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Abstract

In many areas, such as telecommunications and finance, the Pareto ap-
proximation to heavy tailed data is too vague. In this paper we introduce a
distribution sensitive Hill-like estimator, so called t-Hill estimator. We show
that t-Hill estimator for the Pareto distribution is consistent and we demon-
strate the robustness of the introduced estimator on both simulated and real
data sets.
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1 Introduction

The Pareto-type distribution means that as x → ∞, then survival function F̄ (x) =
1 − F (x), where F is the c.d.f., can be written as F̄ (x) = x−αl(x), where α > 0
and l is a slowly varying function. The parameter γ = 1/α is known as the extreme
value index or tail index, which helps to indicate the size and frequency of extreme
events under F .

Let X1, ..., Xn be iid sample from F . If F is strictly Pareto, F̄ (x) = cx−α, x > xc,
the distribution of relative excesses Yi = Xi/t over high threshold t conditionally on
Xi > t is Pareto with parameter α and support [1,∞). Denoting the corresponding
order statistics by X1,n ≤ ... ≤ Xn,n, Hill (1975) suggested to estimate γ̂ by

γ̂k = Hk,n =
1

k

k∑
i=1

log
Xn−j+1,n

Xn−k,n

(1)

where Xn−k,n is the k-th threshold. The Hill estimator is based on a fact that for
a sample Y1, ..., Yn from strict Pareto distribution with support [1,∞) and survival
function F̄ (x) = x−α,

1

α̂n

=
1

n

n∑
i=1

log Yi

is the maximum likelihood estimator of 1/α. The Hill estimator Hk,n was shown by
Mason (82) to be consistent estimator for γ (as k, n → ∞, k/n → 0) whatever the
slowly varying function l may be. Since for every choice of k, one obtains another
estimator γ̂k = Hn,k, results are studied by means of Hill plots {k,Hn,k} for some
range of k ≤ n − 1. However, maximum likelihood estimators are often not very
robust, which makes them sensitive to few particular observations, which consti-
tutes a serious problem even in extreme value statistics. Using maximum likelihood
estimator point of view, the assumption that for a Pareto-type distribution, above a
certain threshold, the relative excesses behave as ordered data from a strict Pareto
distribution is sometimes over-optimistic. This mostly happens when the slowly
varying part disappears at a very slow rate in many instances resulting in severe
bias.

It is known, that formal heavy-tailed propositions can only be satisfactorily in-
volved for empirical constructs if sample data can be taken as a reasonable rep-
resentation of the underlying distribution. In practice, distribution data may be
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contaminated by errors. The point of departure is recent research which has shown
that Hill estimator is nonrobust. This means that small amounts of data contami-
nation in the wrong place can reverse unambiguous conclusions. The ”wrong place”
usually means in the upper tail of distribution. As shown in (Brazauskas and Serfling
(2000A)), small errors in the estimation of the tail index can bring large errors in the
estimation of quantiles. Robust methods for extreme values have been recently ad-
dressed by literature. (Brazauskas and Serfling (2000B)) consider robust estimation
in the strict Pareto model. (Vandewalle et al. (2007)) proposed robust tail index
estimation procedure for the semi-parametric setting of Pareto-type distributions.
As discussed in the paper (Stehĺık et al.(2008)), t-estimation is at least competitive
estimation technique at presence of heavy tails. In (Fabián and Stehĺık (2008)) we
have shown that t-estimation is clearly better when contamination is present. In
this paper we study the generalization of Hill estimator based on t-estimator for
Pareto and prove it to be more robust than the classical one. The main novelty
of this approach is distributional sensitivity of the estimator: despite all classical
modification of Hill estimator for Pareto regularly varying tails are based on asymp-
totics x → ∞, our method is more sensitive to the interior of the distribution and
thus to the distribution itself. In the recent literature there were some works on
robustification of Hill estimator, however, our main aim in this paper is to construct
the t-Hill like estimator, which is distributional sensitive. However, as it can be seen
from this paper, as side effect we get also robustness. The proofs and technicalities
are put into Appendix to maintain the better discussion.

2 Theory

It was shown in Fabián (2008) that regular continuous distributions with interval
support X ∈ R can be characterized, besides the cumulative distribution function
F (x) and probability density f(x), by its t-score, given by

T (x) =
1

f(x)

d

dx

(
− 1

η′(x)
f(x)

)
, (2)

where η : X → R is an appropriate, strictly increasing continuous mapping. In the
case of support X = (a,∞), mapping

η(x) = log(x− a) (3)

yields often the simplest formulas for t-scores. The t-score is a suitable function for
using the generalized moment method for estimation of parameters of heavy-tailed
distributions, since it appeared that T is for these distributions bounded, and the
moments

ET k =

∫
X
T (x)k dF (x), k = 1, 2, ..., (4)

exist and are often given by simple expressions. Let us call them the t-score mo-
ments. Particularly,

ET = 0 (5)

and ET 2 is the Fisher information for x∗, which is the solution of equation

x∗ : T (x) = 0,
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called the t-mean, which can be considered as a measure of central tendency of
distributions (Fabián, 2004, 2008).

Let θ ∈ Θ ⊆ Rm and (X1, ..., Xn) be iid sample from Fθ. The parametric version
of (4) yields the generalized moment estimation equations for θ in the form

θ̂n :
1

n

n∑
i=1

T (xi; θ)
k = ET k(θ), 1 ≤ k ≤ m. (6)

Since θ̂n is the M-estimate, it is strongly consistent and asymptotically normal with
the asymptotic variance-covariance matrix derived by Fabián (2001). Since distri-
butions with heavy tails have bounded t-scores, θ̂n of heavy-tailed distributions are
robust with respect to large values in observed samples.

Let us consider Pareto distribution P (1/α) with support X = [1,∞) and density

f(x) =
α

xα+1
.

Using the mapping η = log(x− 1), η′(x) = 1/(x− 1) and, by (2), the t-score (2) is

Tα(x) = −1− (x− a)f ′(x)/f(x) = α(1− x∗/x)

where x∗ = (α+ 1)/α. It follows from (6) and (5) that

n∑
i=1

T (xi;α) = 0

so that x̂∗ = x̄H where x̄H = n/
∑n

1 1/xi is the harmonic mean, and

α̂ = 1/(x̂∗ − 1).

It suggests to introduce a variant of the Hill estimator as

γ̂k =
1

α̂k

= H∗
k,n =

1

1
k

k∑
j=1

Xn−k,n

Xn−j+1,n

− 1, (7)

where harmonic mean is taken from the last k observed values with thresholdXn−k,n.
In the following theorem we provide the consistency of the t-Hill estimator for

Pareto distribution. For proof see Appendix.

Theorem 1 T-Hill estimator for Pareto distribution is consistent.

3 Comparisons
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One of problems with the Hill estimator is that it is not sufficiently robust. On
the other hand, since the t-Hill estimator is based on harmonic mean, it is resistant
to large observations so that it yields more realistic values for large k. Hill and t-Hill
plots for random sample from Pareto P (1) distribution are shown in Figure 1. The
length of the sample was 1001 points. It is apparent that t-moment Hill estimator
in his first part too much oscillates. The reason is that it is very sensitive to an
abrupt change of the threshold value.

Figure 2 and Figure 3 shows Hill plot H = {k,Hn,k} and t-Hill plot H∗ =
{k,H∗

n,k} for samples generated from the contaminated Pareto distribution

Fc = 0.9 ∗ P (1) + 0.1 ∗ P (δ)

with δ = 3 (see Figure 2) and δ = 5 (see Figure 3).
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It is apparent that values of t-Hill plots for large k are not too much influenced
by large observed values as in ordinary Hill plots.

Oscillations of t-Hill plots can be suppressed by smoothing. Figures 4 and 5
show smoothed versions of mH∗ computed simply as

mHk,n =
1

2r + 1

k+r∑
j=k+1

Hj−[r/2]],n

(with omitting in the figures first [r/2] values).
Consider now data generated from a distribution different from the Pareto one.

As an example, let us consider the log-gamma distribution L(c, α) with support
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X = (1,∞) and density

f(z) =
cα

Γ(α)
(log z)α−1z−(c+1). (8)

In this case, more simple formulas are obtained by the use of η : (1,∞) → R in the
form

η(x) = log(log x).

Since η′(x) = 1/(x log x), by (2)

T (x) =
1

f(x)

d

dx

(
−(log x)cαx−c

)
= c log x− α

so that the ’loglog’ t-mean is x∗ = eα/c. As the ’second log-log moment’ ET 2 =
E[c2 log2(x/x∗)] = α, the estimation equations (6) are

n∑
i=1

c log xi − α = 0 (9)

n∑
i=1

(c log xi − α)2 = α (10)

By setting s1 = 1
k

∑k
i=1 log xi and s2 = 1

k

∑k
i=1 log

2 xi, it follows from (9) α̂ = s1ĉ
and from (10) ĉ(s2 − s21) = s1 so that the Hill-like estimate of the tail index (cf.
(Beirlant et al.(2005))) is given by closed-form expression

γ̂k =
1

ĉ k
=

s2
s21

− 1.
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The Hill-like estimates based on log-gamma distribution in Figure 6 are denoted
by lgH. It appeared that for data generated from L(1, 1) distribution, the lgH plot
gives similar results as the Hill and t-Hill plots. On the other hand, for data taken
from the Fréchet distribution (Figure 7), the Fréchet Hill-like estimator underesti-
mates the true value γ = 1, whereas the last part of both H and H∗ it overestimate.

Real data illustrative example deals with data for Example 1, (Stehĺık et al.(2008)).
These data consist of 96 payments in one year in non life insurance. At Figure 8
the estimation for this data is illustrated.

4 Conclusions

There are two main ways of avoiding misleading conclusions due to nonrobust tools
in the presence of contaminated data. One is based on statistics that automatically
remove from the sample data that are potentially troublesome. The other relies on
the specification of parametric models for the distribution of the data and uses robust
estimators of the parameters. As can bee seen from this letter, t-Hill estimator of
Pareto tail index is distribution sensitive and ”naturally” robust. If more accurate
fit to the central part of distribution is needed, we suggest to use e.g. combining a
Pareto estimate of the upper tail with a non-parametric estimate of the rest of the
distribution, as suggested by (Cowell and Victoria-Feser (2007)) and by (Davidson
and Flachaire (2007)) with bootstrap methods. The derivation of distribution of
t-Hill estimator, comparison of its efficiency with other estimators together with its
comparison to a different robust estimators will be worth further investigation.

5 Appendix

Proof of Theorem 1
Consistency of the tail empirical measure, defined as a random element ofM+(0,∞],

the space of nonnegative Radon measures on (0,∞], implies the consistency of t-Hill
estimator for 1/(α + 1). The proof proceeds by a series of steps following the proof
of classical Hill estimator in (Resnick (2007)).
STEP 1): consistency of the empirical measure (given in 4.14 by (Resnick (2007)))

implies X(k)
b(n

k
)

P→ 1 as n → ∞, k → ∞, k
n
→ 0.

This allows us to consider X(h), as a consistent estimator of b(n
h
).

STEP 2): In M+(0,∞] : vn
P→ vα as n → ∞, k → ∞, h

n
→ 0. This is proved by a

scaling argument.
Define the operator T : M+(0,∞] × (0,∞) → M+(0,∞] by T (µ, x)(A) = µ(xA).
From (4.14) in (Resnick (2007)) and Proposition 3.1 therein we get joint weak con-

vergence (vn,
X(k)
b(n

k
)
) =⇒ (vα, 1) in M+(0,∞)× (0,∞).

Since v1n(.) = T (vn,
X(k)
b(n

k
), the conclusion will follow by the continuous mapping

theorem and continuity of the operator T at (vα, 1).
STEP 3): Integrate the tails of the measure against x−2dx. The integral functional
is continuous on [1,M ], for any M and so it is only on [M,∞] that care must be
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exercised. By the 2nd converging Theorem, only we must show that

lim
M→∞

lim
n→∞

P

[∫ ∞

M

v1n(x,∞)x−2dx > δ

]
= 0

We have

P

[∫ ∞

M

v1n(x,∞)x−2dx > δ

]
≤ I + II

where II ≤ P
[
| b̂(n/k)
b(n/k)

− 1| ≥ η
]
→ 0 and

I ≤ P
[∫∞

M
vn((1− η)x,∞)x−2dx > δ

]
= P

[∫∞
M(1−η)

vn(x,∞)x−2dx > δ
]

and this probability has a bound fromMarkov’s inequality δ−1E
[∫∞

M(1−η)
vn(x,∞)x−2dx

]
=

δ−1
∫∞
M(1−η)

n
k
P (X1 > b(n/k)x)x−2dx → δ−1

∫∞
M(1−η)

x−2−αdx for n → ∞.

Finally δ−1
∫∞
M(1−η)

x−2−αdx = const
Mα+1 → 0 for M → ∞.

We have applied Karamata’s theorem (see Thereom 2.1 in (Resnick (2007)), page
25.).

STEP 4): We have proved that
∫∞
1

v1n(x,∞]x−2dx
P→

∫∞
1

vα(x,∞]x−2dx.
So

∫∞
1

v1n(x,∞]x−2dx is a consistent estimator of 1
α+1

and we just need to see that
this is indeed the modified Hill estimator. This is done as follows:∫ ∞

1

v1n(x,∞]x−2dx =

∫ ∞

1

1

h

n∑
i=1

ε(xi/b
1(n, k))(x,∞]x−2dx =

=
1

k

n∑
i=1

∫ Xi/b(n,k)v1

1

x−2dx = 1− 1

h

n∑
i=1

1
X(i)
X(h)
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