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Abstract

Two approaches are considered to design experiments for a correlated ran-
dom field when the objective is to obtain precise predictions over the whole
experimental domain. Both take the uncertainty of the estimated parame-
ters of the correlation structure of the random field into account. The first
one corresponds to a compound D-optimality criterion for both the trend and
covariance parameters. The second one relies on an approximation of the
mean squared prediction error already proposed in the literature. It is conjec-
tured, and shown on a small example, that for some particular settings both
approaches yield similar optimal designs, thereby revealing a sort of equiv-
alence theorem for random fields: optimal designs for parameter estimation
(obtained through a suitable criterion) are optimal (or close to optimal) for
prediction/interpolation of the random field. Keywords: Computer experi-
ments, Correlated errors, Experimental design

1 Introduction

For the development of design theory for experiments with independent observa-
tions, the so called equivalence theorem of Kiefer and Wolfowitz (1960), henceforth
KWET, and its extensions, have played a major role. It allows to quickly check
whether given designs are optimal, and led to the development of efficient algo-
rithms for constructing good designs. In particular, sequential constructions exist
which achieve the same asymptotic prediction efficiency as non-sequential designs
that use perfect knowledge of the system parameters and are much more demanding
in terms of computational cost. One of the key aspects of the KWET is the estab-
lishment of the equivalence of optimal designs between two criteria of optimality, one
related to parameter estimation, the other related to prediction (classically between
D- and G-optimality).

Unfortunately, in the design and analysis for correlated random fields, given by

Yt (x) = η(x, β) + εt (x) , t ∈ T ⊂ R , (1)

most of the conditions of the KWET are not met. Here, t ∈ T indexes the different
realizations of the field, β is an unknown vector of parameters in Rp, x a known
vector of regressors belonging to some set X , and the random term ε (x) has zero
mean, (unknown) variance σ2 and a parameterized spatial error correlation structure
such that IE[εt (x) εt (x′)] = σ2c(x, x′; γ). It is often assumed that the deterministic
term has a linear structure, i.e., η(x, β) = f>(x)β, and that the random field εt (x)
is Gaussian, allowing efficient estimation of β, σ and γ by Maximum Likelihood.

Note that setup (1) is used in such diverse areas of spatial data analysis (cf.
Cressie, 1993) as mining, hydrogeology, natural resource monitoring and environ-
mental science, and has become the standard modelling paradigm in computer
simulation experiments, following the seminal paper of Sacks et al. (1989). In
that case all realizations of the field are identical, Yt (x) ≡ Yt′ (x) for all t, t′, and
limx′→x c(x′, x; γ) = c(x, x; γ) = 1 for all x.

In this note we will argue why we believe, that a KWET-type relationship could
also be achieved in setup (1) and demonstrate on a simple example how it could
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work. The detailed investigation of its potential and limitations is left to future
work.

2 Motivation

We must carefully distinguish between two fundamentally distinct problems that
are both usually designated as “prediction” problems. One may refer to Pronzato
(2008) for a detailed overview of the differences between the two situations.

2.1 Prediction of a distinct realisation (parameter estima-
tion): {Yt(x), x ∈ ξ} → {Yt′(x), x ∈ S}

In this case, observations in the model (1) at a given t ∈ T and sites ξ are used to
estimate a future realization of the random field, at a different t′ 6= t, and in general
at different sites, S 6= ξ. This problem has usually been assessed under the hypoth-
esis that realizations at different times are independent and identically distributed.
Under this assumption, prediction amounts to estimation of the deterministic term
η(x, β), and requires estimation of the parameters β in (1), say by β̂n. The predic-
tion of a future realization of the field Yt′(x) is then simply η̂n(x) = η(x, β̂n). Note
that here, the influence of γ is somewhat hidden, but estimators of β̂n will generally
depend upon it, such that precise estimation of γ̂ is required as well.

For this case, particularly for determining a so-called D-optimal design (maximiz-
ing the information matrix determinant), Müller and Stehĺık (2009b) have suggested
to maximize a compound criterion with weighing factor α,

Φ[ξ|α] = |Mβ(ξ, γ)|α · |Mγ(ξ, γ)|(1−α), (2)

which consists of determinants of information matrices corresponding to trend and
covariance parameters, stemming from

IE

{
−∂2lnL(β,γ)

∂β∂β> −∂2lnL(β,γ)
∂β∂γ>

−∂2lnL(β,γ)
∂γ∂β> −∂2lnL(β,γ)

∂γ∂γ>

}
=

(
Mβ(ξ, γ) 0

0 Mγ(ξ, γ)

)
, (3)

where, for the linear model

Mβ(ξ, γ) =
1

nσ2

∑

x∈ξ

∑

x′∈ξ

f(x)[C−1
n (γ)]x,x′f

>(x′),

and

{Mγ(ξ, γ)}ii′ =
1

2
tr

{
C−1

n (γ)
∂Cn(γ)

∂γi

C−1
n (γ)

∂Cn(γ)

∂γi′

}
,

using notation {Cn(γ)}ii′ = c(xi, xi′ ; γ), i, i′ = 1, . . . , n. In terms of experimen-
tal design, the framework is not much different from the standard one (for which
the KWET holds), the difference being that for fixed t the errors εt(x) in (1) are
correlated.
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2.2 Prediction of the same realization (inter-/extrapolation):
{Yt(x), x ∈ ξ} → {Yt(x), x ∈ X 6= ξ}

The situation here is very different from that encountered in the setting above.
Indeed, even in the idealized framework where β and the parameters σ2 and γ of
the covariance function of εt(x) in (1) are known, predicting the value of Yt(x)
at an unsampled site x requires the collection of (neighboring) observations on the
particular realization of the field, whereas in a setting where the εt(x) are (spatially)
uncorrelated, prediction at x 6∈ ξ is simply given by η(x, β) when β is known and
observations are useless.

Contrasting parameter estimation and interpolation/extrapolation, the second
task is usually treated by minimizing a functional of the so-called kriging variance
Var[Ŷt(x|ξ)] = IE[(Ŷt(x|ξ)−Yt(x))2] at site x, interpreted as the unconditional Mean-
Squared Prediction Error (MSPE) for the best linear unbiased predictor at x. For
instance one may minimize the maximum of it over a set X ,

min
ξ

max
x∈X

IE[(Ŷt(x|ξ)− Yt(x))2]. (4)

Here, Ŷt(x|ξ) denotes the best-linear unbiased predictor of Yt(x) based on the design
points in ξ and associated observations Yt(ξ) = [Yt(x1), · · · , Yt(xn)]>.

Assume that γ is known. In the linear setting (universal kriging, with η(x, β) =
f>(x)β in (1) a polynomial in x), it takes the form

Ŷt(x|ξ) = f>(x)β̂ + c>n (x, γ)C−1
n (γ)[Yt(ξ)− Fnβ̂] ,

where {cn(x, γ)}i = c(x, xi; γ), i = 1, . . . , n, and β̂ = β̂(γ) is the weighted Least-
Squares estimator of β in the linear regression model, that is

β̂(γ) = [F>
n C−1

n (γ)Fn]−1F>
n C−1

n (γ)Yt(ξ) ,

with Fn = [f(x1), . . . , f(xn)]>. We can write

Ŷt(x|ξ) = v>n (x, γ)Yt(ξ)

with v>n (x, γ) ∈ Rn. The MSPE is given by

MSPEξ(x, σ2, γ) = σ2
{
1− c>n (x, γ)C−1

n (γ)cn(x, γ)

+g>n (x, γ)[F>
n C−1

n (γ)Fn]−1gn(x, γ)
}

with gn(x, γ) = f(x)− F>
n C−1

n (γ)cn(x, γ). Note that the MSPE depends on (σ2, γ),
with σ2 intervening only as a multiplicative factor. For a recent discussion of the
related design problem in a slightly different context see Harman and Štulajter
(2009).

The situation gets more complicated when the covariance parameters are es-
timated (by Maximum Likelihood) from the same dataset. Indeed, the resulting
additional uncertainty then needs to enter the design criterion. For instance, follow-
ing the approach of Harville and Jeske (1992) and using a first-order expansion of
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the MSPE for the estimated parameters (σ̂2
n
, γ̂n) around their true value, we obtain

as an approximation some additional correcting function term for the MSPE related
to the observations collected. Assume for simplicity that σ2 is known, we then get
the approximation

M̂SPEξ(x, γ̂n) = MSPEξ(x, σ2, γ̂n)

+tr

{
M−1

γ (ξ, γ̂n)
∂v>(x, θ)

∂γ

∣∣∣∣
γ̂n

Cn(γ̂n)
∂v(x, θ)

∂γ>

∣∣∣∣
γ̂n

}
, (5)

where Mγ(ξ, γ) is the part of the expected information matrix related to the param-
eters γ, see (3). (When σ2 is unknown and estimated on the same dataset, we need
to consider the full information matrix Mσ2,γ(ξ, σ

2, γ) for parameters σ2 and γ, and

then replace in (5) M−1
γ (ξ, γ̂n) by the part of M−1

σ2,γ(ξ, σ̂
2
n
, γ̂n) corresponding to γ;

a similar modification can be used in (2).) Consequently, Zimmerman (2006) (for a
similar criterion see also Zhu and Stein, 2005) regards

min
ξ

max
x∈X

M̂SPEξ(x, γ) (6)

for some nominal γ as the (local) design problem, which he terms EK-(empirical
kriging-)optimality. The objective here is to take into account the dual effect of
the design (obtaining accurate predictions at unsampled sites and improving the
accuracy of the estimation of the covariance parameters, those two objectives being
conflicting, see Pronzato, 2008) through the formulation of a single criterion.

3 The proposed “equivalence”

Let us briefly review one of the essential statements of the KWET (Kiefer and Wol-
fowitz, 1960), which was formulated for the classical linear regression setup with
uncorrelated errors: it relates D-optimal designs for estimating the regression coef-
ficients β to so-called G-optimum designs, which minimize the maximum prediction
variance, i.e.

min
ξ

max
x∈X

Var[Ŷt(x)].

Those criteria coincide in the space of approximate designs, thus their respective
efficiencies for exact designs can expected to be high. It is thus natural that Müller
and Stehĺık (2009b) formulated the conjecture that it may always be possible to
find an α that allows to find designs optimizing Φ[ξ|α] with high EK-efficiency, thus
establishing a relationship in the spirit of the KWET. Note that, using (5) and due
to the unbiasedness of the kriging predictor, we can approximate (4) by

min
ξ

max
x∈X

{
Var[Ŷt(x)] + tr

{
M−1

γ Var[∂Ŷt(x)/∂γ]
}}

, (7)

which particularly highlights the affinity with G-optimality. The reasoning is much
similar as for the two-stage design suggested by Zhu and Stein (2006), which however
confines itself to the covariance parameters and seeks to find a balance not in the
criterion itself, but applying two different criteria for two sets of observations. For
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more details and the derivation of the above form and variants see Abt (1999);
Zimmerman (2006); Zhu and Zhang (2006).

It has been observed that both criteria are seeking to find a compromise between
space-filling behavior (i.e. the trend parameter and the kriging variance component
respectively) and short distances (i.e. the covariance parameter or the correcting
term component respectively). We are thus led to believe that equally good effi-
ciencies can be produced for both setups. This would be very advantageous since
EK-optimal designs are much more difficult to generate than parameter estimation
designs, since they require embedded optimizations over the candidate sets. A quasi
KWET-relationship would thus allow to replace the very demanding optimization
(6) by the much less intensive (2) without much loss in efficiency. We will in the
next section exemplify for an extremely simple setup, how and to what extent this
proposed equivalence could be exploited.

4 Example

As the example setup we will use the Ornstein-Uhlenbeck process on T =[0,1],
which is a special case of (1) with η(x, β) = β, i.e. f(x) ≡ 1, and c(x, x′; γ) =
exp |x− x′|/γ = ρ|x−x′|, setting σ2 ≡ 1 to avoid identifiability problems (see, e.g.,
Ying, 1991). We will from now on be using the alternate parametrization ρ for ease
of interpretation.

For this example, we have analytic results that correspond to the case α = 0.
Kisělák and Stehĺık (2008) and Zagoraiou and Antognini (2008) proved the optimal-
ity of space-filling designs. For the setup with an additional slope parameter Dette
et al. (2008) have shown that the points 0 and 1 must be included in the design,
that for growing ρ the design tends to a space-filling design and that the efficien-
cies of space filling designs can be quite high also for small ρ (for small numbers of
observations). The similar behavior for designs based on the kriging variance is a
widely acknowledged fact and has led to the predominance of space-filling designs
for computer simulation experiments (cf. Bursztyn and Steinberg, 2006).

However, contrasting results are known for the case α = 1. Here Müller and
Stehĺık (2009a) show that the optimal designs collapse into one point; see also Zago-
raiou and Antognini (2008).

4.1 Two observations fixed

We will start our investigations by fixing x1 = 0 and x2 = 1 and we will be looking for
the optimal position x∗3 for the third design point. This is inspired by the findings of
Dette et al. (2008) in the linear case and will allow a more comprehensive exposition.
We will also in the following for simplicity fix ρ = 1

100
, although similar, albeit

perhaps more trivial results can be achieved for other choices of ρ.
The correlation matrix is now given simply by

C3(ρ) =




1 ρ ρ|x3|

ρ 1 ρ|1−x3|

ρ|x3| ρ|1−x3| 1



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and the resulting kriging variance as a function of the remaining point x3 (and the
points for prediction x) is displayed in the left panel of Figure 1 with the axis for
x3 in front. It is evident that x3 = 0.5 as expected minimizes the function for all
maxima in x. That this is not the case for the corrected EK-criterion (6) can be
easily seen from the right panel of Figure 1. Here it is evident, that the minimum
is reached for a point close to the endpoints of the region. In fact, the minimizing
argument is x∗3 = 0.934 (or x∗3 = 0.066 respectively), which gives a much lower
“corrected”, though also much higher kriging variance than the center point. This
discrepancy of the two criteria is well documented in Figure 2.

0.0 0.5 1.0

0.0

0.5
1.0

0.0

0.5

1.0

0.0 0.5 1.0

0.0
0.5

1.0

0.0

0.5

1.0

Figure 1: Kriging variance (left panel) and “corrected” kriging variance (right panel)
as a function of x3 (front axis) and x.
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Figure 2: Kriging variance (lower line) and “corrected” kriging variance (upper line)
as a function of x for x3 = 0.5 (left panel) and x3 = 0.934 (right panel).

It now remains to be seen, whether the design (0, 0.934, 1) (or at least one with
an efficiency close to it) can be achieved employing criterion (2) with a particular
choice of α. Its components are of the expected form, the |Mβ| being concave with
a maximum value of 29/11 at x3 = 0.5 and the |Mρ| being convex with a limit
value of 236.765 for x3 → 0 or x3 → 1 respectively. We can in fact tune the
compound criterion Φ[x3|α] in such a way that it gives an optimum at x3 = 0.934
(or 0.066 respectively) by choosing α = 0.8025, which can be seen from the enlarged
picture in the right panel of Figure 3. Thus for this example we have achieved exact
“equivalence” between the extrapolation and the estimation based criterion.
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Figure 3: |Mβ|, |Mρ|/100 and Φ[x3|α = 0.8025] as functions of x3 (left panel) and
enlarged portion of the graph (right panel).

4.2 One observation fixed

Let us continue the example by lifting the restriction to the endpoints and allowing
two of the design points to vary freely. It is natural for reasons of symmetry to then
fix one of the three points in the center, i.e. x2 = 0.5 and the other two equally
distant from the boundaries, i.e. x3 = 1 − x1. One can now plot the correcting
terms in (7) as a function of x3 and x and see that the situation differs much from
the above, see Figure 4.
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Figure 4: Correcting terms in (7) as functions of x3 (front axis) and x for x1 = 0
and x2 = 1 (left panel) and x1 = 0.5 and x3 = 1− x1 (right panel).

It is indeed so, that although again the optimal designs corresponding to the
kriging variance and the EK-criterion differ (for the former we find x∗1 = 0.120 and
x∗3 = 0.880, while for the latter x∗1 = 0.099 and x∗3 = 0.901), their structure and the
form of the respective functions, see Figure 5 are rather similar.

Once more we are looking for an α, which will yield a similar design for the com-
pound criterion as for EK-optimality. The functions |Mβ| and |Mρ| are as expected
with spikes at x1 → x2 → x3 = 0.5 and yet again we can choose α = 0.8477 to yield
exactly x∗1 = 0.099 = 1− x∗3 (see Figure 6).

7



0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Kriging variance (lower line) and “corrected” kriging variance (upper line)
as a function of x for x∗1 = 0.120 = 1−x∗3 (left panel) and x∗1 = 0.099 = 1−x∗3 (right
panel).
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Figure 6: |Mβ|, |Mρ|/100 and Φ[x3|α = 0.8477] as functions of x3 = 1 − x1 (left
panel) and enlarged portion of the graph (right panel).

4.3 Three point optimal designs

Let us now finally lift all restrictions and allow the three points to vary freely. A
grid search reveals that the EK-optimal design is indeed {0.099, 0.5, 0.991}. Unfortu-
nately now, the Φ[.|α]-optimal designs are asymmetric for all α, so exact correspon-
dence of the optimal designs cannot be achieved. Thus even in this simple example
the conjecture in the strict sense is disproved. However, by comparing the criterion
function for the α = 0.8477 giving a design identical to EK-optimality and the func-
tion for the corresponding true optimum design {0, 0.743, 1} (or {0, 0.257, 1}) reveals
that the values are very close (see Figure 7). Thus we can expect local optima (e.g.
yielded from an exchange algorithms) to still perform rather well.

The presented examples, albeit of limited scope, give hope that the conjecture
of Müller and Stehĺık (2009b) of a KWET-type relationship will continue to hold
in more complex and realistic settings, perhaps not always exactly. They also show
that the EK-optimal designs (and the corresponding Φ[.|α]-optimal designs) can be
quite far from the often suggested and frequently employed space-filling designs.
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Figure 7: Φ[x3|α = 0.8477] as functions of x3 with x1 = 0, x2 = 1 (upper line) and
x3 = 1− x1 with x2 = 0.5 (lower line).

5 Conclusions and Outlook

Suppose therefore that a value α can always be found such that the optimal design
for problem (2) is reasonably efficient for (7). It is then much advantageous to solve
(2) rather than (7) since the former does not require maximization over the candidate
set X . Several approaches have been suggested to solve (2) with α = 1, see Müller
and Pázman (2003); Fedorov and Müller (2007). It remains to be checked whether
such approaches can be used when α < 1. The main difficulty here is to choose a
suitable α beforehand. Since it is reasonable in most applications to assume that X
is finite, the evaluation of MM̂SPEξ(γ) = maxx∈X M̂SPEξ(x, γ) has a moderate
computational cost. One can then simply compute optimal designs for (2) for a

series of values of α, and retain the best one in terms of MM̂SPEξ(γ).
The MSPE (5) can also be used for the sequential construction of designs. Let

ξn0 denote some initial design of size n0. At step k of such a sequential construction,
k ≥ n0, choose xk+1 as

xk+1 = arg max
x∈X

M̂SPEξk(x, γ)

and then update ξk into ξk+1 = {ξk, xk+1}. Again, when X is finite, the sequential
construction above has a moderate computational cost. If one wishes to minimize

the integrated MSPE, IM̂SPEξ(γ) =
∫
X M̂SPEξ(x, γ)µ(dx), for some measure of

interest µ, one can choose instead at step k

xk+1 = arg min
x∈X

∫

X
M̂SPE{ξk,x}(x, γ)µ(dx) .

The parameters γ can be estimated after each generation of a new sampling point
xk+1, rending the sequential designs above adaptive. Algorithms for the construction
of adaptive designs for (2) are also of interest. We believe that such investigations
could yield to the development of cheap algorithms for the sequential construction
of designs that would take into account the prediction task and at the same time
the reduction of uncertainty in the estimation of the covariance parameters, thereby
following the same ultimate objective as designs optimal in the sense of (7). The fact
that in most applications X is finite might reveal particularly useful for studying
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the convergence properties of such adaptive procedures, see Pronzato (2009) for such
developments in the case of uncorrelated errors.

Contrasting with the uncorrelated case, non-additivity and nonconvexity are
amongst the obstacles for constructing optimal designs for random fields, which have
recently been reviewed by Müller and Stehĺık (2009a). Furthermore the concept of
Fisher information is conveniently used as a basis for designing efficient experiments.
However, if the output stems from correlated random fields as (1), the conditions
under which Fisher information may be suitable must be restated. For some small
sample results see also Ginsbourger et al. (2009).

A last point that we wish to investigate concerns the estimability of the random-
field parameters σ2 and γ. Under the infill design framework (i.e., when the design
space is compact) typically not all parameters are estimable, only some of them
being micro-ergodic, see Stein (1999). However, it seems reasonable to consider
that Jeffrey’s law will apply and that parameters that are not estimable from the
data Yt(ξ) should have little influence on predictions (interpolations/extrapolations)
for the random filed. This requires theoretical investigations as well as numerical
confirmation for small to moderate sample sizes.
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Müller, W. G. and M. Stehĺık (2009b). Compound optimal spatial designs. Envi-
ronmetrics (online).

Pronzato, L. (2008, February). Optimal experimental design and some related con-
trol problems. Automatica 44 (2), 303–325.

Pronzato, L. (2009). One-step ahead adaptive D-optimal design on a finite design
space is asymptotically optimal. Metrika.

Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn (1989, November). Design
and analysis of computer experiments. Statistical Science 4 (4), 409–423.

Stein, M. L. (1999, June). Interpolation of Spatial Data: Some Theory for Kriging
(Springer Series in Statistics) (1 ed.). Springer.

Ying, Z. (1991). Asymptotic properties of a maximum likelihood estimator with
data from a Gaussian process. Journal of Multivariate Analysis 36, 280–296.

Zagoraiou, M. and A. B. Antognini (2008). Optimal designs for parameter estimation
of the Ornstein-Uhlenbeck process. Applied Stochastic Models in Business and
Industry (online), n/a+.

Zhu, Z. and M. Stein (2005, October). Spatial sampling design for parameter es-
timation of the covariance function. Journal of Statistical Planning and Infer-
ence 134 (2), 583–603.

Zhu, Z. and M. L. Stein (2006, March). Spatial sampling design for prediction with
estimated parameters. Journal of Agricultural, Biological, and Environmental
Statistics 11 (1), 24–44.

11



Zhu, Z. and H. Zhang (2006). Spatial sampling design under the infill asymptotic
framework. Environmetrics 17 (4), 323–337.

Zimmerman, D. L. (2006). Optimal network design for spatial prediction, covariance
parameter estimation, and empirical prediction. Environmetrics 17 (6), 635–652.

12


