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Abstract
In official statistics statistical diclosure control balances between the laws of data
protection and the wish of analysts to have access to the original survey data. Ap-
plying Quatember’s (2009) standardized randomized response questioning design in
this context provides a masking scheme, which can be used for different levels of
data protection. In this paper the questioning design is translated into a masking
scheme. The instruction for the adequate calculation of the masking parameters in
accordance to the wanted level of data protection is given. Furthermore the sta-
tistical properties of the estimation of one-dimensional proportions and a manual
for the reconstrustion of (2× 2)-tables, when one or both variables are masked, are
presented.
KEY WORDS: Statistical disclosure control; estimation of proportions; standard-
ized randomized response technique

1 Introduction

There is a continuously growing demand from empirical researchers for access to orig-
inal survey data. Due to the aspects of data confidentiality and privacy protection of
the respondents the release of such microdata files is constrained by law. Therefore
statistical disclosure control has to balance between the rights of the survey units and
the reasonable preservation of information (cf. Fuller 1993). According for instance
to Domingo-Ferrer and Mateo-Sanz (2002) the methods of masking to reduce the
risk of reidentification of survey units can be classified into three three categories:
global recoding, local suppression and substitution of data (cf. for instance: Willen-
borg and de Waal 1996). The ideas of the randomized response questioning designs
– originally proposed by Warner (1965) as instrument to reduce item-nonresponse
and untruthful answering for variables of a highly personal matter – are also appli-
cable in this context (cf. Warner 1971 and for instance: Gouweleeuw et al. 1998 or
Katzoff and Kim 2006) ).

Quatember (2009) presented a standardization of randomized response tech-
niques for the estimation of the relative size of a certain subpopulation. Let y
be a dichotomous (1/0)-variable under study and U be a population of size N . Let
furthermore be Uy=1 be the subset of size Ny=1, for which y = 1 applies. The pa-

rameter of interest be the relative size πy=1 = Ny=1

N
of Uy=1. Moreover let Ux=1 be

another subgroup of U of relative size πx=1 = Nx=1

N
, for which x = 1 of another di-

chotomous variable x applies, which is not related to y (see: Greenberg et al. 1969).
Moreover let Uy=0 = U − Uy=1 be the subgroup of size Ny=0 = N −Ny=1).

Applying the standardized randomized questioning design a respondent has to
answer randomly

• with probability p1 the question “Are you a member of group Uy=1?”,

• the question “Are you a member of group Uy=0?” with probability p2 or

• with probability p3 the question “Are you a member of group Ux=1?”

or is instructed just to say

1



• “yes” with probability p4 or

• “no” with probability p5

(
∑5

i=1 pi = 1, 0 ≤ pi ≤ 1 for i = 1, 2, ..., 5). πx=1 and the probabilities p1 to p5 are
the freely chooseable design parameters of the standardized randomized response
questioning design. In a probability sample s of size n ≤ N the auxiliary variable z
with

zk =

{
1 if unit k answers “yes”,

0 otherwise

is observed. The probability of a “yes”-answer given y is:

P (zk = 1) = p1 · yk + p2 · (1− yk) + p3 · πx=1 + p4. (1)

This yields the following unbiased “randomized response estimator” π̂RR
y=1 of pa-

rameter πy=1 with the given design weights dk of a probability sampling design P ,
which are the reciproc values of the sample inclusion probabilities πk (k = 1, 2, ..., n):

π̂RR
y=1 =

1

N
·
∑

s

zk − (p2 + p3 · πx=1 + p4)

p1 − p2

· dk (2)

(
∑

s is the abbreviation for
∑n

k=1). The variance of this standardized estimator π̂y=1

(2) is given by

VP (π̂RR
y=1) =

1

N2
·
(
VP

(∑
s
yk · dk

)
+

+
(p2 + p3 · πx=1 + p4) · (1− (p2 + p3 · πx=1 + p4))

(p1 − p2)2
·
∑

U
dk +

+
1− 2 · (p2 + p3 · πx=1 + p4)− (p1 − p2)

p1 − p2

·
∑

U
yk · dk

)
. (3)

(Quatember 2009). VP (
∑

s yk · dk) refers to the variance of the Horvitz-Thompson
estimator

∑
s yk · dk) for the total

∑
U yk for a given probability sampling design P

(see for instance: Srndal et al. 1992). (3) can be estimated unbiasedly by inserting

an unbiased estimator V̂P (
∑

s yk ·dk) for VP (
∑

s yk ·dk) and
∑

s(
zk−(p2+p3·πx=1+p4)

p1−p2
·d2

k)

for
∑

U yk · dk.

2 The Masking Scheme

A translation of the simple probability mechanism behind the standardized ques-
tioning design sot hat it can be used as a masking scheme for dichotomous variables,
which can be applied on the data after the data collection and before their release,
can be done in the following way: Let y be the variable under study and z now be
the publishable masked variable. Let

zk|(yk = 1) =

{
1 with probability p

0 with probability 1− p
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and

zk|(yk = 0) =

{
1 with probability 1− q

0 with probability q

The probabilities p and q are the masking parameters of this masking scheme
(0 ≤ p ≤ 1, 0 ≤ q ≤ 1). So as to be able to reasonably fix the values of these
parameters we have to include the wanted level of data privacy protection in our
considerations. The following ratios λ1 and λ0 of conditional probabilities based on
the “Leysieffer-Warner-measures of jeopardy” (Leysieffer and Warner 1976) can be
objective measures of the loss of data privacy of survey units induced by the masking
parameters:

λi,k =
max[P (zk = i|yk = 1), P (zk = i|yk = 0)]

min[P (zk = i|yk = 1), P (zk = i|yk = 0)]
(4)

(1 ≤ λi,k ≤ ∞; i = 1, 0, k ∈ U). For i = 1 (4) refers to the data protection with
respect to zk = 1, for i = 0 with respect to zk = 0. For our masking scheme these
loss-measures are given by

λ1,k = λ1 =
max[p; 1− q]

min[p; 1− q]
(5)

and

λ0,k = λ0 =
max[1− p; q]

min[1− p; q]
. (6)

(∀ k ∈ U). λ1 = λ0 = 1 indicates a totally protected data privacy. This means that
the published variable z contains absolutely no information on y. But the more the
λ-measures differ from unity the more information about y is contained in z and
the less the individual’s data are protected against the data collector. When z = y
these measures are given by λ1 = λ0 = ∞.

A statistical agency might fix those values of λ1 and λ0, which allow enough
disclosure control. Without loss of generality let us assume subsequently, that we
will choose the two categories of the variable under study in such way, that yk = 1
is at least as worthy of protection as yk = 0 (p ≥ 1 − q, 1 ≤ λ1 ≤ λ0 ≤ ∞). From
(5) and (6) the masking parameters p and q can be expressed by λ1 and λ0:

p =
λ1 · λ0 − λ1

λ1 · λ0 − 1
(7)

and

q =
λ1 · λ0 − λ0

λ1 · λ0 − 1
. (8)

We have to distinguish between different types of sensitivity of the variable with
respect to data protection: For a nonsensitive variable, where λ1 = λ0 = ∞ applies,
it is easy to see that p and q are equal to 1. For a variable, of which only yk = 1, but
not yk = 0 is sensitive λ1 < λ0 = ∞ applies. This yields p = 1 and q = λ1−1

λ1
. If both

yk = 1 and yk = 0 are sensitive, λ1 ≤ λ0 < ∞ applies and the masking parameters
can be calculated directly from (7) and (8).
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3 The Statistical Properties

For the publishable masked variable z the probability of zk = 1 is given by

P (zk = 1) = p · yk + (1− q) · (1− yk) = (p− (1− q)) · yk + 1− q (9)

Therefore the following theorem applies:

Theorem: For a probability sampling design P with design weight dk

π̂y=1 =
1

N
·
∑

s

zk − (1− q)

p− (1− q)
· dk (10)

(p 6= 1 − q) is an unbiased estimator of parameter πy=1. The variance of π̂y=1 is
given by

VP (π̂y=1) =
1

N2
·
(

VP

(∑
s
yk · dk

)
+

q · (1− q)

(p− (1− q))2
·
∑

U
dk+

+
1− 2 · (1− q)− (p− (1− q))

(p− (1− q))
·
∑

U
yk · dk

)
. (11)

This variance is unbiasedly estimated by

VP (π̂A) =
1

N2
·
(

V̂P

(∑
s
yk · dk

)
+

q · (1− q)

(p− (1− q))2
·
∑

U
dk+

+
1− 2 · (1− q)− (p− (1− q))

(p− (1− q))
·
∑

s

zk − (1− q)

p− (1− q)
· d2

k

)
. (12)

VP (
∑

s yk · dk) refers to the variance of the Horvitz-Thompson estimator for the

total
∑

U yk for a probability sampling design P . V̂P (
∑

s yk · dk) is an unbiased
estimator of this variance. The other two summands within the outer brackets can
now be seen as the price that has to be paid in terms of accuracy for data privacy
protection.

For simple random sampling without replacement estimator (10) is given by

π̂y=1 =

∑
s zk/n− (1− q)

p− (1− q)
. (13)

And for this sampling method the variance of (13) is given by

V (π̂y=1) =
πy=1 · (1− πy=1)

n
· N − n

N − 1
+

1

n
·
(

q · (1− q)

(p− (1− q))2
+

+
1− 2 · (1− q)− (p− (1− q))

p− (1− q)
· πy=1

)
. (14)

V (π̂y=1) is unbiasedly estimated by

V̂ (π̂y=1) =
π̂y=1 · (1− π̂y=1)

n− 1
· N − n

N
+

1

n
·
(

q · (1− q)

(p− (1− q))2
+

+
1− 2 · (1− q)− (p− (1− q))

p− (1− q)
· π̂y=1

)
. (15)
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4 2 × 2-Ccontingency Tables

Often besides the estimation of one-dimensional parameters also two-dimensional
contingency tables are of interest for data analysts. In the case of masking at least
one of the two original variables y1 and y2 included, such a table should be recon-
structable from the masked variables in the microdata file. The sample proportions
ρij of the combinations y1 = i and y2 = j in a simple random sample are un-
biased estimators of the two-dimensional (y1 × y2)-population proportions πij and
ρy1=i =

∑
j=1,0 ρij and ρy2=j =

∑
i=1,0 ρij of their marginal proportions πy1=i and

πy2=j respectively (i = 1, 0 and j = 1, 0). When y1 is masked by z1 before the release
of data in the way described above and z2 = y2, the two-dimensional (z1×y2)-sample
proportions τij with marginals τz1=i =

∑
j=1,0 τij and ρy2=j =

∑
i=1,0 ρij are observed

(i = 1, 0 and j = 1, 0). The two marginal proportions ρy2=j of variable y2 can be
observed directly from the unmasked data vector of y2 (j = 1, 0). The unknown
marginal proportions ρy1=i (i = 1, 0) can be estimated unbiasedly by π̂y1=1 (10).

The expectation of τ11 is

E(τ11) = ρ11 · p + (ρy2=1 − ρ11) · (1− q)

= ρ11 · (p− (1− q)) + ρy2=1 · (1− q).

Then the unobserved sample proportion ρ11 can be reconstructed unbiasedly by

ρ̂11 =
τ11 − ρy2=1 · (1− q)

p− (1− q)
. (16)

The other original sample proportions of (y1 × y2) can be unbiasedly estimated by

ρ̂10 = π̂y1=1 − ρ̂11, (17)

ρ̂01 = ρy2=1 − ρ̂11 (18)

and
ρ̂00 = 1− ρy2=1 − ρ̂10. (19)

If the variables y1 and y2 are both masked by the same masking procedure we
can reconstruct the original (y1 × y2)- from the (z1 × z2)-table by substituting the
marginal proportion ρy2=1 in (16), (18) and (19) by its unbiased estimator π̂y2=1

(10).

5 Summary

The presented masking scheme allows to protect data for publication at a desired
level. The price to pay for publishable microdata files is one of accuracy of survey re-
sults. Two-dimensional sample-tables for the original variables can be reconstructed
from the masked variables. The next step should be to allow individually differing
levels of privacy protection for the survey units. This makes it possible for instance
to fix different data protection levels for different strata of survey units as for exam-
ple for different municipalities.
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Appendix: Proof of the Theorem

With the sampling design P and the masking mechanism M we have

E(π̂y=1) =
1

N
· EP

[
EM

(∑
s

(
zk − (1− q)

p · (1− q)
· dk

)
|s

)]

=
1

N
· EP

(∑
s
yk · dk

)
=

1

N
·
∑

U
yk = πy=1.

The variance of estimator (10) is given by

V (π̂y=1) = VP (EM(π̂y=1|s)) + EP (VM(π̂y=1|s)).
Then

VP (EM(π̂y=1|s)) =
1

N2
· VP

(∑
s
yk · dk

)
.

Let the sample inclusion indicator be

Ik =

{
1 if unit k ∈ s,

0 otherwise.

The covariance CM( zk−(1−q)
p·(1−q)

, zl−(1−q)
p·(1−q)

|s) is equal to 0 ∀ k 6= l and therefore for the

second summand of V (π̂y=1)

EP (VM(π̂y=1|s)) = EP

[
1

N2
· VM

(∑
U

Ik · zk − (1− q)

p · (1− q)
· dk|s

)]

= EP

[
1

N2
·
∑

U
I2
k · d2

k · VM

(
zk − (1− q)

p · (1− q)

)]

=
1

N2
·
∑

U
VM

(
zk − (1− q)

p · (1− q)

)
· dk.

applies. We can write

VM

(
zk − (1− q)

p · (1− q)

)
=

1

(p− (1− q))2
· VM(zk)

and because of y2
k = yk

VM(zk) = 1− q + (p− (1− q)) · yk − (1− q + (p− (1− q)) · yk)
2

= (1− q + (p− (1− q)) · yk) · (q − (p− (1− q)) · yk)

= (1− q) · q + (p− (1− q)) · (1− 2 · (1− q)− (p− (1− q))) · yk.

This yields

EP (VM(π̂y=1|s)) =
1

N2
·
(

(1− q) · q
(p− (1− q))2

·
∑

U
dk +

+
1− 2 · (1− q)− (p− (1− q))

p− (1− q)
·
∑

U
yk · dk

)
,

which completes the proof.
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