the next jump

is λk-exponentially distributed and P(Yt = l |Yt− = k, Yt 6= Yt−), the probability of
jumping to state l 6= k when leaving k, is given by Qkl/λk.

Starting from a prior distribution of the unknown parameters P(Q,B, Σ), we wish
to determine
P(Q,B, Σ | (Vm)m=1,...,N), the posterior distribution of these parameters given the
observed data (e.g. daily returns)

Vm = ∆Rm ∆t =

∫ m ∆t

(m−1)∆t

µs ds +

∫ m ∆t

(m−1)∆t

σs dWs, m = 1, . . . , N, (2)

which is equivalent to observing the (log) price or return process at discrete times.

Remark 1. One cannot distinguish between the pairs (σ,W ) and (σ̄, W̄ ), where σ̄ is
a square-root of σσ> and W̄ = σ̄−1σW . However, without loss of generality we can
assume σ(k) to be a lower triangular matrix with positive diagonal, i.e. σ(k)(σ(k))>

equals the Cholesky factorization of the covariance matrix.

Remark 2. An important special case occurs when σ is constant and only µ
switches. Note that with switching σ, in principle the state process Y can be ob-
served via the quadratic variation of R, as d[R]t = σtσ

>
t dt. This is not possible with

constant σ, where Y is hidden even if continuous observations are available.
The algorithms presented in the following sections assume that both µ and σ are

switching. However, algorithms tailored to switching exclusively either in µ or in σ
are obtained with straightforward adaptations by updating only σ(1) (or µ(1)) and
replacing σ(k) (µ(k)), k = 2, . . . , d, with copies of σ(1) (µ(1)).

3 MCMC for Continuous Time State Process

In this section, we describe an MCMC algorithm for the continuous time model
(referred to as CMCMC) to estimate the parameters Q, B and Σ given return data,
V = (Vm)m=1,...,N , observed at fixed observation times ∆t, 2∆t, . . . , N ∆t = T . This
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method is easily extended to deal with non-equidistant observations, see Remark 4
below. We allow for jumps of the hidden state process at any time and especially
for any number of jumps within each observation interval.

3.1 Data Augmentation

The state process Y , which is allowed to jump any time, is described by the process
of jump times, J = (Jh)h=0,...,H , and the sequence of states visited, Z = (Zh)h=0,...,H ,
where H is the number of jumps of Y in [0, T [, i.e. J0 = 0, Z0 = Y0, Jh is the
time of the h-th jump, and Zh is the state Y jumps to at the h-th jump. Hence
the inter-arrival time ∆Jh = Jh − Jh−1 is exponentially distributed with parameter
λZh−1

. Notice that Jh+1 and Zh+1 are independent given Jh and Zh.
For parameter estimation, we augment the parameter space by adding the state

process Y , and determine the joint posterior distribution of Q, B, Σ, and Y given
the observed data V .

3.2 Prior Distributions

Prior distributions have to be chosen for Q, B, Σ, and Y0. We consider two prior
specifications, differing in the prior assumptions concerning the initial state Y0. One
prior is based on assuming prior independence among all parameters, i.e.

P(Q,B, Σ, Y0) = P(Q) P(B) P(Σ) P(Y0), (3)

where P(Y0) = 1/d. However, if we think of time 0 as the beginning of our obser-
vations after the process has already run for some time, it may be reasonable to
assume that the state process starts from its ergodic probability ω, making Q and
Y0 dependent apriori:

P(Q, B, Σ, Y0) = P(Q) P(B) P(Σ) P(Y0 |Q), (4)

where P(Y0 |Q) = ω. Under the second prior, Y given Q is a stationary Markov
chain, i.e. P(Yt |Q) = ω for all t ∈ [0, T ].

Concerning the remaining parameters, we assume that the off-diagonal elements
of Q as well as the elements of B are apriori mutually independent as are the
volatility matrices. Furthermore, for i = 1, . . . , n, k, l = 1, . . . , d, l 6= k, we assume:

Qkl ∼ Γ(fkl, gkl), µ
(k)
i ∼ N(mik, s

2
ik), C(k) ∼ IW(Ξ(k), νk). (5)

With Γ, N, and IW we refer to the Gamma, normal, and inverted Wishart dis-
tribution, respectively. We use the notation m·k = (m1k, . . . , mnk)

> and s2
·k =

(s2
1k, . . . , s

2
nk)

> to denote the vectors of prior means and prior variances of µ(k).

Remark 3. For the inverted Wishart distribution C ∼ IW(Ξ, ν), we use the parame-
terization where the density is given through fIW(C; Ξ, ν) ∝ (det C)−ν−(n+1)/2 exp

(−
tr(ΞC−1)

)
and the expected value is given as E[C] = Ξ (ν − (n + 1)/2)−1.
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3.3 Complete-Data Likelihood Function

As given B, Σ, and Y , the price process S is Markov and the returns (Vm)m=1,...,N

are independent, the complete-data likelihood function is given by

P(V |Q,B, Σ, Y ) = P(V |B, Σ, Y ) =
N∏

m=1

ϕ(Vm, µ̄m, C̄m), (6)

where ϕ denotes the density of a multivariate normal distribution with mean vector
µ̄m and covariance matrix C̄m given by:

µ̄m =

∫ m ∆t

(m−1)∆t

µ(Ys) ds, C̄m =

∫ m ∆t

(m−1)∆t

C(Ys) ds.

Remark 4. The algorithm presented in the following can be easily extended to
non-equidistant observation times 0 = t0 < t1 < · · · < tN = T with distances
∆tm = tm−tm−1 by a slight adaptation in the complete-data likelihood. In Equation
(6), µ̄m and C̄m have to be replaced by µ̃m =

∫ tm
tm−1

µ(Ys) ds and C̃m =
∫ tm

tm−1
C(Ys) ds,

respectively.

3.4 Proposal Distributions

To sample from the joint posterior distribution of Q, B, Σ, and Y given the observed
data V , we partition the unknowns into the blocks Q, µ(k), C(k), Y , and draw each
block from the appropriate conditional distribution.

3.4.1 Drifts

For the update of µ(k) for each state k, a Gibbs step can be performed as follows.
First, we introduce the notation B−k =

(
µ(1), . . . , µ(k−1), µ(k+1), . . . , µ(d)

)
and

ok
m =

∫ m ∆t

(m−1)∆t

I{Ys=k} ds, µ̄−k
m =

d∑

l=1,l 6=k

µ(l) ol
m.

Then we have

P
(
µ(k) |V,B−k, Σ, Y

) ∝ ϕ
(
µ(k); m·k, Diag(s2

·k)
) N∏

m=1

ϕ
(
Vm − µ̄−k

m ; µ(k)ok
m, C̄m

)
,

and hence µ(k) |V, B−k, Σ, Y ∼ N
(
a(k), S(k)

)
, where

S(k) =

(
Diag(s2

·k)
−1 +

N∑
m=1

C̄−1
m (ok

m)2

)−1

,

a(k) = S(k)

(
Diag(s2

·k)
−1 m·k +

N∑
m=1

C̄−1
m (Vm − µ̄−k

m )ok
m

)
.
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3.4.2 Volatilities

The Metropolis-Hastings update for the single covariance matrices C(k) is inspired
by the discrete time Gibbs update in Section 4.1.1. The proposals are based on the
observations containing no jumps: We draw C(k)′ ∼ IW

(
Ξ(k) +Ξ(k)′, νk +ν ′k

)
, where

Ξ(k)′ =
1

2 ∆t

N∑
m=1

I{ok
m=∆t}(Vm − µ(k) ∆t)(Vm − µ(k) ∆t)>,

ν ′k =
1

2

N∑
m=1

I{ok
m=∆t}.

Then the acceptance depends only on the observations with occupation time in state
k greater than zero but less than ∆t: Defining V̄ k = (Vm){1≤m≤N | 0<ok

m<∆t}, we have

αC(k) = min

{
1,

P(V̄ k |B, Σ′, Y )

P(V̄ k |B, Σ, Y )

}
.

Remark 5. For the special case where the volatility is constant, a Gibbs step is
available by drawing C ′ ∼ IW

(
Ξ+Ξ′, ν+ν ′

)
, where Ξ′ = 1

2∆t

∑N
m=1(Vm−µ̄m)(Vm−

µ̄m)> and ν ′ = N/2.

3.4.3 State Process

We first consider the full conditional probability distribution P(Y |V,Q, B, Σ). The
prior distribution of the state process Yt for t > 0 is determined by the distribution
of Y0 and the rate matrix Q, and is independent of B and Σ. Therefore we obtain:

P(Y |V, Q, B, Σ) ∝ P(V |B, Σ, Y ) P(Y |Q).

The probability of Y given Q equals

P(Y |Q) = P(Y0 |Q)
H∏

h=1

(
λZh−1

e−λZh−1
∆Jh

QZh−1,Zh

λZh−1

)
e−λZH

(T−JH) (7)

= P(Y0 |Q)
d∏

k=1

d∏

l=1
l 6=k

(
e−Qkl Ok

T QNkl
kl

)
, (8)

where Ok
T denotes the occupation time of state k, and Nkl denotes the number of

jumps from k to l,

Ok
T =

∫ T

0

I{Yt=k} dt, Nkl =
H∑

h=1

I{Zh−1=k,Zh=l}.

For the update of Y , we draw from the conditional distribution given Q, which
simplifies the acceptance probability. To obtain good rates of acceptance, we do
not update the whole process at one time but break it into a number of blocks
of approximately exponentially distributed length, which are updated independent
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of each other. For a discussion of a suitable choice of the corresponding tuning
parameters see Section 5.3.

For updating the block (Yt)t∈[t0,t1[, 0 < t0 < t1 < T , we generate a proposal
(Y ′

t )t∈[0,t′[, t′ = t1 − t0, as follows: First, we set Z ′
0 = Yt0 . Then we simulate the

waiting time until the next jump time and the state the chain jumps to given the
rate matrix Q. This is repeated until the jump time is greater than t′, which is
assumed to happen after H ′ + 1 steps, i.e. there are H ′ jumps in [0, t′[. In order to
fit the proposal Y ′ to Y , we have to consider three cases. If Z ′

H′ = Yt1 we are done.
If Z ′

H′ 6= Yt1 and H ′ > 0, we enforce Z ′
H′ = Yt1 , possibly removing the last jump, if

the chain was in state Yt1 before the jump. Finally, if Z ′
H′ 6= Yt1 and H ′ = 0, we just

start over.
So what is the probability of proposing some given Y ′? Denote the originally

proposed parameters by Ỹ , J̃ , Z̃, H̃, the adapted proposals by Y ′, J ′, Z ′, H ′, and
Y = (Yt)t∈ [t0,t1[.

First assume t0 > 0, t1 < T , and H ′ > 0. A possible adaptation of Ỹ affects only
the time interval [J ′H′ , t′[. We distinguish between the cases H ′ = H̃ and H ′ = H̃−1
to obtain

q(Y , Y ′) =
H′−1∏

h=1

(
e
−λZ′

h−1
∆J ′h QZ′h−1,Z′h

)
e
−λZ′

H′−1
∆J ′

H′

( ∑

j 6=Z′
H′−1

QZ′
H′−1

,j e−λj(t
′−J ′

H′ ) + QZ′
H′−1

,Z′
H′

∑

j 6=Z′
H′

QZ′
H′ ,j

f(λZ′
H′

, λj, t
′ − J ′H′)

)
,

(9)

where

f(λ1, λ2, t) =

{
e−λ1t−e−λ2t

λ2−λ1
if λ1 6= λ2,

t e−λ1t if λ1 = λ2.

For H ′ = 0, where final and initial states coincide and H̃ ∈ {0, 1}, q takes the
simpler form

q(Y , Y ′) = e
−λZ′0

t′
+

∑

j 6=Z′0

QZ′0,j f(λZ′0 , λj, t
′). (10)

For updating (Yt)t∈[0,t1[, Y ′
0 is sampled from the initial distribution of the state process

and in (9) and (10) the factor P(Y ′
0 |Q) enters.

For updating (Yt)t∈[t0,T ], no adaptations are needed, i.e. Ỹ = Y ′; in (9) the second

line is replaced with QZ′
H′−1

,Z′
H′

e
−λZ′

H′
(t′−J ′

H′ ) and in (10) the sum is dropped.

Set Y = (Yt)t∈[0,T ]\[t0,t1[ and let V denote the set of observed data for time [t0, t1[.
Then the conditional probability of the proposal restricted to this interval is given
by

P(Y ′ |V , B, Σ, Q, Y ) = P(V |B, Σ, Y ′)
H′∏

h=1

(
e
−λZ′

h−1
∆J ′h QZ′h−1,Z′h

)
e
−λZ′

H′
(t′−J ′

H′ ).

(11)
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Combining (6), (11), and (9) (or (10)), we compute the acceptance probability
αY = min{1, ᾱY }, where:

ᾱY =
P(V |B, Σ, Y ′)

P(V |B, Σ, Y )

P(Y ′ |Q)

q(Y , Y ′)

q(Y ′, Y )

P(Y |Q)
.

Comparing (7) and (9), note that most terms in P(Y ′ |Q)/q(Y , Y ′) and q(Y ′, Y )/ P(Y |Q)

cancel. For t0 = 0, ᾱY is replaced by ᾱ
(0)
Y , while for t1 = T , ᾱY simplifies to ᾱ

(T )
Y ,

where

ᾱ
(0)
Y =

P(Y ′
0 |Q)

P(Y 0 |Q)
ᾱY , ᾱ

(T )
Y =

P(V |B, Σ, Y ′)

P(V |B, Σ, Y )
.

3.4.4 Rate Matrix

Using (8) and the fact that all elements Qkl, where l 6= k, are apriori independent,
we obtain:

P(Q |V, B, Σ, Y ) ∝ P(Y0 |Q)
d∏

k=1

d∏

l=1
l 6=k

ψkl(Qkl) (12)

(cf. Ball et al., 1999), where ψkl is a Gamma distribution with parameters fkl + Nkl

and gkl +Ok
T . To update the rate matrix, we propose a rate matrix Q′ with elements

Q′
kl ∼ Γ(fkl + Nkl, gkl + Ok

T ), Q′
kk = −

∑

l 6=k

Q′
kl,

where k 6= l. If the initial distribution of the state process P(Y0) is independent
of Q, then we can drop the term P(Y0 |Q) in (12) and Q′ is already a draw from
the appropriate full conditional distribution, which is accepted with probability 1.
However, if Y0 starts from the ergodic distribution, we accept Q′ with probability
αQ = min{1, ᾱQ}, where ᾱQ equals the ratio of the ergodic probabilities of Y0 given
the new and old rate matrix, i.e.

ᾱQ =
P(Y0 |Q′)
P(Y0 |Q)

=
ω′

ω
.

4 MCMC for Discrete Time Approximation

In this section, we describe an algorithm (referred to as DMCMC) to estimate
the parameters Q, B, and Σ given returns observed at fixed observation times
∆t, 2∆t, . . . , N ∆t = T assuming that the state process jumps only at the end
of these observation times. While this gives a good approximation of the contin-
uous time model if the rates are not too high (compared to the time step ∆t), it
allows a better adaption of the algorithm to the model and can lead to more stable
results. Finally, we give some considerations to the approximation error and discuss
the problem of how to compute the rate matrix corresponding to some transition
matrix.
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4.1 The Discrete Time Approximation

4.1.1 Discrete Time Markov Mixture of Multivariate Normal Distribu-
tions

We assume that the state process jumps only at the end of the observation times
m ∆t, m = 0, . . . , N − 1. That means that drift and volatility of the return process
Rt are constant over each observation time interval [(m− 1) ∆t,m ∆t[, taking value
µm−1 and σm−1, respectively. In comparison to representation (2), Vm simplifies to

Vm = µm−1 ∆t + σm−1 (Wm ∆t −W(m−1)∆t). (13)

In the same way, the step process Y is fully described by its values at the times
m ∆t and the unknown state process reduces to Y = (Ym)m=0,...,N−1.

Since we allow jumps of the state process at the observation times only, we replace
the rate matrix Q by the transition matrix X ∈ Rd×d, where Xkl = P(Yt+∆t = l |Yt =
k), i.e. X = exp(Q ∆t). Then the probability of leaving state k is simply 1 − Xkk

and the time spent in state k is geometrically distributed with parameter Xkk, i.e.
the average duration of state k is equal to 1/(1−Xkk).

The resulting model is a discrete time Markov mixture of multivariate normal
distributions, because Vm |Ym−1 = k ∼ N(µ(k) ∆t, C(k) ∆t), and Ym is a hidden
Markov chain with transition matrix X. For such a model, MCMC estimation is
implemented easily, see Subsection 4.3, however, we have to take care of the so called
embedding problem discussed in the next subsection.

4.1.2 Finding Rate Matrices for Transition Matrices

When we use a discrete time MSM as an approximation to the continuous time
MSM, we face the so-called embedding problem. This means we have to compute
the (continuous time) rate matrix Q corresponding to some (discrete-time) transi-
tion matrix X for a fixed time step ∆t. The problem of the existence of an adequate
rate matrix was already addressed by Elfving (1937) and in more detail by Kingman
(1962). Recently the problem regained interest in the context of credit risk model-
ing, see e.g. (Israel et al., 2001) for a collection of theoretical results and Kreinin and
Sidelnikova (2001) for regularization algorithms for the computation of an (approxi-
mating) rate matrix. Bladt and Sørensen (2005) describe how to find ML estimators
for Q for observable Markov chains using the EM algorithm or MCMC methods.

The problem turns out to be non-trivial for matrices of dimension greater than
two. In general, there may exist no, one or more than one matrix Q such that
X = exp(Q ∆t) and Q is a valid rate matrix.

If the transition matrix is strictly diagonally dominant (Israel et al., 2001, Re-
mark 2.2), or all eigenvalues of X are positive and distinct (cf. Culver, 1966, Theo-
rem 2), then log X, the matrix logarithm of X, exists uniquely; however, it need not
yield a valid rate matrix, but complex or negative off-diagonal elements may occur.
Israel et al. (2001, Theorem 3.1) state various sufficient conditions, when a valid
rate matrix does not exist. In such cases, Kreinin and Sidelnikova (2001) propose
to regularize log X by projecting onto the space of valid rate matrices. It is also
possible to set all negative off-diagonal entries, which are very small usually, to zero
and to adjust all other elements proportional to their magnitude.
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Another problem is uniqueness of Q, see Israel et al. (2001, Theorem 5.1) for
conditions guaranteeing that X allows for a unique rate matrix. If there are multiple
valid rate matrices, Israel et al. (2001) observe that choosing different rate matrices
results in different values Xt(Q) = exp(Qt) for most t and suggest to choose the
rate matrix that represents the transition matrix best in some sense.

Within the Bayesian approach we pursue in this paper, alternative methods are
available to handle this problem. Since we are using sampling based methods, it
is easy to restrict the parameter space for X to all uniquely embeddable transition
matrices, simply by rejecting and redrawing updates for X that do not have a
unique corresponding rate matrix, see Subsection 4.3. Furthermore, as outlined in
Subsection 4.2, it is possible to impose regularity through choosing an informative
Dirichlet prior on X.

4.2 Prior Distributions

Prior distributions have to be chosen for X, B, Σ, and Y0. We choose the same
priors for B and Σ as in Subsection 3.2. Again, we consider two prior assumptions
concerning the initial state Y0, one where X and Y0 are a priori independent and
one where the state process starts from the ergodic probability ω corresponding to
X, i.e. P(Y0 |X) = ω.

In contrast to Subsection 3.2, we choose a prior for the transition matrix X rather
than for the rate matrix Q. As usual for Markov mixture models, the d rows Xk·
of X, where k = 1, . . . , d, are assumed to be independent, each following a Dirichlet
distribution:

Xk· ∼ D(gk1, . . . , gkd). (14)

The vector gk· equals the a priori expectation of Xk· times a constant that determines
the variance. If X0 denotes our prior expectation of X, we may set gk· = X0

k· ck and
ck can be interpreted as the number of observations for jumps out of state k in the
prior distribution (added to the information contained in the data).

We observed an interesting relationship between choosing the hyperparameter
ck and the embedding problem discussed in Subsection 4.1.2. We found that the
larger the values c1, . . . , cd the larger is the a priori fraction of matrices X that have
a unique and valid corresponding rate matrix. For illustration, consider a model
with d = 4 states. Assume that c1 = . . . = cd = c and that the diagonal elements
X0

kk are equal to 0.6, while the off-diagonal elements X0
kl, l 6= k are equal to 0.4/3.

Table 1 shows for various values of c how the a priori fraction of regular matrices
increases with c. Thus one way to handle the embedding problem discussed in
Subsection 4.1.2 is to choose an informative prior on X.

4.3 The Discrete Time Sampler

Starting from the prior distribution discussed in Subsection 4.2, we partition the
unknowns into B, Σ, Y , and X and use a four step MCMC sampler to draw from the
augmented posterior distribution P(X, B, Σ, Y |V ). The complete-data likelihood
function (6) of the observed data V = (Vm)m=1,...,N given X, B, Σ, and Y reduces
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to:

P(V |X,B, Σ, Y ) =
N∏

m=1

ϕ(Vm, µ(Ym−1) ∆t, C(Ym−1) ∆t), (15)

where ϕ denotes the density of a multivariate normal distribution with mean vector
µ(k) ∆t and covariance matrix C(k) ∆t, whenever Ym−1 = k.

4.3.1 Sampling Drift, Volatility, and State Process

Sampling the drift B, the volatility Σ, and the state process X using efficient Gibbs
steps is entirely standard, because we are dealing with a Markov mixture model and
data augmentation as discussed e.g. in (Frühwirth-Schnatter, 2006, Chapter 11) is
easily implemented. We update all elements of Σ jointly conditional on B:

C(k) |B, Y, V ∼ IW

(
Ξ(k) +

1

2 ∆t

∑

m:Ym−1=k

(Vm − µ(k) ∆t)(Vm − µ(k) ∆t)>, νk +
Nk

2

)
,

where Nk =
∑N−1

m=0 I{Ym=k}, and update all elements of B jointly conditional on Σ:

µ(k) |Σ, Y, V ∼ N(ak, Sk),

where

Sk =
(
Diag(s2

·k)
−1 + ∆tNk(C

(k))−1
)−1

,

ak = Sk

(
Diag(s2

·k)
−1m·k + (C(k))−1

∑

m:Ym−1=k

Vm

)
.

To update Y we draw from the full conditional posterior P(Y |V, B, Σ, X) by forward-
filtering-backward-sampling, see Frühwirth-Schnatter (2006).

4.3.2 Sampling the Transition Matrix

Sampling the transition matrix X in the present context is less standard because of
the embedding problem discussed in Subsection 4.1.2. To ensure that any posterior
draw X has a unique and valid rate matrix Q, we use rejection sampling. We propose
transition matrices X ′ by sampling each row k = 1, . . . , d independently from the
proposal

X ′
k ∼ D(gk1 + Nk1, . . . , gkd + Nkd), (16)

where Nkl =
∑N−1

m=1 I{Ym−1=k, Ym=l} is equal to the number of transitions from state k
to l. This step is repeated until we obtain a proposal X ′ that has a unique and valid
rate matrix Q.

If the initial distribution of the state process P(Y0) is independent of the tran-
sition matrix, then X ′ is a draw from the appropriate full conditional posterior
density restricted to the space of all uniquely embeddable transition matrices and
is accepted with probability 1.
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If the state process starts from the ergodic distribution ω of X, then we add a
Metropolis-Hastings step and accept X ′ with probability αX = min{1, ᾱX}, where:

ᾱX =
P(Y0 |X ′)
P(Y0 |X)

=
ω′

ω
.

Usually only a few steps of rejection sampling are necessary to force regularity of X ′.
For illustration, we determine the fraction of regular matrices X ′ when the rows are
sampled from (16) for a hidden Markov chain Y with following transition counts:




N11 · · · N14
...

...
N41 · · · N44


 =




816 65 4 12
52 213 12 3
13 1 536 22
16 1 20 797


 . (17)

Additionally, the hyperparameters gkj = cX0
kj vary as in Subsection 4.2. Table 1

shows for various values of c that the aposteriori fraction of regular matrices is larger
than the prior fraction. Even in cases where the prior is rather non-informative, e.g.
for c = 4 about 50% of the matrices X drawn from the conditional posterior (16)
are regular, meaning that on average only two rejection steps are necessary for this
particular path of the hidden Markov chain Y .

4.3.3 Discretization Error

The algorithm presented in this section is tailored to a discrete time model. Hence,
we give some considerations about the error that arises from ignoring jumps within
observation times.

The estimation of Q from a given (true) transition matrix X should introduce
no bias: the computation of Q from X via the matrix logarithm takes into account
possible jumps occurring between the observation times.

The error in the estimated drift parameters occurs as follows: In the continuous
model, B represents the instantaneous rates of return. If we assume Y , Q, and Σ to
be known and denote the occupation time of state k in [0, t] with Ok

t , we estimate
in the discrete algorithm

B̄ik = E[V i
m ∆t−1 |Ym−1 = k, Q, Σ] =

d∑

l=1

Bil E
[Ol

∆t

∆t

∣∣∣Y0 = k,Q
]
.

If the rates are high compared to the observation time interval, then the number of
expected jumps within one period gets high and B̄ik approaches

∑d
l=1 Bil ωl regard-

less of k, while for low rates B̄ik is close to Bik.
Next we give a rough analysis of the covariance estimate. As Y and W are

independent, the observed covariance of the returns is the sum of the covariances
resulting from state jumps within observation intervals and the Brownian motion.
As

∫ t

0
µi

s ds =
∑d

k=1 Bik Ok
t , we have given Y0, Q, and B

C̄(k) = B Cov[O∆t |Y0 = k, Q] B> ∆t−1 +
d∑

l=1

C(l) E
[Ol

∆t

∆t

∣∣∣Y0 = k, Q
]
.

Whenever estimating all parameters together, there is much interaction, for instance,
if the drifts are underestimated, then the volatility is overestimated.
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5 Practical Considerations and Application to Sim-

ulated Data

In this section, we describe some details on the implementation. Then we present
numerical results of the proposed algorithms for simulated data. Regarding the
small number of observations and the relatively high volatility, we cannot expect
to get very accurate results (especially for the rates, which are most difficult to
estimate). However, we get reasonable results that are not visible to the naked eye.
In particular, our methods turn out to have some advantages over the widely used
EM algorithm.

5.1 Label Switching and Post-Processing MCMC

Like for any (Markov) mixture model, label switching may occur during MCMC
sampling either for the continuous time or the discrete time model, see e.g. Jasra
et al. (2005) and (Frühwirth-Schnatter, 2006, Section 3.5). In some applications it
is sufficient to constrain the parameter space appropriately; e.g. for n = 1 we can
simply demand that µ(1) > ... > µ(d) or σ(1) > ... > σ(d). However, in general suitable
constraints are not always available, and even with constraints on the parameter
space, label switching can still constitute a problem (cf. Stephens, 2000).

To make sure that all labeling subspaces are explored, one can add a random
permutation step as in Frühwirth-Schnatter (2001a) to the MCMC scheme intro-
duced in Subsections 3.4 and 4.3 and perform post-processing of the MCMC output
to handle label switching. The subsequent discussion applies both to the MCMC
output of CMCMC as well as DMCMC.

Frühwirth-Schnatter (2001a) suggested to use a point process representation of
the MCMC draws, by producing scatter plots of pairs of state specific parameters.
A visual inspection of these plots allows to study the difference in the state specific
parameters and to formulate an identifiability constraint. Although this works quite
well in lower dimensions, it is difficult or even impossible to extend this method to
higher dimensional problems.

Following Celeux (1998) we use standard k-means clustering in the point process
representation of the MCMC draws to identify the MSM, however, as opposed to
Celeux (1998), clustering is performed in a post-processing manner. This method
is described in (Frühwirth-Schnatter, 2006, p. 96f) for finite mixture models, but
applies to MSMs as well. For MSMs this method not only allows to identify the
state specific parameters, but also to estimate the hidden Markov chain. In the
present context, we apply k-means clustering to all posterior draws of the vector(
µ(1), . . . , µ(d), τ (1), . . . , τ (d))>.

The whole method is based on the idea that MCMC draws belonging to the same
state will cluster around the same point in the point process representation. Even
if label switching occurred between two draws, the classification sequence resulting
from k-means clustering indicates how to rearrange the state specific parameters. In
cases where the simulation clusters are well-separated all classification sequences are
a permutation of the labels {1, . . . , d} and show how to relabel the MCMC draws
in order to obtain draws from an identified model.
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5.2 Selecting the Number of States

Selecting the number of components of a MSM is quite a challenge, see Otranto
and Gallo (2002) for a non-parametric approach and (Frühwirth-Schnatter, 2006,
Chapters 4 and 5) for a recent review. The choice may be based on the posterior
probability P(Md |V ) ∝ P(V |Md) P(Md) of a MSM with d states. However, the
computation of these posterior probabilities, either using reversible jump MCMC as
in Robert et al. (2000) or computing the marginal likelihoods P(V |Md) using bridge
sampling as in Frühwirth-Schnatter (2004), turns out to be rather challenging.

Instead, we use BICd which is an asymptotic approximation to −2 log P(V |Md):

BICd = −2 log P(V | θ̂d,Md) + pd log N, (18)

where pd = d(d − 1) + dn + dn(n + 1)/2 is the number of unknown parameters
and θ̂d is the ML estimator of θ = (B, Σ, X) in a model with d states obtained by
maximizing the log-likelihood function log P(V | θ,Md).

5.3 Notes on the Implementation

We discuss how parameters of the prior and proposal distributions as well as initial
values can be chosen.

5.3.1 Choosing the Prior

Although, asymptotically, the hyperparameters of the prior distributions have van-
ishing influence on the results, they should be chosen with care, as we are dealing
with a limited number of observations, in order not to introduce some bias or pre-
determine the results too strongly. Slightly data dependent priors can be used to
define the prior for the drift and volatility parameters.

The prior of the rate matrix for CMCMC is chosen in such a way that fkl and
gkl in (5) are equal to the prior expectation of the number of jumps from k to l and
the occupation time in state k, respectively, both times the same factor. Hence,
denoting the expected rate matrix by Q0, fk· is set to Q0

k· ck and gkl to ck, where the
constant ck determines the variance of the prior distribution. Similar as described
in Subsection 4.2 for the discrete case, ck can be interpreted as the time we observe
state k a priori. Possible choices for priors on drifts and covariance matrices can be
found in Subsection 5.4.

5.3.2 Running MCMC

When updating the state process in CMCMC, the acceptance rate tends to be very
low for proposal blocks that are too long. Hence we choose the average block length
such that about 25% of the proposals are accepted. Additionally, we found it useful
to fix an upper bound for the block length. In our numerical experiments, proposals
containing about 3 to 5 jumps on average and 10 to 15 at maximum turned out to
be a good choice resulting in an average acceptance about 25%. The choice of these
parameters can be refined by monitoring the acceptances in various test runs.
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Finally, starting from initial values for drift, volatility, and rates (e.g. prior
means), we generate an initial value for the state process by simulating from the
smoothed discrete time state estimates.

5.4 Numerical Results for Simulated Data

Generally, the quality of the estimates is proportional to the difference between the
drifts µ

(k)
i − µ

(l)
i and indirectly proportional to the magnitude of the variances C

(k)
ii

and the rates λk. Clearly, the more data available the better the results are; this
also implies that estimates for parameters for states that are visited less frequently
are less reliable.

In a first example, we consider 200 samples of bivariate simulated prices (N =
1500, ∆t = 1) with constant volatility and four different states in the drift. Aside
from CMCMC and DMCMC, we run a discrete time ML method using optimization
methods (referred to as DMLO) proposed in Rydén et al. (1998), and a continuous
time EM algorithm (referred to as CEM), which is not available for the general
MSM with switching both in drift and volatility. For CEM, the covariance matrix is
pre-estimated using a linear regression for approximations of the quadratic variation
process of the return for different step widths as presented in Sass and Haussmann
(2004).

In the MCMC samplers 5 000 iterations are performed of which the first 500 are
discarded. The following prior distributions are used: The prior for the state-specific
drift is µ

(k)
i ∼ N(mi, s

2
i ) for k = 1, . . . , d, where mi = (minm V i

m + maxm V i
m)/2 is

the midpoint and si = maxm V i
m−minm V i

m is the range of the i-th time series. The
prior for the state-specific covariance matrix is C(k) ∼ IW(0.5 Ξ, 3), where Ξ equals
the empirical covariance matrix. The mean transition matrix has diagonal entries
0.7 and off-diagonal entries 0.1, and ck = c = 2.5, cf. Subsection 5.3.1, i.e. standard
deviations are 0.24 (diagonal) and 0.16 (off-diagonal); the corresponding mean rate
matrix has off-diagonal entries 0.128 and the standard deviations are 0.224. For
all methods, as initial values we used the prior means for C and Q (or X) and
combinations of the 0.7 and 0.3 quantiles for the drifts.

Table 2 provides a comparison of CMCMC, DMCMC, CEM, and DMLO with
respect to their statistical efficiency in parameter estimation. For all algorithms
we show estimators of volatilities τi, correlation ρ12, drifts µ

(k)
i , and rates Qkl, by

computing the average of all estimators over the 200 replications as well as the
corresponding root mean squared errors (RMSEs). On average, CMCMC gives very
precise results, clearly outperforming the discrete time methods as well as CEM.
For all approaches, RMSEs are slightly higher for series 2 (where volatility is higher
than for series 1) and for most parameters for states 1 and 4, where state switching
is faster than in states 2 and 3.

In a second example, we consider 200 samples of bivariate simulated prices (N =
2500, ∆t = 1) with switching in both drift and volatility with three states. We run
CMCMC, DMCMC, a discrete time EM algorithm similar as presented in Engel and
Hamilton (1990) referred to as DEM, and DMLO; a continuous time EM algorithm
is not available for this setting.

In the MCMC samplers, again 5 000 iterations (with a burn-in of 500) are per-
formed. Priors for B and C are as in the preceeding example. The mean transition
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matrix has diagonal entries 0.9 and off-diagonal entries 0.05, ck = c = 3.33, i.e.
standard deviations are 0.14 (diagonal) and 0.1 (off-diagonal); the corresponding
mean rate matrix has off-diagonal entries 0.05 and the standard deviations are 0.12.
Initial values for B are 0.7, 0.5, and 0.3 quantiles, initial volatilities are set to the
square-root of the empirical covariance matrix times 1.0, 0.7, and 1.1 for states 1,
2, and 3. Initial values for Q (or X) are the prior means.

Table 3 provides a comparison of DMCMC, CMCMC, DEM, and DMLO for
estimators of volatilities τ

(k)
i , correlation ρ12, drifts µ

(k)
i , and rates Qkl. For this

setting where state switching is less frequent than in the previous example, again
CMCMC results are most precise on average, however, the discretization error is low
and RMSEs are of similar order of magnitude for all methods. The most accurate
results are obtained for state 2, where volatility and rates are lowest.

For initial values rather close to true values as used here, DEM and DMLO
encountered no problems with convergence to local maxima or degenerate parameter
values. Hence, only one run of DEM and DMLO was performed for each data
set. Also the computation of a regular rate matrix from the transition matrix
worked without complications. Note that the situation is quite different for the
application to market data in the following Section. There, not only several runs
from different randomly chosen initial values are necessary, but also the embedding-
problem requires a suitable treatment. Hence, for a comparison of run times we
refer to Section 6.4.

6 Application to Modeling Stock Indices

In this section, we examine daily data ranging from January 2, 1998 to December
31, 2007 from the following four indices: S&P 500 (US), IPC (Mexico), MerVal
(Argentina), and Bovespa (Brazil). For estimation, we use daily returns multiplied
with 100, i.e. daily movements in percent, as shown in Figure 1.

6.1 Estimating a Multivariate MSM

MCMC estimation of a joint MSM for all four indices is carried out with an in-
creasing number d of states. For a fixed number of states, 10 000 MCMC draws
were generated after a burn-in of 5 000 draws using DMCMC as described in Sub-
section 4.3. Alternative estimation methods are discussed in Subsection 6.4.

Estimation is based on the following prior distributions which are invariant to re-
labeling the states. The prior for the state-specific drift is chosen as in Subsection 5.4.
The prior for the state-specific variance-covariance matrix is C(k) ∼ IW(Ξ, ν) with
ν = 2.5+ n−1

2
. Since Ξ is likely to be influential we consider a hierarchical prior where

Ξ is a random parameter with a prior of its own: Ξ ∼ W(G0, g0) where g0 = 0.5+ n−1
2

and G0 = 100g0

ν
Diag(1/s2

1, . . . , 1/s
2
n). Under this prior, an additional step has to be

added to the DMCMC scheme to sample Ξ ∼ W(G0 +
∑d

k=1(C
(k))−1, g0 + dν).

Finally, the rows Xk· of X are assumed to be independent and follow a Dirichlet
distribution as in (14) with gkk = 4 and gkj = 1/(d − 1) for j 6= k. This choice is
based on (Frühwirth-Schnatter, 2006, p. 335) and leads to a prior that is invariant
to relabeling the states.
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To select the number of states in the multivariate MSM, BIC is computed as
in (18), where θ̂d is the approximate ML estimator obtained by maximizing the log
likelihood function log P(V | θd,Md) over all MCMC draws. The resulting values
are reported in Table 4 and suggest a model with d = 4 states.

The four-state MSM is identified as described in Subsection 5.1. The estimated
state-specific drift vector (µ(1), . . . , µ(4)), the estimated state-specific volatility vec-
tor (τ (1), . . . , τ (4)), as well as the estimated state-specific correlations of the various
indices are reported in Table 5. Furthermore, the estimated discrete time transition
matrix X and the estimated continuous time rate matrix Q are reported together
with the expected duration of each state in Table 6. Mean and standard deviation of
the elements of Q are derived from the transformed MCMC draws log X, where log
is the matrix logarithm of X. The duration of state k is estimated from X using the
transformed MCMC draws 1/(1−Xkk) and from Q using the transformed MCMC
draws −1/Qkk.

Figure 2 shows the smoothed state probabilities. Figure 3 shows for each index
the time-varying mean and the time-varying volatility. Finally, Figure 4 shows all
time-varying correlations. A detailed economic interpretation of these estimation
results is given in Section 6.3.

6.2 Individual MSMs

For comparison, we also consider individual modeling of each stock index using
univariate MSMs with an increasing number d of states. This means, that each
index i is driven by an independent hidden Markov chain Y i with rate matrix Qi

(or transition matrix X i).

For each index i, DMCMC was carried out under the same priors for µ
(k)
i and X i

as in Subsection 6.1, however, the state-specific variance C
(k)
ii follows a hierarchical

prior where C
(k)
ii ∼ IG(ξi, ν) with ν = 2.5 and ξi ∼ Γ(G0, g0) with g0 = 0.5 and

G0 = 100g0

s2
i ν

. Again, a step has to be added to the DMCMC scheme to sample

ξi ∼ Γ(G0 +
∑d

k=1 1/C
(k)
ii , g0 + dν). For a fixed number of states 10 000 MCMC

draws were generated after a burn-in of 5 000 draws for each index.
We considered BIC to select the number of states for each univariate MSM. The

BIC values computed through (18) are reported in Table 4 and suggest a model with
d = 3 states for each of the indices. Each three-state MSM is identified as described
in Subsection 5.1. The estimated state-specific drift µ

(k)
i and the estimated state-

specific volatility τ
(k)
i are reported for each index i in Table 7. The aggregated BIC

reported in the last line of Table 4 corresponds to the BIC of a multivariate model
where each index i is modeled independently by an individual MSM with d states.
Evidently, the BIC of any such model is considerably larger than the optimal BIC of
the multivariate MSM, providing further evidence for our multivariate specification.

6.3 Economic Interpretation

The number of regimes (4 for the multivariate time series and 3 for each of the
individual time series) seems reasonable in view of preceding studies in the literature.
Guidolin and Timmermann (2006, 2007) investigate monthly data from 1954–1999

18



for a portfolio of large caps, a portfolio of small caps, and a portfolio of long-term
bonds (all US). They report that univariate dynamics for stock and bond requires 2
or 3 states each. Joint modeling requires 4 states termed crash (negative drift, high
volatility, low persistence), recovery (high drift, high volatility, low persistence), slow
growth (slightly positive drift, low volatility, high persistence), bull (moderate drift,
low volatility, high persistence). Correlation between large and small caps is highest
in the crash state (0.82) and lowest in the recovery state (0.5). And Rydén et al.
(1998) investigate (univariate) daily data from the S&P 500 index from 1928 to 1991
(outlier reduced ±4σ̂). Splitting the data into 10 subseries and fitting models with
switching volatility but constant mean, they found 7 of the subseries to follow 3
regimes and 3 subseries to follow 2 regimes.

As in Guidolin and Timmermann (2006, 2007), also for our data from four coun-
tries it turns out that 4 states are sufficient to describe the multivariate model. The
estimates in Section 6.1 (Table 5) show that state 2 is the only one with a positive
drift for all countries, all other drift components are not as significant but they have
a certain tendency (state 1: down, state 3: S&P 500 and IPC performing better,
state 4: S&P 500 performing worst). Generally, volatility is lower for S&P 500 than
for the other indices, while volatility is higher for MerVal and Bovespa than for
IPC. Evidently, state 2 is the low volatility state, while state 3 is the high volatility
state. Both states 1 and 4 are states of medium volatility with the exception of
MerVal where state 4 is also a high volatility state in combination with relatively
lower correlation with all other indices. Thus our interpretation of the states is a
little different. We might look at state 2 as a slow growth or even a bull state while
state 1 is an indifferent or slightly bearish state. These correspond to the characteri-
zation above. States 3 and 4 may be seen as mixed states, the first corresponding to
the financial crisis in Argentina starting 1997/98 (cf. Figure 2) which also affected
Brazil, and where MerVal and Bovespa had a poorer performance than S&P 500
and IPC. In fact, Table 5 shows that in this state the correlation between MerVal
and Bovespa is extremely high (0.72). State 4 corresponds to S&P 500 performing
on average worst of all indices. In this state, the correlation of S&P 500 with the
other indices has its minimum and MerVal is very lowly correlated with all other
indices. Looking at Figure 2, we see that this state was dominant in the years after
9/11 where S&P 500 had a poor performance, while MerVal was recovering from
the crisis.

While other interesting effects might be observed, essentially the interpretation
shows that these four states are reasonable for the years 1998–2007. Looking at
longer time periods, one might expect that more states are needed if there are
extreme events which let the indices move in different directions. E.g. we have
no state which would explain a year long down movement of IPC while S&P 500
increases. In fact we see that the correlation between S&P 500 and IPC is more or
less the same over all states, while it changes considerably for all other indices, see
Table 5 and Figure 4. Using more infrequent data for a longer horizon, in particular
when using monthly data, we might get to the four regimes proposed in Guidolin and
Timmermann (2006, 2007) as we see them in states 1 and 2 already. The analysis
of the single indices in Section 6.2 supports these observations.
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6.4 Comparison of DMCMC to Other Estimation Methods

Implementation of all estimation methods was carried out using Matlab (Version
7.3.0) on a notebook with a 2.0 GHz processor. Using DMCMC, both for the uni-
variate as well as for the multivariate models we used 10 000 MCMC draws after
a burn-in of 5 000. For comparison, we implemented CMCMC to produce 20 000
MCMC draws after a burn-in of 5 000 draws using priors similar as for DMCMC.
Finally, we also employed two discrete time ML approaches as described in Sec-
tion 5.4. We ran DEM, for which a resulting non-embeddable transition matrix can
be handled only by regularizing the corresponding (invalid) rate matrix, as well as
DMLO, which we adapted by setting the log-likelihood to −∞ for non-embeddable
transition matrices. We repeatedly started DEM and DMLO from randomly chosen
initial values (see Table 8), as these methods often get stuck at local maxima of the
likelihood function or at degenerate parameter values. The stopping criterion for
the single runs was a maximal change in the parameter values of 1%. Then, we
selected the parameters giving the maximum log-likelihood.

Computing times are summarizes for the various methods in Table 8, where
we averaged over the different indices for univariate models. When comparing the
MCMC approaches, we find that DMCMC is not only much faster than CMCMC,
but also more efficient, see Table 9 which compares inefficiency factors computed as
in Geweke (1992) for selected parameters. This is not surprising, because DMCMC
is a full Gibbs sampler while CMCMC is, at least partly, a Metropolis-Hastings
sampler. Additionally, the construction of the updates is more involved in the
continuous time setting. For instance, to update the drifts, both algorithms use a
Gibbs step, however, the number of matrix inversions required for DMCMC equals
d, while it is much larger for CMCMC, depending on the speed of state switching.

When we turn to the discrete time ML approaches, we find that DEM is faster
than DMLO and CMCMC. DMLO works well for moderate numbers of parameters,
but slows down for more states and more assets, while runtimes for CMCMC are
growing only very slowly for increasing numbers of states. DEM and DMCMC show
similar computation times, DEM being a bit faster for lower numbers of parameters
and DMCMC being faster for more complex models. Concerning the runtimes per
single runs for DEM, one should note that these are not necessarily increasing with
the numbers of parameters, since for more complex models, DEM tends to abort
early at irregular parameter values more often. This comparison should be seen with
caution, though. The number of iterations from different starting points for DEM
and DMLO is somewhat arbitrary; we tried to be rather sparing (Rydén et al., 1998,
used 200 iterations for 2 states and 500 for 3 states for univariate data). Moreover,
more sophisticated methods for the optimization could improve the speed of DMLO.

As the speed of state switching is low (except for state 3 with short duration and
high volatility), we expect the discretization error for the discrete time methods to
be negligible. Indeed, when comparing the estimates of DEM, DMLO, and DMCMC
with CMCMC, we found that both for joint and individual data, results were very
close to each other except for the parameters corresponding to the highly volatile
states, but also for these there was good accordance, see Table 10 which reports
results of CMCMC, DEM, and DMLO for selected parameters.

Thus if one is interested in point estimates only, none of the methods can be
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viewed as superior regarding the quality of the estimates. However, the Bayesian
approach provides a lot of additional econometric inference without much addi-
tional effort which we feel is a definite advantage. Examples are easy computation
of confidence regions and standard errors for all parameters of interest like state-
specific drifts, volatilities, or correlation matrices, see Table 5 to Table 6; regarding
the relatively high parameter uncertainty, this information is of great importance.
Also time-varying moments like means, volatilities or correlations are immediately
available, see Figure 3 to Figure 4.

7 Conclusion

We present a continuous time MCMC algorithm for parameter estimation in mul-
tidimensional continuous time MSMs as well as a discrete time sampler refined to
serve as an approximation method. We apply the methods to simulated as well as
historical stock data and compare the results with those of more classical discrete
time approaches.

The EM algorithm and the ML approach using optimization methods generally
require a lot of runs from different starting values which makes them time consuming
especially for higher numbers of parameters. This dependence on initial values does
not hold for the MCMC samplers, which moreover give a lot of important additional
information like confidence intervals without further effort. The continuous time
MCMC algorithm is attractive as it introduces no discretization error and is easily
extended to non-equidistant observation times; however, the computational effort is
rather big. On the other hand, the discrete time MCMC method adapted to the
continuous time setting gives good results within reasonable time. The problem of
finding a continuous time rate matrix corresponding to some discrete time transition
matrix, arising with all discrete time methods, can be handled most flexibly and
elegantly within the MCMC approach.

Applying the algorithms to financial time series, stable results are obtained only
for data with moderate volatility like stock indices. For some data sets it may
be sufficient to introduce a “jump” state with huge volatility and short duration as
observed in Kaufmann und Frühwirth (2002) for a switching ARCH model. However,
in general achieving good fits for highly volatile data definitely requires a more
refined model for the volatility. For a single asset, Hahn et al. (2007) look at a
model combining switching drift with the non-constant volatility model of Hobson
and Rogers (1998). A possibility to extend this model to multiple dimension might
be to employ Markov switching in the correlation matrix as proposed by Pelletier
(2006), and using Hobson and Rogers (1998) for the marginal volatilities. Compared
to the MSM presented here, such a model increases the number of parameters only
slightly (essentially dimension times two) and should be tractable for estimation
and applications, while offering a substantially better fit. Detailed investigations
into that direction must however remain as future work.
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Tables and Figures

c fraction prior (in %) fraction posterior (in %)
4
5

10
20
50
75

2.1
3.7

17.3
52.8
95.1
99.3

50.1
55.5
76.9
94.5
99.9

100.0

Table 1: Fraction of regular transition matrices X with a unique and valid rate
matrix Q when sampling the rows of X from the Dirichlet prior D(X0

k1 c, . . . , X0
k4 c),

with X0
kk = 0.6 and X0

kl = 0.4/3 for l 6= k for various values of c. The last
column displays this fraction for the corresponding Dirichlet posterior D(X0

k1 c +
Nk1, . . . , X

0
k4 c + Nk4), where the counts Nkl are given by (17). All fractions were

determined by Monte Carlo simulations.
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τ1 τ2 ρ12 µ1 µ2 Q
×103 ×103 ×103 ×103

true values 3.00 4.00 -0.100 6.00 6.00 -0.377 0.198 0.121 0.057
6.00 -6.00 0.134 -0.313 0.121 0.057

-6.00 6.00 0.057 0.121 -0.313 0.134
-6.00 -6.00 0.057 0.121 0.198 -0.377

CMCMC
average 3.02 4.03 -0.102 5.98 5.97 -0.370 0.190 0.117 0.063

5.98 -5.96 0.130 -0.306 0.120 0.057
-5.97 5.94 0.060 0.117 -0.308 0.131
-5.97 -5.94 0.062 0.118 0.193 -0.373

RMSE 0.07 0.10 0.033 0.22 0.34 0.056 0.048 0.036 0.028
0.18 0.25 0.029 0.039 0.026 0.019
0.18 0.27 0.019 0.025 0.033 0.027
0.24 0.35 0.031 0.036 0.042 0.052

DMCMC
average 3.16 4.12 -0.126 5.63 5.46 -0.334 0.173 0.124 0.038

5.55 -5.41 0.117 -0.270 0.094 0.059
-5.56 5.43 0.057 0.098 -0.271 0.117
-5.63 -5.45 0.039 0.123 0.173 -0.335

RMSE 0.17 0.15 0.041 0.42 0.62 0.057 0.043 0.032 0.030
0.48 0.63 0.029 0.051 0.035 0.018
0.47 0.62 0.019 0.032 0.051 0.029
0.44 0.64 0.029 0.030 0.045 0.058

CEM
average 3.24 4.34 -0.112 5.67 5.48 -0.268 0.132 0.099 0.037

5.66 -5.55 0.090 -0.220 0.082 0.048
-5.72 5.50 0.050 0.084 -0.224 0.090
-5.74 -5.53 0.038 0.096 0.136 -0.270

RMSE 0.41 0.51 0.129 0.42 0.63 0.113 0.072 0.031 0.027
0.39 0.54 0.048 0.095 0.042 0.015
0.34 0.57 0.015 0.040 0.092 0.048
0.38 0.63 0.025 0.034 0.068 0.111

DMLO
average 3.15 4.11 -0.125 5.65 5.45 -0.331 0.176 0.120 0.035

5.55 -5.41 0.117 -0.274 0.096 0.060
-5.54 5.43 0.059 0.095 -0.270 0.116
-5.65 -5.47 0.037 0.121 0.174 -0.332

RMSE 0.16 0.15 0.043 0.42 0.64 0.060 0.042 0.032 0.031
0.48 0.63 0.031 0.051 0.033 0.018
0.49 0.61 0.018 0.034 0.052 0.030
0.42 0.62 0.031 0.034 0.041 0.060

Table 2: Comparison of CMCMC, DMCMC, CEM, and DMLO for bivariate simu-
lated data with constant volatility and four different states in the drift (top: true
values, below: average and root mean squared errors (RMSE) of estimators over
200 samples for each method)
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τ1 τ2 ρ12 µ1 µ2 Q
×103 ×103 ×103 ×103

true values 3.00 2.50 0.300 4.00 2.00 -0.300 0.180 0.120
2.20 2.00 0.400 0.00 0.00 0.090 -0.180 0.090
3.50 3.00 0.500 -2.00 -4.00 0.120 0.180 -0.300

CMCMC
average 3.00 2.50 0.299 4.02 1.99 -0.310 0.194 0.116

2.19 1.99 0.395 0.00 0.02 0.096 -0.190 0.094
3.49 2.97 0.506 -1.98 -3.99 0.120 0.185 -0.305

RMSE 0.13 0.10 0.054 0.28 0.19 0.045 0.050 0.037
0.08 0.06 0.033 0.10 0.10 0.024 0.029 0.023
0.13 0.12 0.038 0.21 0.23 0.034 0.047 0.042

DMCMC
average 2.94 2.49 0.290 3.93 1.91 -0.279 0.186 0.093

2.23 2.01 0.389 0.04 -0.02 0.088 -0.175 0.088
3.43 2.87 0.484 -1.90 -3.89 0.093 0.186 -0.279

RMSE 0.14 0.09 0.049 0.22 0.18 0.045 0.041 0.038
0.07 0.06 0.035 0.10 0.08 0.019 0.023 0.017
0.14 0.17 0.043 0.23 0.24 0.039 0.038 0.042

DEM
average 2.95 2.50 0.292 3.90 1.90 -0.278 0.184 0.094

2.22 2.01 0.393 -0.02 -0.02 0.088 -0.173 0.085
3.45 2.91 0.492 -1.88 -3.85 0.099 0.172 -0.271

RMSE 0.15 0.09 0.055 0.27 0.21 0.047 0.041 0.038
0.07 0.06 0.033 0.09 0.08 0.021 0.026 0.017
0.14 0.15 0.040 0.25 0.27 0.035 0.037 0.046

DMLO
average 2.95 2.49 0.293 3.92 1.91 -0.274 0.184 0.090

2.23 2.01 0.395 0.03 -0.03 0.085 -0.172 0.087
3.45 2.88 0.489 -1.90 -3.87 0.095 0.179 -0.274

RMSE 0.13 0.09 0.047 0.24 0.18 0.049 0.044 0.041
0.08 0.06 0.031 0.10 0.09 0.020 0.024 0.017
0.13 0.17 0.040 0.20 0.24 0.037 0.038 0.044

Table 3: Comparison of CMCMC, DMCMC, DEM, and DMLO for bivariate simu-
lated data where drift and volatility are switching between three states (top: true
values, below: average and root mean squared errors (RMSE) of estimators over
200 samples for each method)
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Number of states d
1 2 3 4 5

Multivariate MSM 37 358.3 35 483.9 35 120.9 34 829.3 34 855.2
S&P 500 – individual MSM 7 929.7 7 399.1 7 342.0 7 377.0 7 445.3
IPC – individual MSM 9597.9 9 005.8 8 996.7 9 024.6 9 072.2
MerVal – individual MSM 11 429.8 10 720.1 10 688.1 10 719.6 NaN
Bovespa – individual MSM 11 348.7 10 694.9 10 619.9 10 645.8 10 687.7
Independent MSM 40 306.1 37 819.9 37 646.7 37 767.7 NaN

Table 4: Selecting the number of states for various MSMs using BIC

State k
1 2 3 4

S&P 500 µ
(k)
1 -0.07 (0.04) 0.10 (0.02) 0.12 (0.13) -0.01 (0.05)

τ
(k)
1 1.19 (0.04) 0.60 (0.02) 1.90 (0.10) 1.10 (0.04)

IPC µ
(k)
2 -0.09 (0.07) 0.24 (0.03) 0.10 (0.20) 0.09 (0.05)

τ
(k)
2 1.67 (0.06) 0.90 (0.03) 2.88 (0.15) 1.05 (0.04)

MerVal µ
(k)
3 -0.10 (0.06) 0.23 (0.05) -0.09 (0.24) 0.19 (0.15)

τ
(k)
3 1.49 (0.05) 1.30 (0.04) 3.59 (0.20) 3.23 (0.12)

Bovespa µ
(k)
4 -0.05 (0.07) 0.29 (0.05) -0.01 (0.29) 0.07 (0.09)

τ
(k)
4 1.88 (0.06) 1.33 (0.04) 4.53 (0.25) 1.80 (0.06)

S&P 500/IPC ρ
(k)
12 0.59 (0.03) 0.56 (0.03) 0.59 (0.04) 0.55 (0.03)

S&P 500/MerVal ρ
(k)
13 0.53 (0.03) 0.35 (0.04) 0.49 (0.05) 0.04 (0.05)

S&P 500/Bovespa ρ
(k)
14 0.54 (0.03) 0.55 (0.03) 0.48 (0.05) 0.46 (0.04)

IPC/MerVal ρ
(k)
23 0.56 (0.03) 0.31 (0.04) 0.62 (0.04) 0.13 (0.04)

IPC/Bovespa ρ
(k)
24 0.58 (0.03) 0.55 (0.03) 0.63 (0.04) 0.39 (0.04)

MerVal/Bovespa ρ
(k)
34 0.60 (0.03) 0.43 (0.03) 0.72 (0.03) 0.11 (0.04)

Table 5: Estimated drift µ
(k)
i , estimated volatility τ

(k)
i , and estimated correlation

ρ
(k)
ij between the various indices in the four different states of a multivariate MSM

(standard errors are given in parenthesis)

30



State k
1 2 3 4

X1k 0.92 (0.01) 0.02 (0.01) 0.06 (0.01) 0.01 (0.01)
X2k 0.02 (0.01) 0.97 (0.01) 0.00 (0.00) 0.01 (0.01)
X3k 0.16 (0.05) 0.01 (0.01) 0.80 (0.05) 0.03 (0.02)
X4k 0.02 (0.01) 0.02 (0.01) 0.01 (0.01) 0.95 (0.02)
Duration 12.8 (2.4) 33.8 (9.9) 5.4 (1.4) 23.9 (9.1)
Q1k -0.091 (0.02) 0.019 (0.01) 0.065 (0.02) 0.007 (0.01)
Q2k 0.019 (0.01) -0.033 (0.01) 0.002 (0.01) 0.011 (0.01)
Q3k 0.187 (0.06) 0.009 (0.01) -0.227 (0.06) 0.031 (0.02)
Q4k 0.024 (0.01) 0.019 (0.01) 0.006 (0.01) -0.049 (0.02)
Duration 11.5 (2.4) 33.0 (9.9) 4.8 (1.4) 23.3 (9.1)

Table 6: Estimated discrete time transition matrix X, estimated continuous time
rate matrix Q, and corresponding estimated durations of each state of a multivariate
MSM (standard errors are given in parenthesis)

State k
1 2 3

S&P 500 µ
(k)
1 0.08 (0.02) -0.04 (0.13) 0.00 (0.03)

τ
(k)
1 0.61 (0.02) 2.07 (0.14) 1.12 (0.04)

Duration 76.4 (39.1) 22.7 (9.9) 50.2 (15.0)

IPC µ
(k)
2 0.53 (0.51) -0.13 (0.09) 0.17 (0.03)

τ
(k)
2 3.58 (0.51) 1.82 (0.12) 0.94 (0.02)

Duration 6.5 (7.4) 22.9 (11.6) 68.0 (20.9)

MerVal µ
(k)
3 0.18 (0.34) 0.14 (0.04) -0.08 (0.11)

τ
(k)
3 4.60 (0.34) 1.26 (0.04) 2.09 (0.18)

Duration 5.4 (2.6) 44.4 (13.0) 10.9 (4.1)

Bovespa µ
(k)
4 0.18 (0.04) -0.13 (0.11) 0.27 (1.18)

τ
(k)
4 1.47 (0.04) 2.61 (0.17) 7.30 (1.41)

Duration 71.8 (22.0) 27.2 (9.0) 38.6 (63.0)

Table 7: Estimated drift µ
(k)
i , estimated volatility τ

(k)
i , and estimated duration for

the three different states of each univariate MSM (standard errors are given in
parenthesis)
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CMCMC DMCMC DEM DMLO
states n = 1 n = 4 n = 1 n = 4 n = 1 n = 4 n = 1 n = 4

2 104 302 10 11 3 (100) 7 (100) 4 (100) 62 (100)
3 104 298 16 17 11 (100) 25 (200) 17 (100) 415 (200)
4 108 310 19 20 30 (100) 47 (300) 84 (200) 827 (300)
5 110 312 41 39 36 (200) 76 (800) 186 (200) 8250 (800)

Table 8: Total runtimes in CPU minutes for different numbers of states for univariate
(n = 1) and multivariate (n = 4) MSMs; the total number of draws is 25 000 for
CMCMC and 15 000 for DMCMC; numbers of runs used for DEM and DMLO in
parentheses)

DMCMC CMCMC
k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

µ
(k)
1 1.51 1.80 1.45 2.20 8.32 6.15 9.54 4.55

µ
(k)
2 1.44 2.95 1.41 3.72 12.36 6.01 16.38 6.91

µ
(k)
3 1.76 2.28 1.26 2.68 11.72 5.81 7.32 3.14

µ
(k)
4 1.74 2.30 1.31 1.72 10.92 6.87 6.05 7.25

τ
(k)
1 1.80 5.10 2.80 2.87 29.13 16.61 31.36 12.17

τ
(k)
2 1.35 3.97 2.08 3.42 34.78 11.86 38.76 14.36

τ
(k)
3 1.50 3.94 2.17 3.26 29.23 19.59 37.58 18.01

τ
(k)
4 2.14 4.97 1.79 4.15 28.25 6.90 38.78 10.99

Q1k 8.96 10.82 9.77 4.64 36.96 33.66 40.18 39.97
Q2k 8.72 9.00 4.61 11.22 27.91 37.01 20.71 37.34
Q3k 7.85 4.12 6.34 2.33 42.27 41.29 42.42 38.33
Q4k 7.14 12.29 4.31 11.74 40.01 39.93 32.72 36.53

Table 9: Inefficiency factors for the posterior draws of the drift µ
(k)
i , the volatility τ

(k)
i

and the elements Qjk of the rate matrix in the four different states of a multivariate
MSM based on DMCMC (left hand side) and CMCMC (right hand side)
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State k
1 2 3 4

CMCMC µ
(k)
1 -0.06 (0.05) 0.10 (0.02) 0.15 (0.16) -0.01 (0.05)

τ
(k)
1 1.21 (0.05) 0.61 (0.02) 2.04 (0.11) 1.11 (0.04)

µ
(k)
2 -0.10 (0.07) 0.23 (0.03) 0.21 (0.27) 0.08 (0.05)

τ
(k)
2 1.70 (0.08) 0.94 (0.03) 3.10 (0.21) 1.07 (0.04)

µ
(k)
3 -0.12 (0.06) 0.22 (0.05) -0.00 (0.30) 0.16 (0.15)

τ
(k)
3 1.52 (0.06) 1.29 (0.04) 3.97 (0.25) 3.26 (0.13)

µ
(k)
4 -0.06 (0.08) 0.28 (0.05) 0.03 (0.36) 0.06 (0.09)

τ
(k)
4 1.92 (0.07) 1.36 (0.04) 4.85 (0.31) 1.82 (0.07)

DEM µ
(k)
1 -0.06 0.10 0.13 -0.01

τ
(k)
1 1.17 0.58 1.90 1.10

µ
(k)
2 -0.09 0.24 0.11 0.10

τ
(k)
2 1.66 0.88 2.88 1.04

µ
(k)
3 -0.10 0.23 -0.08 0.18

τ
(k)
3 1.47 1.29 3.59 3.20

µ
(k)
4 -0.05 0.29 0.00 0.06

τ
(k)
4 1.87 1.30 4.50 1.79

DMLO µ
(k)
1 -0.06 0.10 0.12 -0.01

τ
(k)
1 1.17 0.58 1.90 1.10

µ
(k)
2 -0.09 0.24 0.11 0.10

τ
(k)
2 1.66 0.88 2.88 1.04

µ
(k)
3 -0.10 0.23 -0.08 0.18

τ
(k)
3 1.47 1.29 3.59 3.20

µ
(k)
4 -0.04 0.29 0.00 0.06

τ
(k)
4 1.86 1.31 4.50 1.79

Table 10: Estimated drift µ
(k)
i and estimated volatility τ

(k)
i in the four different states

of a multivariate MSM using CMCMC (standard errors in parenthesis), DEM, and
DMLO

33



2000 2002 2004 2006 2008

−10

0

10

20

30

Time series plot of  time series 1

2000 2002 2004 2006 2008

−10

0

10

20

30

Time series plot of  time series 2

2000 2002 2004 2006 2008

−10

0

10

20

30

Time series plot of  time series 3

2000 2002 2004 2006 2008

−10

0

10

20

30

Time series plot of  time series 4

Figure 1: Daily returns of four stock indices (1 . . . S&P 500, 2 . . . IPC, 3 . . . MerVal,
4 . . . Bovespa) from Jan 2, 1998 to Dec 31, 2007
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Figure 2: Smoothed state probabilities from Jan 2, 1998 to Dec 31, 2007
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Figure 3: Time-varying mean (left hand side) and volatility (right hand side)
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Figure 4: Time-varying correlation
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