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Abstract

Skew Normal and skew-t distributions proved to be useful for capturing skewness and

kurtosis in data directly without transformation. Recently, finite mixtures of such

distributions have been considered as a more general tool for handling heterogeneous

data involving asymmetric behaviors across subpopulations. We consider such mixture

models for both univariate as well as multivariate data. This allows robust modeling

of high-dimensional multimodal and asymmetric data generated by popular biotechno-

logical platforms such as flow cytometry.

We develop Bayesian inference based on data augmentation and Markov chain Monte

Carlo sampling. In addition to the latent allocations, data augmentation is based on a

stochastic representation of the skew normal distribution in terms of a random effects

model with truncated normal random effects. For finite mixtures of skew normals this

leads to a Gibbs sampling scheme which draws from standard densities, only. This

MCMC scheme is extended to mixtures of skew-t distributions based on representing

the skew-t distribution as scale mixture of skew normals.

As an important application of our new method, we demonstrate how it provides

a new computational framework for automated analysis of high-dimensional flow cy-

tometric data. Using multivariate skew normals and skew-t mixture models, we could

model non-Gaussian cell populations rigorously and directly without transformation or

projection to lower dimensions.

Key words: Flow cytometry, Markov chain Monte Carlo, Gibbs sampling, kurtosis,

skewness, stochastic representation

1 Introduction

When modeling empirical univariate or multivariate data y1, . . . ,yN that exhibit multimodal-

ity, skewness, or excess kurtosis, it is often assumed that the data are independent realiza-

tions of a random variable Y from a finite mixture distribution. This leads to the standard

finite mixture model considered e.g. in McLachlan and Peel (2000) and Frühwirth-Schnatter

(2006). An important special case of such a model is a mixture of normal distributions which

allows arbitrarily close modeling of any distribution by increasing the number of components.

The flexibility, however, causes problems when such a model is used in a clustering context,
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because multiple normal distributions may be necessary to capture skewness and kurtosis of

a single cluster, thus leading to wrong inference about the number of clusters in data (Jasra,

Stephens, Gallagher, and Holmes, 2006). Similarly, in the context of supervised learning,

groups of observations represented by asymmetrically distributed data can lead to wrong

classification.

For illustration, we show in Figure 1 the histogram of the global cognition scores of 451

patients suffering from Alzheimer’s disease which will be analyzed in detail in Subsection 4.1.

The left hand side of Figure 1 shows the result of fitting a three component mixture of normal

distributions which correspond to the optimal number of components as will be demonstrated

in Subsection 4.1. Interestingly, the bimodality of the fitted mixture indicates the presence of

two clusters, however, the normal mixture needs two components to fit the skewness present

in the second cluster.

To address such practical issues formally, attention has shifted recently toward finite mix-

ture models where the component densities themselves capture skewness and excess kurtosis.

Applications and case studies for modeling with skew distributions now include research areas

such as economics, finance, climatology, environmetrics, engineering and biomedical sciences

(Genton, 2004). On the other hand, for robustness against outliers in multimodal data, mix-

tures of Student-t distributions have been applied by Peel and McLachlan (2000) and Lin,

Lee, and Ni (2004) which allow for heavy tails of each component. Very recently, application

of finite mixture models have been to the univariate skew normal distribution (Lin, Lee, and

Yen, 2007), to the univariate skew-t distribution (Jasra et al., 2006; Lin, Lee, and Hsieh,

2007), to the univariate skew student-t-normal distribution (Cabral, Bolfarine, and Pereira,

2008) as well as to the multivariate skew normal distribution (Lin, 2009a) and the multi-

variate skew-t distribution (Lin, 2009b; Pyne, Hu, Wang, Rossin, Lin, Maier, Baecher-Allan,

McLachlan, Tamayo, Hafler, De Jager, and Mesirov, 2009).

Following this important work, we consider univariate as well as multivariate skew normal

and skew-t distributions as defined by Azzalini (1985, 1986), Azzalini and Dalla Valle (1996)

and Azzalini and Capitanio (2003) as building blocks for a finite mixture model. We apply our

methodology to the (univariate) clinical data from Alzheimer’s Disease introduced above and

will show that the optimal mixture of skew normal distributions needs only two components

to fit the observed distribution, see the right hand side of Figure 1 . In addition, we consider
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Figure 1: Gaussian and skew normal mixture modeling of Alzheimer’s disease data set. The

histogram, common to plots (a) and (b), shows the univariate cognition test scores of subjects

in the data set. The “rugplot” common to both plots (it appears just below the x-axis in either

plot) shows each subject’s genotype. A darker blue point in the rug indicates more e4 alleles in a

subject’s genotype implying higher risk factor for AD. In plot (a), fitting of a 3-component Gaussian

mixture is shown with each component in distinct color (purple, green or red). In plot (b), fitting

of a 2-component skew normal mixture is shown with each component in distinct color (purple or

brown).

(a) (b)
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clustering multivariate flow cytometric data from Graft versus Host Disease. Flow cytometry

is a biotechnological platform commonly used in immunology, cancer biology and molecular

biology. It is used to investigate expression of proteins on the surface and within every

cell in a given sample with fluorophore-conjugated antibodies (or markers). Currently, up

to 17 markers can be measured for each of the tens to hundreds of thousands of cells per

sample (Perfetto, Chattopadhyay, and Roederer, 2004) thus producing high-throughput high-

dimensional data. In addition, flow cytometric data are often multimodal, skewed and noisy.

At present, the analysis of flow cytometric data analysis, which involves identification of

cell populations, is done manually by projecting the data in two dimensions. Our Bayesian

mixture modeling with multivariate skew distributions can allow automatic high-dimensional

clustering to substitute the current slow and subjective manual approach to flow cytometric

data analysis. As noted above, our model also allows the asymmetry in data to be modeled

directly without the need for any transformation which might lead to imprecise inference

about the number of clusters in data.

Although the extension from a standard to a skew finite mixture model appears quite

natural, the actual estimation results in a complex computational problem. Subsequently,

we pursue a Bayesian approach using data augmentation and MCMC. Towards this, we use a

representation of the skew normal and the skew-t distribution which combines the standard

hierarchical representation of a finite mixture model introduced in Diebolt and Robert (1994)

with a stochastic representation of the skew normal and the skew-t distribution in terms of

a random effects model with truncated normal random effects (Azzalini, 1986; Henze, 1986).

After applying a suitable transformation of the component specific parameters this leads to

a rather straightforward MCMC sampling scheme which involves a two-block Gibbs sampler

for finite mixtures both of univariate and multivariate skew normal distributions. For finite

mixtures of univariate and multivariate skew-t distributions a third block has to be added

which involves a Metropolis-Hastings step for the degrees of freedom and a Gibbs step for

the latent scaling factors in the infinite mixture representation of the skew-t distribution.

The rest of the paper is organized as follows. Section 2 shortly reviews skew normal and

skew-t distributions. Section 3 introduces finite mixtures of such distributions and discusses

Bayesian estimation using MCMC. Section 4 provides applications to clustering univariate

clinical data from Alzheimer’s Disease and multivariate cytometric data from Graft versus
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Host Disease.

2 Skew Normal and Skew-t Distributions

2.1 The Scalar Skew Normal Distribution

A univariate random variable X follows a standard skew normal distribution with skewness

parameter α, X ∼ SN (α), if the density takes the form p(x|α) = 2ϕ(x)Φ(αx), where ϕ(·)

and Φ(·) are, respectively, the pdf and the cdf of the standard normal distribution. Evidently,

for α = 0 the standard normal N (0, 1) results. Choosing α ̸= 0 leads to a density with a

skewness coefficient in [-0.9953,0.9953]. The first systematic treatment of this density has

been given by Azzalini (1985, 1986).

In our subsequent Bayesian analysis we use the following stochastic representations of

the skew normal distribution (Azzalini, 1986; Henze, 1986). Let Z ∼ T N [0,∞) (0, 1) and

ε ∼ N (0, 1), independently, and let δ ∈ (−1, 1). The random variable X defined by

X = δZ +
√
1− δ2ε (1)

follows the standard skew normal SN (α) distribution with skewness parameter α = δ/
√
1− δ2.

Thus the skew normal distribution may be seen as the superposition of a normal random vari-

able with a latent truncated standard normal random effect.

The expectation and the variance of X are given by E(X) =
√

2
π
δ and V(X) = 1− 2

π
δ2.

To adjust for arbitrary location and scale, a location parameter ξ ∈ ℜ and a scale parameter

ω ∈ ℜ+ are introduced. The random variable Y = ξ + ωX, where X ∼ SN (α), is said to

follow the skew normal distribution SN (ξ, ω2, α). The density of this distribution reads:

fSN
(
y; ξ, ω2, α

)
=

2

ω
ϕ

(
y − ξ

ω

)
Φ(αω−1(y − ξ)). (2)

A stochastic representation of the SN (ξ, ω2, α) distribution is obtained by applying the affine

transformation Y = ξ + ωX to (1):

Y = ξ + ωδZ + ω
√
1− δ2ε, (3)
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where Z ∼ T N [0,∞) (0, 1) and ε ∼ N (0, 1), independently, and δ = α/(
√
1 + α2).

2.2 The multivariate Skew Normal Distribution

A multivariate version of the skew normal distribution has been defined in Azzalini and

Dalla Valle (1996) by generalizing the stochastic representation (1). The r components of a

multivariate random variable X = (X1, . . . , Xr)
′ ∈ ℜr are defined for j = 1, . . . , r as Xj =

δjZ +
√

1− δ2j εj, where δj ∈ (−1, 1), Z ∼ T N [0,∞) (0, 1) as before, and ε = (ε1, . . . , εr)
′ ∼

Nr (0,Ωε) is independent of Z and multivariate normal with arbitrary correlation matrix Ωε.

Applying the affine transformation Y = ξ + ωX with location parameter ξ = (ξ1, . . . , ξr)
′ ∈

ℜr and diagonal scale matrix ω = Diag(ω1, . . . , ωr) with ωj > 0 immediately leads to the

stochastic representation

Yj = ξj + ωjδjZ + ωj

√
1− δ2j εj. (4)

The resulting distribution is called the basic multivariate skew normal distribution, denoted

by SN r (ξ,Ω,α), with density

fSN (y; ξ,Ω,α) = 2ϕr(y − ξ;Ω)Φ(α
′
ω−1(y − ξ)), (5)

where ϕr(x;Ω) is the pdf of the multivariate zero mean Nr (0,Ω) distribution and Φ(·) is

the cdf of the univariate N (0, 1) distribution. The parameters α and Ω are related to the

parameters δ = (δ1, . . . , δr)
′
, ω and Ωε in the stochastic representation (4) through:

Ω = ωΩω, α =
1√

1− δ′
δ
Ω

−1
δ, (6)

whereΩ = ∆Ωε∆+δδ
′
and∆ = Diag

(√
1− δ21 · · ·

√
1− δ2r

)
. The matrixΩ is a correlation

matrix, because Ωjj = (1− δ2j )(Ωε)jj + δ2j = 1, thus Ωjj = ω2
j .

Given the parameter (ξ,Ω,α) of a SN r (ξ,Ω,α) distribution, the parameters (δ,ω,Ωε)

in the stochastic representation (4) are obtained from:

δ =
1√

1 +α′Ωα
Ωα, Ωε = ∆−1Ω∆−1 − α̃α̃′

, (7)
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where Ω = ω−1Ωω−1 with ω = Diag(Ω)1/2 being a diagonal matrix obtained from the

diagonal elements of Ω, α̃ = (α̃1, . . . , α̃r)
′
with α̃j = δj/

√
1− δ2j and ∆ is the same as above.

The marginal distribution of Yj is equal to the scalar skew normal SN
(
ξj, ω

2
j , α̃j

)
, hence

E(Y) = ξ + ωδ

√
2

π
. (8)

For alternative ways of constructing multivariate skew normal distributions see Arellano-Valle

and Azzalini (2006).

2.3 Skew-t Distributions

The kurtosis coefficient of a skew normal distribution is restricted to the interval [3, 3.8692].

To achieve a higher degree of excess kurtosis, skew-t distributions have been introduced by

Azzalini and Capitanio (2003). A univariate random variable Y follows the scalar skew-t

distribution, Y ∼ ST (ξ, ω2, α, ν), if it has the following stochastic representation:

Y = ξ + ω
X√
W
, (9)

where X ∼ SN (α) and W ∼ G
(
ν
2
, ν
2

)
, independently. The Gamma distribution G (a, b) is

defined with density p(y|a, b) = baya−1e−by/Γ(a). The pdf of Y reads:

fST
(
y; ξ, ω2, α, ν

)
=

2

ω
tν(xy)Tν+1

(
αxy

√
ν + 1

ν + x2y

)
, (10)

where xy = (y − ξ)/ω and tν and Tν denote, respectively, the pdf and the cdf of a standard

Student-t distribution with ν degrees of freedom. A random variable Y taking values in

ℜr follows the multivariate skew-t distribution, Y ∼ ST r (ξ,Ω,α, ν), if it has the following

stochastic representation:

Y = ξ +
1√
W

X, (11)
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where X ∼ SN r (0,Ω,α) and W ∼ G
(
ν
2
, ν
2

)
, independently. The pdf of Y reads:

fST (y; ξ,Ω,α, ν) = 2ftr(y; ξ,Ω, ν)Tν+r

(
α

′
ω−1(y − ξ)

√
ν + r

ν +Qy

)
, (12)

where ω = Diag(Ω)1/2, Qy = (y − ξ)
′
Ω−1(y − ξ), ftr(y; ξ,Ω, ν) denotes the pdf of the

multivariate Student-t distribution tr (ξ,Ω, ν) and Tν denotes the cdf of the scalar standard

Student-t distribution as above. The skew-t distribution converges to the skew normal dis-

tribution as ν → ∞. For any r ≥ 1, the expectation of the skew-t distribution, provided that

ν > 1, is given by:

E(Y) = ξ + ωµX , µX = δ

√
ν

π

Γ((ν − 1)/2)

Γ(ν/2)
. (13)

3 Skew Normal and Skew-t Finite Mixture Models

We consider univariate and multivariate finite mixture models where the component densities

p(yi|θk), k = 1, . . . , K, arise either from a skew normal or a skew-t distribution with com-

ponent specific parameter θk. The marginal distribution takes the form of a finite mixture

distribution with weights η = (η1, . . . , ηK) where
∑K

k=1 ηk = 1, e.g. for a mixture of scalar

skew normal distributions:

p(yi|θ1, . . . ,θK ,η) = η1fSN
(
yi; ξ1, ω

2
1, α1

)
+ · · ·+ ηKfSN

(
yi; ξK , ω

2
K , αK

)
, (14)

or for a mixture of multivariate skew-t distributions:

p(yi|θ1, . . . ,θK ,η) = η1fST (yi; ξ1,Ω1,α1, ν1) + · · ·+ ηKfST (yi; ξK ,ΩK ,αK , νK) .

Although this extension appears quite natural, the estimation of such a finite mixture model

results in a complex computational problem. In our subsequent Bayesian analysis we combine

the stochastic representations of the skew normal and the skew-t distribution discussed in

Section 2 with the standard hierarchical representation of a finite mixture model in terms

of a sequence of latent allocations. This leads to a rather straightforward MCMC sampling

scheme.
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3.1 Finite Mixture of Random Effects Model Representation

Like any other finite mixture model, mixtures of skew normal or skew-t distributions may be

regarded as a hierarchical latent variable model, where the distribution of the observations

y = (y1, . . . ,yN) is specified conditional on latent allocations S = (S1, . . . , SN):

p(y|S,θ1, . . . ,θK) =
N∏
i=1

p(yi|Si,θ1, . . . ,θK) =
N∏
i=1

p(yi|θSi),

where Pr(Si = k|η) = ηk, k = 1, . . . , K and S1, . . . , SN are mutually independent. Condi-

tional on Si, the distribution underlying p(yi|θSi) is represented as in Section 2 as a random

effects model. Thus we obtain a representation of skew normal or skew-t mixtures in terms

of finite mixtures of random effects models with truncated normal random effects.

For scalar skew normal mixtures as defined in (14) the application of (3) to each compo-

nent density leads to following representation for i = 1, . . . , N :

zi ∼ T N [0,∞) (0, 1) ,

yi|(Si = k) = ξk + ωkδkzi + ωk

√
1− δ2kεi, εi ∼ N (0, 1) ,

where z1, . . . , zN and ε1, . . . , εN are mutually independent. To implement our Bayesian ap-

proach, we introduce a new parametrization in terms of the component specific parameters

θ⋆k = (ξk, ψk, σ
2
k), where ψk = ωkδk and σ2

k = ω2
k(1− δ2k):

zi ∼ T N [0,∞) (0, 1) ,

yi|(Si = k) = ξk + ψkzi + ϵi, ϵi ∼ N
(
0, σ2

k

)
. (15)

The original parameter θk = (ξk, ω
2
k, αk) is recovered through:

αk =
ψk
σk
, ω2

k = σ2
k + ψ2

k, (16)

because ψk/σk = ωkδk/(ωk
√

1− δ2k) = αk and σ2
k + ψ2

k = ω2
k(1− δ2k) + ω2

kδ
2
k = ω2

k.

Representation (15) offers several advantages. First, a conditionally conjugate prior for

θ⋆k = (ξk, ψk, σ
2
k) is available and, second, straightforward MCMC estimation using a two-

block Gibbs sampler becomes feasible, see Subsection 3.2. A related representation with
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random effects distribution zi ∼ T N [0,∞) (0, ω
2
k) has been used in Lin et al. (2007), how-

ever, ξk, ω
2
k and δk are sampled in different blocks and a Metropolis-Hastings algorithm is

needed to sample δ1, . . . , δK , while representation (15) allows to sample all component specific

parameters jointly from a closed form posterior.

A similar representation is available for mixtures of multivariate skew normal distribu-

tions SN r (ξk,Ωk,αk) , k = 1, . . . , K, where the componentwise application of (4) leads to

a mixture of random effects models with repeated measurements and a univariate truncated

normal random effect:

zi ∼ T N [0,∞) (0, 1) ,

yi|(Si = k) = ξk +ψkzi + ϵi, ϵi ∼ Nr (0,Σk) , (17)

with z1, . . . , zN and ϵ1, . . . , ϵN being mutually independent. We introduced the parametriza-

tion θ⋆k = (ξk,ψk,Σk), as we did for scalar skew normal mixtures, where ψk = (ψk1, . . . , ψkr)
′

with ψkj = ωkjδkj and Σk = Ωk − ψkψ
′

k. The form of Σk results from (7): Σk =

ωk∆k(Ωε)k∆kωk = Ωk − ωk∆kα̃k(ωk∆kα̃k)
′
. The matrix ∆kα̃k is a diagonal matrix with

(∆kα̃k)jj =
√

1− δ2kjδkj/
√

1− δ2kj = δkj, therefore ωk∆kα̃k = ψk. The original parameter

θk = (ξk,Ωk,αk) is recovered from:

Ωk = Σk +ψkψ
′

k, αk =
1√

1−ψ′

kΩ
−1
k ψk

ωkΩ
−1
k ψk. (18)

For skew-t mixtures we combine the stochastic representations (9) or (11) with the random

effects representation of the skew normal distribution. For a finite mixture of scalar skew-t

distributions ST (ξk, ω
2
k, αk, νk) , k = 1, . . . , K, this yields:

wi|(Si = k) ∼ G
(νk
2
,
νk
2

)
, (19)

zi|wi ∼ T N [0,∞)

(
0,

1

wi

)
, (20)

yi|(Si = k, wi) = ξk + ψkzi + ϵi, ϵi ∼ N
(
0, σ2

k/wi
)
, (21)

where w1, . . . , wN are mutually independent as are z1, . . . , zN and ϵ1, . . . , ϵN given w1, . . . , wN .

A finite mixture of multivariate skew-t distributions ST r (ξk,Ωk,αk, νk), k = 1, . . . , K, has
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a similar representation with a repeated measurements observation equation:

yi|(Si = k, wi) = ξk +ψkzi + ϵi, ϵi ∼ Nr

(
0,

1

wi
Σk

)
, (22)

where z1, . . . , zN and ϵ1, . . . , ϵN are mutually independent given w1, . . . , wN . The variance of

the truncated normal random effect zi depends on the latent scaling factor wi which results

from multiplying in (15) or (17) a T N [0,∞) (0, 1) random variable with 1/
√
wi.

As for skew normal mixtures, we use an alternative parametrization with component

specific parameter θ⋆k = (ξk, ψk, σ
2
k, νk) and θ⋆k = (ξk,ψk,Σk, νk), respectively. This allows

Bayesian estimation through a three-block MCMC sampler where only sampling of the de-

grees of freedom parameters ν1, . . . , νK requires a Metropolis-Hastings step.

3.2 Bayesian Estimation

To perform a Bayesian analysis, we first have to select a prior for the weight distribution

η and the component specific parameters. It should be noted that, in general, the prior

distribution has to be selected carefully in the context of finite mixture models. First of all,

it is not possible to choose an improper prior, because this leads to an improper posterior

density, see e.g. Frühwirth-Schnatter (2006, Section 3.2). Furthermore, as noted by Jennison

(1997), one should avoid trying to be as “non-informative as possible” by choosing large prior

variances, because the choice of the prior of the parameters strongly affects the posterior of

the number of components K which will be considered in Section 3.3 for selecting K. For

this reason, we extend the hierarchical priors introduced by Richardson and Green (1997,

Subsection 2.4) in the context of mixtures of normals and by Stephens (1997) in the context

of mixtures of t-distributions to skew normal and skew-t mixtures. Such hierarchical priors

are known to reduce sensitivity with respect to choosing the prior variances.

Concerning the weight distribution, we apply the commonly used Dirichlet distribution

η ∼ D (e0, . . . , e0). Nobile (2004) showed that the parameter e0 exercises considerable in-

fluence on the posterior distribution of K because this parameter strongly affects the link

between the marginal likelihoods of finite mixture models with K − 1 and K components.

Frühwirth-Schnatter (2006, Section 5.3.2) demonstrated that this link is reduced considerably

by selecting e0 larger than e0 = 1, which is the value commonly used in the literature.
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Concerning the component specific parameters, we specify priors for the transformed

parameters θ⋆1, . . . ,θ
⋆
K introduced in Subsection 3.1 rather than directly for θ1, . . . ,θK . Using

the representations discussed in Subsection 3.1, conditionally conjugate priors taking the

form of normal-gamma distributions are available for all transformed component specific

parameters except the degrees of freedom parameters ν1, . . . , νK . The prior on νk is a slight

modification of a prior introduced by Juárez and Steel (2009) for Student-t mixtures with

ν1 = . . . = νK . Further details for all priors are provided in Appendix A.

Following the seminal paper by Diebolt and Robert (1994), the most popular method

for Bayesian estimation of finite mixtures is to apply Markov chain Monte Carlo methods

based data augmentation and Gibbs sampling, see Frühwirth-Schnatter (2006, Section 3.5)

for an extensive review. This approach is extended to skew normal and skew-t mixtures

using the representations introduced in Subsection 3.1. We introduce the latent allocations

S = (S1, . . . , SN) and the latent random effects z = (z1, . . . , zN) as missing data and add the

latent scaling factors w = (w1, . . . , wN) for skew-t mixtures. MCMC sampling is based on

following observations.

First, as for more conventional finite mixture models, it is possible to sample the alloca-

tions S given the component specific parameters θ⋆1, . . . ,θ
⋆
K and the weights η = (η1, . . . , ηK)

without conditioning on the other latent variables z (and w), because the component densi-

ties are available in closed form, see Section 2.

Second, conditional on S (and w) we consider skew normal and skew-t mixtures as a

random effects model with a normal observation equation and a truncated normal random

effect. A nice property of such a model is that the full conditional of the random effect zi

given the observation yi is available in closed form, see Appendix B.1. This allows joint

multi-move sampling of the latent variables S and z.

Third, conditional on S, z, (and w) sampling of the transformed component specific

parameters θ⋆1, . . . ,θ
⋆
K (except the degrees of freedom) reduces to Bayesian inference for a

finite mixture of regression models with known allocations. For each group k, (ξ′kψ
′
k)

′
is

a regression coefficient and Σk is an error covariance matrix in a regression model. Joint

sampling of ξk, ψk and Σk from a closed form posterior distribution is possible, because the

priors introduced in Appendix A are conditionally conjugate.

As a result, MCMC estimation for skew normal mixtures is possible through a two-step
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Gibbs sampler if the hyperparameters C0 and C0 are fixed:

(a) Sample θ⋆1, . . . ,θ
⋆
K and η conditional on z, S and y.

(b) Sample z and S jointly conditional on θ⋆1, . . . ,θ
⋆
K , η and y.

All conditional densities are of closed form, see Appendix B.2 which also contains details on

how to sample C0 or C0 under the hierarchical prior (31). For MCMC estimation of skew-t

mixtures a third step has to be added:

(a) Sample θ⋆1, . . . ,θ
⋆
K (except ν1, . . . , νK) and η conditional on z, S, w and y.

(b) Sample z and S jointly conditional on θ⋆1, . . . ,θ
⋆
K , η, w and y.

(c) Sample ν1, . . . , νK and w conditional on y and the remaining parameters.

All conditional densities except p(ν1, . . . , νK |·) are of closed form, see Appendix B.3 for details.

Like for any finite mixture model, an non-identifiability problem is present, because the

labeling of the components in the mixture density may be changed without changing the

likelihood p(y|ϑ), see e.g. (14). This might cause label switching during MCMC sampling

which makes it difficult to estimate component specific parameters from the MCMC output.

Various methods have been suggested in the literature do deal with this problem, see, e.g.,

Celeux, Hurn, and Robert (2000), Stephens (2000b), and Jasra, Holmes, and Stephens (2005).

Here we follow Frühwirth-Schnatter (2001) who suggested to add a random permutation step

to the MCMC scheme and to post-process the resulting MCMC output to identify component-

specific parameters, see Appendix B.4 for more details.

3.3 Selecting the Number of Components

Selecting the number of components of a finite mixture model is quite a challenge, see

Frühwirth-Schnatter (2006, Chapter 5) for a recent review. Popular methods are imple-

menting reversible jump MCMC, computing marginal likelihoods, or using model choice

criteria.

Reversible jump MCMC was introduced by Richardson and Green (1997) to select the

number of components for univariate mixtures of normal distributions. This method is based

on creating a Markov chain that moves between finite mixtures with different number of

components while retaining detailed balance that ensures the correct limiting distribution.

Those moves have to be based on carefully selected degenerate proposal densities. The design

of suitable proposals for higher dimensional mixtures is quite a challenge, see e.g. Dellaportas
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and Papageorgiou (2006) for multivariate normal mixtures. Since adding skewness even

complicates matters, we did not pursue RJMCMC.

Alternatively, the choice of K may be based the posterior probability p(MK |y) of a finite

mixture model MK with K components, given by p(MK |y) ∝ p(y|MK)p(MK), where

p(y|MK) is the marginal likelihood and p(MK) is the prior probability of MK , for instance,

a truncated Poisson distribution, see e.g. Nobile (2004).

Also the computation of the marginal likelihood p(y|MK) turns out to be challenging

for skew normal and skew-t mixtures. For moderate K, say K ≤ 5, we follow Frühwirth-

Schnatter (2004) who demonstrates that the technique of bridge sampling (Meng and Wong,

1996) is a useful method of computing the marginal likelihood of a finite mixture model and is

superior to alternative sampling based approaches such as importance sampling (Neal, 2001).

Like importance sampling, bridge sampling is based on an iid sample from an importance

density, however, this sample is combined with the MCMC draws from the posterior density

in an appropriate way. An important advantage of bridge sampling over importance sampling

is that the variance of the resulting estimator depends on a ratio that is bounded regardless

of the tail behavior of the underlying importance density.

For larger values of K, all simulation-based estimators including bridge sampling turned

out to be unstable. For such mixtures, model choice criteria may be consider. One such

criterion is BICK which is an asymptotic approximation to −2 log p(y|MK):

BICK = −2 log p(y|ϑ̂K ,MK) + dK logN, (23)

where dK = (2r + 1)K − 1 +Kr(r + 1)/2 = dNK for skew normal mixtures and dK = dNK +K

for skew-t mixtures. ϑ̂K is an approximate ML estimator of ϑK = (θ1, . . . ,θK ,η) obtained

by maximizing the log of the observed-data likelihood function log p(y|ϑK ,MK) over the

MCMC draws. If the distribution family underlying the component densities is correctly

specified, then BICK is known to be consistent (Keribin, 2000), although in small data sets

it tends to choose models with too few components (Biernacki, Celeux, and Govaert, 2000).

On the other hand, simulation studies reported in Biernacki and Govaert (1997), Biernacki

et al. (2000), and McLachlan and Peel (2000, Section 6.11) show that BICK will overrate

the number of clusters under misspecification of the component density, whereas several

alternative criteria such as the AWEK and the ICLK criterion to be discussed below are able
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to identify the correct number of clusters even when the component densities are misspecified.

Thus BICK for clustering large data sets, where the component densities of the finite mixture

model may not be correctly specified, is likely to be imprecise.

Approximate weight of evidence (AWEK) is derived in Banfield and Raftery (1993) as

another approximation to minus twice the log of the marginal likelihood. AWEK is described

in Biernacki and Govaert (1997) as a criterion which penalizes the log of the complete-data

likelihood function with model complexity:

AWEK = −2 log p(y, Ŝ|ϑ̂
C

K) + 2 dK(
3

2
+ logN), (24)

where ϑ̂
C

K and Ŝ are determined jointly as that combination of parameters and allocations that

maximize the log of the complete-data likelihood log p(y,S|ϑK) =
∑N

i=1 log (ηSip(yi|θSi)).

Again, approximate estimators are determined as the posterior draw maximizing the complete-

data likelihood function.

Biernacki et al. (2000) introduced the integrated classification likelihood criterion ICLK

which has been shown by McLachlan and Peel (2000, p.216) to be approximately equal to

ICL-BICK = BICK + 2EN(ϑ̂K). (25)

EN(ϑK) is the entropy defined by

EN(ϑK) = −
N∑
i=1

K∑
k=1

Pr(Si = k|yi,ϑK)log Pr(Si = k|yi,ϑK),

and measures how well the finite mixture model defined by ϑK classifies the data into K

distinct clusters. Thus the ICL-BICK criterion penalizes not only model complexity, but also

the failure of the model to provide a classification into well-separated clusters.

Recently, the deviance information criterion (DIC) introduced by Spiegelhalter, Best,

Carlin, and van der Linde (2002) became a popular criterion for Bayesian model selection

because it is easily computed from the MCMC draws. However, the application of DIC to fi-

nite mixture models is not without problems as discussed recently by Celeux, Forbes, Robert,

and Titterington (2006). A first problem is the choice of the appropriate likelihood function

which could either be the observed-data likelihood function log p(y|ϑK), the complete-data
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likelihood function log p(y,S|ϑK), or the conditional likelihood p(y|S,ϑK). Second, the

calculation of DIC requires an estimator of the unknown parameter ϑK which may suffer

from label switching as discussed above, making DIC unstable. Finally, DIC involving the

complete-data or the conditional likelihood requires some way of handling the problem that

S is unobserved, either by integrating with respect to the posterior p(S|y,MK) or by using

an estimator of S where once more the label switching problem has to be addressed.

In reaction to these difficulties, Celeux et al. (2006) investigate in total 8 different DIC

criteria. DIC2, for instance, focuses on the marginal distribution of the data and considers the

allocations as nuisance parameters. Consequently, it is based on the observed-data likelihood:

DIC2,K = −4EϑK (log p(y|ϑK)|y) + 2 log p(y|ϑ̂
M

K ,y), (26)

where the posterior mode estimator ϑ̂
M

K which is invariant to label switching is obtained from

the observed-data posterior p(ϑK |y,MK).

Based on several simulation studies, Celeux et al. (2006) recommend using DIC4 which is

based on computing first DIC for the complete-data likelihood function and then integrating

with respect to the posterior p(S|y,MK):

DIC4,K = −4EϑK ,S (log p(y,S|ϑK)|y) + 2ES

(
log p(y,S|ϑ̂K(S))|y

)
. (27)

The application of this criterion requires the computation of the complete-data estimator

ϑ̂K(S) for each draw from the posterior p(S|y,MK) which is straightforward only for simple

mixture models, where the complete-data posterior p(θk|y,S) is of closed form. However,

this is not the case for the class of skew finite mixtures. Celeux et al. (2006) show that

substituting ϑ̂K(S) by the posterior mode estimator ϑ̂
M

K , an approximation to DIC4,K is

obtained which penalizes DIC2,K by the expected entropy:

DIC4a,K = DIC2,K + 2EϑK (EN(ϑK)|y) . (28)

For skew finite mixtures both DIC2,K as well as DIC4a,K are easily estimated from the MCMC

draws from the posterior p(ϑK |y,MK) by substituting all expectations EϑK (·|y) by the

average over the MCMC draws. Note that label switching is not a problem here, because
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both log p(y|ϑK) as well as EN(ϑK) are invariant to changing the labeling of the groups.

4 Applications

When the observations in a study generate asymmetric data, even moderately imprecise

models could lead to erroneous classification of the subjects. As shown in the following

examples, we address this problem with the help of precise skew mixture modeling.

4.1 Skew Normal Mixture Modeling of Alzheimer’s Disease Data

Alzheimer’s disease (AD) is a complex disease that has multiple genetic as well as environ-

mental risk factors. It is commonly characterized by loss of a wide range of cognitive abilities

with aging. For the present analysis, the data set consists of 451 subjects from the cohorts of

the Religious Orders Study (ROS), see Wilson, Bienias, Evans, and Bennett (2004) and the

Memory and Aging Project (MAP), see Bennett, Schneider, Buchman, de Leon, Bienias, and

Wilson (2005). The level of cognition of the subjects was clinically evaluated proximate to

their death based on tests of cognitive functions and summarized by a mean global cognition

score, with higher scores suggesting better cognition capabilities. The genetic risk factor

Apolipoprotein E (ApoE) polymorphism was determined by genotyping the DNA from the

subjects’ blood.

Since the distribution of global cognition scores appeared to be skewed, see again Fig-

ure 1, we applied skew normal and skew-t mixture models with K = 1, . . . , 4 components.

Bayesian analysis is based on the priors introduced in Appendix A with different sets of

hyper parameters. For all priors, bψ0 = bξ0 = 0 and g0 = 0.5, while we consider four different

settings for Dξ = Dψ, c0 and ϕ and two different values for d for skew-t mixtures, see Ta-

ble 1 for details. Compared to the other priors, prior 2 introduces considerably smaller prior

information for the location parameter ξ and the skewness parameter ψ, prior 3 introduces

stronger smoothing for the group specific variances σ2
1, . . . , σ

2
K , and prior 4 assumes a smaller

prior expectation of the heterogeneity explained by differences in the group locations. Prior

5 applies only to skew-t mixtures and reduces the prior median of νk by 50% compared to

the other priors.

For each K and each prior, we generate 50,000 MCMC draws after a burn-in of 10,000
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Table 1: Choosing the hyper parameters Dξ, Dψ, c0, and ϕ of the prior in skew normal and skew-t

mixture modeling of Alzheimer’s disease data set; R2 = 1 − ϕ/(c0 − 1) is the prior expectation of

explained heterogeneity; d is an additional hyper parameter for skew-t mixtures

Dξ = Dψ c0 ϕ R2 d median of νk
Prior 1 0.1 2.5 0.5 2/3 d = 9/(1 +

√
2) 10

Prior 2 0.01 2.5 0.5 2/3 d = 9/(1 +
√
2) 10

Prior 3 0.1 5 4/3 2/3 d = 9/(1 +
√
2) 10

Prior 4 0.1 2.5 1 1/3 d = 9/(1 +
√
2) 10

Prior 5 0.1 2.5 0.5 2/3 d = 4/(1 +
√
2) 5

draws by using the MCMC schemes described in Appendix B.2 and B.3.

To select the optimal K, marginal likelihoods p(y|MK) are computed for each prior as de-

scribed in Subsection 3.3 and are combined with a truncated P (2)-prior for K. The resulting

(non-normalized) posterior probabilities log(p(y|MK)p(MK)) are reported in Table 2. The

same table reports BICK and DIC2,K for the various priors. Although BICK is independent

from the prior, differences in the estimated values of BICK occur caused by random fluctu-

ations of the approximate ML estimator across MCMC runs. Table 2 reports the smallest

BICK among all MCMC runs. Table 2 does not report the remaining criteria introduced in

Subsection 3.3 because, regardless of the prior, AWEK , ICL-BICK as well as DIC4a,K selected

a model with K = 1 which, however, contradicts common knowledge of AD classification.

For skew normal mixtures, both the marginal likelihood as well as BICK select a model

with two components for all priors considered. In contrast to that, DIC2,K shows high

sensitivity to prior choices and the selected number of components ranges from two to four.

For skew-t mixtures, we find that BICK favors a two component mixture, however, this model

is outperformed by the two-component skew normal mixture. In contrast to skew normal

mixtures, model selection based on marginal likelihoods is sensitive to prior choices. Under

prior 1 and prior 5, the marginal likelihood rejects skew-t mixtures in favor of a single skew-t

distribution. For prior 2 and prior 4 K = 2 is selected, while prior 3 leads to choosing K = 3.

Upon comparison of all models we find a preference for a skew normal mixture with two

components for all priors. For skew-t mixtures, sensitivity of DIC2,K to prior choices is even

higher and the selected number of components ranges from one to four.

For comparison, we also fitted finite mixtures of normal distributions where the priors are

selected similarly as in Richardson and Green (1997). The marginal likelihoods are computed
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Table 2: Selecting the number K of components in Gaussian and skew normal and skew-t mixture

modeling of Alzheimer’s disease data set

K

skew normal mixtures 1 2 3 4
BICK 1376.25 1363.13 1385.29 1404.09
log(p(y|MK)p(MK)) Prior 1 –690.11 –684.28 –686.97 –692.80

Prior 2 –690.88 –682.68 –688.74 –697.69
Prior 3 –690.80 –683.79 –685.94 –691.60
Prior 4 –691.16 –683.89 –686.48 –692.87

DIC2,K Prior 1 1363.98 1345.40 1345.89 1344.68
Prior 2 1363.81 1335.14 1337.65 1335.24
Prior 3 1363.94 1340.54 1335.23 1351.47
Prior 4 1364.10 1343.33 1346.66 1351.14

skew-t mixtures 1 2 3 4
BICK 1382.32 1375.76 1406.15 1436.53
log(p(y|MK)p(MK)) Prior 1 –690.65 –695.38 –692.89 –698.74

Prior 2 –693.48 –687.82 –692.00 –700.87
Prior 3 –693.20 –698.49 –692.43 –696.77
Prior 4 –693.58 –691.77 –693.25 –698.12
Prior 5 –693.55 –696.95 –696.93 –700.47

DIC2,K Prior 1 1363.48 1369.19 1359.07 1350.87
Prior 2 1363.73 1341.41 1340.78 1343.30
Prior 3 1364.23 1375.39 1344.26 1347.87
Prior 4 1364.53 1372.33 1355.57 1354.62
Prior 5 1364.87 1388.21 1378.25 1367.83

normal mixtures 1 2 3 4
BICK 1473.93 1371.69 1369.09 1378.97
log(p(y|MK)p(MK)) -740.70 -686.87 -685.83 -686.30
DIC2,K 1465.70 1350.60 1354.37 1345.76
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Figure 2: Two component skew normal mixture modeling of Alzheimer’s disease data set. Posterior

draws obtained under prior 1 for the skewness parameters α1 (left hand side) and α2 (right hand

side) after identification
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as in Frühwirth-Schnatter (2004) and p(MK) is the same as above. The (non-normalized)

posterior probabilities log(p(y|MK)p(MK)) together with BICK and DIC2,K are reported in

Table 2. The first two criteria select a normal mixture with three components, while DIC2,K

leads to choosing K = 4.

When the three component normal mixture is compared with the two component skew nor-

mal mixture the latter one is preferred by the marginal likelihood and BICK , regardless of

the prior. Figure 1 shows that the fitted density is practically the same for both finite mix-

tures. While one of the clusters is comparable for both mixtures (see the leftmost cluster

in Figures 1a and 1b), the normal mixture needs two components to fit the skewness in the

second cluster.

The two component skew normal mixture is identified for each prior as described in

Appendix B.4. Figure 2 shows the resulting posterior draws of α1 and α2 for prior 1. The

estimated parameters are reported for all priors in Table 3. Evidently, the skewness parameter

αk is sensitive to selecting the prior information Dξ and Dψ which is much smaller under prior

2 than for the other priors. On the other hand, the expected cognitive score µk and the group

sizes ηk are insensitive to prior choices. For all priors, the first component has a much higher

expected cognitive score µk than the second one and exhibit considerable negative skewness.

The skewness parameter αk is positive for the second component, however, strongly depends

on the prior and exhibits very large standard errors.

Among the genetic risk factors for AD, the pivotal role of ApoE gene is well established

(Wilson, Schneider, Barnes, Beckett, Aggarwal, Cochran, Berry-Kravis, Bach, Fox, Evans,

and Bennett, 2002; Roses, 1997). There are 3 different allele polymorphisms of the gene in
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Table 3: Two component skew normal mixture modeling of Alzheimer’s disease data set. Pa-

rameter estimation under different priors using posterior means (posterior standard deviations in

parenthesis).

k ξk ω2
k αk µk = E(Y |Si = k) ηk

Prior 1 1 0.36 (0.11) 1.26 (0.37) -2.61 (0.78) -0.46 (0.096) 0.767 (0.061)
2 -3.55 (0.43) 2.20 (1.30) 2.06 (1.48) -2.65 (0.34) 0.233 (0.061)

Prior 2 1 0.44 (0.07) 1.54 (0.32) -3.63 (0.89) -0.51 (0.076) 0.777 (0.048)
2 -4.09 (0.10) 3.87 (1.39) 8.31 (2.96) -2.57 (0.294) 0.223 (0.048)

Prior 3 1 0.38 (0.10) 1.38 (0.36) -2.80 (0.73) -0.49 (0.101) 0.782 (0.055)
2 -3.88 (0.24) 2.59 (1.22) 3.47 (1.31) -2.70 (0.331) 0.218 (0.055)

Prior 4 1 0.35 (0.12) 1.27 (0.36) -2.58 (0.79) -0.47 (0.086) 0.77 (0.054)
2 -3.75 (0.30) 2.49 (1.23) 2.85 (1.44) -2.65 (0.301) 0.23 (0.054)

general population - e2, e3 and e4 - and the number of copies of e4 is linked to increased risk

of early onset of the disease. Hence an individual with the homozygous alleles e44 (i.e. both

alleles are e4) carries greater risk than one with heterozygous e34 (i.e. an e3 and an e4); the

latter, in turn, has greater risk than e24 (which however has normal risk similar to e33) as

those with e2 alleles have reduced risk of early onset of AD.

First, we used the skew normal mixture model to classify each subject into one of the two

components. To test how this classification is related to the genetic risk factor, we assigned

the genotype labels into 2 classes: lower risk {e22, e23, e33} and higher risk {e24, e34, e44}.

Under prior 1, for instance, we found that 84.5% of the lower risk subjects, as opposed to only

28.4% of the higher risk subjects, were assigned to the component with the higher expected

cognitive score. On the other hand, 71.6% of the higher risk subjects, but only 15.5% of the

lower risk subjects, were assigned to the component with the lower expected cognitive score.

This clearly indicates consistent classification of the cognition scores of the subjects based on

their genetic risk factors. The genotype labels are also plotted in Figure 1 in 6 colors, from

the lightest to the darkest in the sequence {e22, e23, e33, e24, e34, e44}, as rugplot for visual

perception of the classification.

Further, to test the classification induced by the normal mixture model with 3 compo-

nents, we assigned the genotype labels into 3 classes: reduced risk {e22, e23}, normal risk

{e33, e24} and increased risk {e34, e44}. We found that 26.87%, 38.06% and 35.07%, re-

spectively, of the higher risk subjects were classified into the left, the middle and the right

normal components in Figure 1; the same numbers for the lower risk subjects were 15.48%,
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32.26% and 52.26% respectively. In contrast to the precise classification by the 2-component

skew normal mixture model, the classification by the 3-component normal mixture model is

weak, which may be attributed to the spurious splitting of one skewed components into two

symmetric ones.

4.2 Multivariate Skew-t Mixture Modeling of Flow Cytometric

Data

A flow cytometer is an instrument that measures the expression of proteins on the surface

of and within individual cells in a given sample. Fluorescently tagged antibodies are used as

markers to bind the corresponding proteins and thus measure the amounts expressed for each

cell in terms of fluorescence intensities. This produces a high-throughput sample in which

each cell is represented by a high-dimensional data point where a dimension corresponds a

particular marker.

In common practice, a flow cytometric data analyst looks at the high-dimensional flow

readout in 2-dimensional projections and manually identifies (or “gates”) the cell populations

of interest. A flow cytometric sample is generally understood as a mixture of different cell

populations which express in the form of immuno-phenotypic clusters under different con-

ditions such as disease and control. Therefore finite mixture modeling approach to cluster

the cell populations in terms of their protein expression provides a natural interpretation to

the mixture components. Moreover it provides automation, rigor and reproducibility in flow

data analysis.

Often cell populations in flow cytometric readouts suffer from considerable presence of

non-Gaussian characteristics, such as prominent skewness and large number of outliers.

Therefore while Gaussian mixture modeling is not unprecedented in flow data analysis (Boedig-

heimer and Ferbas, 2008; Chan, Feng, Ottinger, Foster, West, and Kepler, 2008), it neither

models formally the skewness in flow populations nor is robust against large number of out-

liers. Both skewness and outliers cause inaccurate inference by Gaussian mixture modeling

due to fitting more components than the true number of clusters present in the data. Given

the multi-modal, multi-dimensional and asymmetric nature of flow cytometric cell popula-

tions, it appears to be a perfectly suitable and most useful application for multivariate skew-t

finite mixture modeling.
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Table 4: Choosing K for the flow cytometric data.

data set GvHDB01case data set GvHDB06control
skew-t

K =8 K =9 K =10 K =7 K =8 K =9 K =10
ICL-BICK -15126.6 -17810.1 -17580.3 7651.2 6823.7 6942.7 9054.95
AWEK -12077.4 -14378.5 -13766.1 10230.3 9772.7 10261.7 12743.90
DIC4a,K -16757.8 -19568.9 -19898.1 5719.8 5068.2 4368.5 6315.3

skew normal
K =11 K =12 K =13 K =12 K =13 K =14

ICL-BICK -16050.1 -16543.8 -15510.2 11307.5 10320.4 11793.8
AWEK -11973.6 -12095.7 -10690.6 15609.5 14981.8 16814.6
DIC4a,K -16643.2 -17883.8 -18781.8 8369.7 7562.4 8259.87

In the following example, we used skew-t mixture modeling to do a comparative anal-

ysis of a peripheral blood sample from a subject who developed Graft versus Host Disease

(GvHD) following blood and marrow transplantation with a control sample from a subject

who underwent similar transplant but did not develop signs of the disease. The samples

were obtained from publicly available data due to the study of Brinkman, Gasparetto, Lee,

Ribickas, Perkins, Janssen, Smiley, and Smith (2007), which may be referred to for further

details. Brinkman et al. (2007) observed an increased proportion in the CD4+CD8β+CD3+

population to be correlated with the development of GvHD.

Recently, Lo, Brinkman, and Gottardo (2008) used an EM-based Student-t mixture

model, with Box-Cox transformation to diminish the asymmetry of populations in the sam-

ple. Their optimal model for the Brinkman et al. (2007) GvHD data had 12 components

based on BIC, a count that exceeded our optimal model (see below). In this respect, it may

be noted that finding a suitable transformation to adequately correct the skew in data is

known to be difficult (Kruglyak and Lander, 1995), and thus the resulting modeling with

symmetric t densities could lead to inaccurate inference.

In contrast we fit 6-variate finite mixtures of skew normal and skew-t distributions over a

range of K = 1, . . . , 14 components to the case sample GvHDB01case containing a population

of 12,442 cells and the control sample GvHDB06control containing a population of 8,691 cells.

For Bayesian estimation we use the priors introduced in Appendix A with bψ0 = 06×1, b
ξ
0 = y,

Dξ = Dψ = 0.1, c0 = 5.5, g0 = 0.5, ϕ = 0.5 and d = 9/(1 +
√
2) for the skew-t mixtures.

Since we expect the posterior density to have many local modes we generated for each K
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Table 5: Data set GvHDB01case; fitted skew-t mixture with K = 9 components; parameter estima-

tion

k 1 2 3 4 5 6 7 8 9
E(µk,1|y) 2.72 2.22 2.8 2.11 2.29 2.5 2.37 2.29 2.52
E(µk,2|y) 2.59 1.85 2.7 2.26 1.85 2.3 1.96 1.85 2.59
E(µk,3|y) 1.81 0.54 1.62 0.92 1.43 1.1 0.54 0.48 1.16
E(µk,4|y) 1.28 0.44 1.93 0.93 0.295 0.95 0.39 1.42 1.09
E(µk,5|y) 1.7 0.46 2.02 0.78 1.97 0.64 0.37 1.89 0.91
E(µk,6|y) 1.46 0.82 2.93 0.81 0.95 0.68 1.43 2.6 0.93
E(αk,1|y) -0.3 -2.26 -0.19 -4.56 0.48 0.08 0.04 -1.55 -5.08
SD (αk,1|y) 0.44 1.86 0.63 1.58 0.22 0.09 0.11 0.81 2
E(αk,2|y) 0.27 -0.85 -1.47 0.55 0.16 0.4 0.04 0.84 1.02
SD (αk,2|y) 0.4 1.21 0.51 0.25 0.21 0.19 0.13 0.34 0.35
E(αk,3|y) -1.37 0.09 -1.93 0.07 -6.16 -0.8 -0.01 0.67 -0.68
SD (αk,3|y) 0.5 0.23 0.53 0.2 0.84 0.21 0.17 0.27 0.43
E(αk,4|y) -0.09 0.13 0.24 -0.15 0.02 0.28 0.21 -1.82 -1.05
SD (αk,4|y) 0.28 0.25 0.33 0.24 0.22 0.27 0.16 0.72 0.54
E(αk,5|y) -2.1 0.33 0.34 -0.32 0.25 -0.07 0.1 -0.05 -0.02
SD (αk,5|y) 0.41 0.34 0.27 0.21 0.23 0.23 0.21 0.14 0.21
E(αk,6|y) 1.74 -0.18 0.03 0.07 0.63 -0.28 -4.81 -0.23 -0.1
SD (αk,6|y) 0.71 0.35 0.12 0.13 0.4 0.32 1.22 0.17 0.19
med(νk|y) 7.3 12.3 22.2 19.5 24.8 48.9 497 3.9 18.1
E(100ηk|y) 3.4 9.6 3.5 23.4 1.7 30.4 9.8 3.5 14.7

several independent chains, each with 10,000 MCMC draws after a burn-in of 5,000 draws

using the MCMC schemes described in Appendix B.2 and B.3. In fact, it turned out that

the various chains converged to different modal regions of the parameter space. For further

inference we selected for each value of K the chain with the smallest BICK , computed as in

(23). This guarantees that we are dealing with posterior draws from a modal region with

high posterior probability, because −0.5BICK is a rough estimate of the marginal likelihood

of a model where the parameters are restricted to each modal region.

To select the optimal number of components, various criteria introduced in Subsection 3.3

were computed both for skew normal and skew-t mixtures. Since we would like to find well-

separated clusters, ICL-BICK and DIC4a,K as well as AWEK are reported in Table 4. For

both samples, ICL-BICK and AWEK select the same number of clusters both for skew normal

and skew-t mixtures. For the GvHDB01case sample, these criteria select K = 9 for skew-t

mixtures and K = 12 for skew normal mixtures. For the GvHDB06control sample, these

criteria select K = 8 for skew-t mixtures and K = 13 for skew normal mixtures. Both criteria
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Figure 3: Skew-t mixture modeling of GvHD case and control samples from Brinkman et al. (2007)

data identifies component with unique marker signature. In the heatmap, each row represents the

location of a six-dimensional cluster from either the case or the control sample, and each column

represents a particular marker. Whether a component belonged to the case or the control sample is

marked by a pink or a green label. Based on ICL-BIC, the control sample was optimally modeled

with 9 six-dimensional skew-t components, and the case sample with 8 components. The red, blue

and white colors denote high, low and medium expression respectively. Among all components, the

one marked with a rectangle represents live cells (high FSC, high SSC) from the case sample with

a unique CD4+CD8β+CD3+ signature.

clearly favor the optimal skew-t mixture model over the optimal skew normal mixture for

both samples. DIC4a,K selects the same number of clusters as ICL-BICK and AWEK only

when a skew normal mixture is fitted to the GvHDB06control sample. In all other cases the

number of selected clusters is higher.

The skew-t mixtures selected by ICL-BICK and AWEK were identified as described in

Appendix B.4. Parameter estimates are reported in Table 5 for the case sample. We find that

several components have a small degree of freedom νk and that some, but not all, skewness

parameters αk,j are different from 0. A similar result is obtained for the control sample (not

reported).

The MCMC draws obtained from relabeling as described in Appendix B.4 are used for
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further inference as shown in the heatmap in Figure 3. Using a totally unsupervised 6-

variate skew-t mixture modeling, the present method succeeded in discovering the signature

specified by Brinkman et al. (2007) with fewer components, see Figure 3. The case and

control samples were optimally modeled with 8 and 9 skew-t components respectively, as

shown in the heatmap. Each row in the heatmap represents one component from either

sample. Whether a component belonged to case or control sample is marked by a pink or a

green label. It is likely that superior modeling by skew-t mixture over symmetric t mixture

led to a smaller number of components. Among the 17 components from both samples,

grouped by the similarity of their locations, an outstanding one marked with a rectangle

(bottom row in Figure 3) represented a 3.5% cell population of live cells (high FSC, high

SSC) in the case sample with a clear and unique CD4+CD8β+CD3+CD8+ signature. Yet

another component in the case sample of size 3.4% (represented in the fifth row from the

bottom in Figure 3) may also be considered. Both components re-affirm the same GvHD

specific signature reported by Brinkman et al. (2007).

5 Concluding Remarks

We studied multivariate mixtures which introduce for each component a skewness parameter

of the same dimension as the observations. A more flexible mixture could be based on

more general skew normal and skew-t distributions where the univariate random effect is

substituted by a higher dimensional one, see e.g. Branco and Dey (2001) and Arellano-Valle

and Azzalini (2006). Our MCMC scheme may be easily extended to such a mixture.

Although our MCMC scheme is quite efficient, we see scope for improvement. Parameter

expansion similar in spirit to van Dyk and Meng (2001) could be implemented by running

MCMC for an expanded, unidentified model with the random effects distributed as zi ∼

T N [αk,∞) (αk, βk). To improve mixing for multimodal posteriors in the context of clustering

high dimensional data sets ideas from evolutionary Monte Carlo as discussed e.g. in Liang

and Wong (2001) could be considered.

Finally, we end by highlighting the potential application of the robust and precise data

modeling by our method to high-throughput and high-dimensional platforms such as flow

cytometry.
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A Choosing the Prior

To perform Bayesian inference for finite mixtures of skew normal or skew-t mixtures, a prior

has to be chosen for the weight distribution η and for all component specific parameters.

Concerning the weight distribution, we apply the commonly used Dirichlet distribution η ∼

D (e0, . . . , e0) with e0 = 4.

Using the representations discussed in Subsection 3.1, conditionally conjugate priors are

available for all transformed component specific parameters except the degrees of freedom

parameter. Representation (15), for instance, suggests following prior for θ⋆k = (ξk, ψk, σ
2
k)

for skew normal mixtures:

(ξk ψk)
′|σ2

k ∼ N2 (b0,B0σ
2
k) , σ2

k ∼ G−1 (c0, C0) , (29)

with b0 = ( bξ0 bψ0 )′ ∈ ℜ2 and B0 = Diag
(
Dξ, Dψ

)
∈ ℜ2×2. Similarly, for multivariate

skew normal mixtures representation (17) suggests following prior for θ⋆k = (ξk,ψk,Σk):

(ξ
′

kψ
′

k)
′|Σk ∼ N2r

((
(bξ0)

′ (bψ0 )
′
)′
,B0 ⊗Σk

)
, Σk ∼ W−1

r (c0,C0) , (30)

where bξ0,b
ψ
0 ∈ ℜr and B0 ⊗Σk denotes the Kronecker product of B0 and Σk.

In both cases, we center the prior of the skewness parameter at the normal distribution

by choosing bψ0 = 0 or bψ0 = 0r×1. We center the prior of ξk and ξk either at the mean of the

data, i.e. bξ0 = y or bξ0 = y, or choose bξ0 = 0 or bξ0 = 0r×1. The hyperparameters Dξ and

Dψ control the prior information in ξk or ξk and ψk or ψk and are selected as small positive

numbers, e.g. Dξ = Dψ = 0.1.

We choose c0 = 2.5 to bound σ2
k away from zero, while for r > 1 c0 = 2.5 + (r − 1)/2 to

bound the eigenvalues of Σk away from zero. We choose C0 = ϕs2y or C0 = ϕSy, where s
2
y

and Sy are, respectively, the sample variance and the sample covariance matrix of the data.

ϕ influences the prior expectation of the amount of heterogeneity explained by differences

in the group means, see e.g. Frühwirth-Schnatter (2006, Section 6.3.2). Choosing ϕ = 0.5

corresponds to a prior expectation of 2/3 explained heterogeneity.

Among these hyperparameters, we found C0 and C0 to be rather influential. For this
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reasons, we combine prior (29) or (30) with a hierarchial prior,

C0 ∼ G (g0, G0) , C0 ∼ Wr (g0,G0) , (31)

where we select g0 = 0.5 + (r − 1)/2, G0 = g0(ϕSy)
−1 for r > 1, and G0 = g0/(ϕs

2
y). Such

hierarchical priors have been used by Richardson and Green (1997, Subsection 2.4) for normal

mixtures and by Stephens (1997) for Student-t- mixtures to reduce sensitivity with respect

to choosing the prior of component specific scale parameters.

Finally, for skew-t mixtures we assume that the degrees of freedom parameters ν1, . . . , νK

are apriori independent of the remaining parameters and p(ξk, ψk, σ
2
k) and p(ξk,ψk,Σk) are

selected as in (29) and (30). The prior on νk has to be selected carefully in order to avoid

improper posteriors, see e.g. Fonseca, Ferreira, and Migon (2008). We assume prior inde-

pendence of ν1, . . . , νK with

p(νk) ∝
(νk − 1)

(νk − 1 + d)3
I[1,∞)(νk). (32)

This prior was introduced in Juárez and Steel (2009) for Student-t mixtures with ν1 = . . . =

νK . The median of this prior is equal to 1 + d(1 +
√
2). We shift the prior away from 0, as

it is advisable to avoid values for νk that are close to 0, see Fernández and Steel (1999).

B Details on MCMC Estimation

We provide details only for multivariate mixtures, univariate ones results for r = 1.

B.1 The Conditional Posterior of the Truncated Normal Random

Effects

Consider following random effects model with r ≥ 1 repeated measurements and truncated

normal random effects:

zi ∼ T N [0,∞) (0, 1) ,

yi = ξ +ψzi + ϵi, ϵi ∼ Nr (0,Σ) ,
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where the parameters ξ, ψ, and Σ are known. The full conditional posterior density p(zi|yi)

of zi given observation yi is given by:

p(zi|yi) ∝ p(yi|zi)p(zi)

∝ exp

{
−1

2
(yi − ξ −ψzi)

′
Σ−1(yi − ξ −ψzi)

}
exp

{
−z

2
i

2

}
I{zi>0}

∝ exp

{
−1

2

(
z2i (ψ

′
Σ−1ψ + 1)− 2ziψ

′
Σ−1(yi − ξ)

)}
I{zi>0}.

Completing squares yields:

zi|yi ∼ T N [0,∞) (ai, A) , (33)

ai = Aψ
′
Σ−1(yi − ξ), A = (1 +ψ

′
Σ−1ψ)−1.

B.2 Mixtures of Skew Normal Distributions

MCMC estimation for skew normal mixtures is possible through a two-step Gibbs sampler if

the hyperparameters C0 and C0 are fixed:

(a) Sample θ⋆1, . . . ,θ
⋆
K and η conditional on z, S and y.

(b) Sample z and S jointly conditional on θ⋆1, . . . ,θ
⋆
K , η and y.

A starting value for S is determined using K-means clustering of y1, . . . ,yN , while zi = 0 for

i = 1, . . . , N .

Step (a). Let Nk = #{Si = k} be equal to the number of observations in group k.

Sample the weights η = (η1, . . . , ηK) from a D (e1, . . . , eK)-distribution, where ek = e0 +Nk,

k = 1, . . . , K.

Partition the observations yi and the regressors xi = (1 zi), for i = 1, . . . , N according to

the indicators S into K groups. For each k = 1, . . . , K, construct a regressor matrix Xk ∈

ℜNk×2 where the Nk rows are equal to all regressors xi where Si = k. Similarly, construct an

observation matrix yk ∈ ℜr×Nk where the Nk columns are equals to all observations yi where

Si = k. Sample θ⋆k = (ξk,ψk,Σk) from the conditional posterior p(ξk,ψk,Σk|z,S,y) =

p(ξk,ψk|Σk, z,S,y)p(Σk|z,S,y) which is obtained from combining the regression model (17)
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with prior (30):

(ξ
′

kψ
′

k)
′|Σk,z,S,y ∼ N2r (vec(bk),Bk ⊗Σk) , (34)

Σk|z,S,y ∼ W−1
r (ck,Ck) ,

bk =
(

bξk bψk

)
=
(
ykXk +

(
1
Dξ

bξ0
1
Dψ

bψ0

))
Bk,

Bk = (X
′

kXk +B−1
0 )−1,

ck = c0 +
Nk

2
,

Ck = C0 +
1

2

(∑
i:Si=k

εiε
′

i +
1

Dξ
(bξk − bξ0)(b

ξ
k − bξ0)

′
+

1

Dψ
(bψk − bψ0 )(b

ψ
k − bψ0 )

′

)
,

εi = yi − bξk − zib
ψ
k .

The symbol vec(·) refers to the vector obtained by stacking all column of the matrix appearing

as argument.

Step(b). Sample Si independently for each i = 1, . . . , N from p(Si|yi,θ⋆1, . . . ,θ⋆K ,η)

which is equal to following discrete distribution:

p(Si = k|ξk,ψk,Σk, ηk,yi) ∝ fSN (yi; ξk,Ωk,αk) ηk. (35)

fSN (yi; ξk,Ωk,αk) is the density of a multivariate skew normal distribution defined in (5) and

(Ωk,αk) are determined from (ψk,Σk) as in (18). Sample zi independently for i = 1, . . . , N

from p(zi|Si,θ⋆k,yi) using the truncated normal posterior (33) corresponding to the random

effects model (17):

zi|Si = k,yi,θ
⋆
k ∼ T N [0,∞) (ai,k, Ak) , (36)

ai,k = Akψ
′

kΣ
−1
k (yi − ξk), Ak = (1 +ψ

′

kΣ
−1
k ψk)

−1.

Hierarchical priors. For the hierarchical prior (31) a further step has to be added to

sample C0 or C0 from following densities, where gN = g0 +Kc0:

C0 ∼ G

(
gN , G0 +

K∑
k=1

1

σ2
k

)
, C0 ∼ Wr

(
gN ,G0 +

K∑
k=1

Σ−1
k

)
.
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B.3 Mixtures of Skew-t Distributions

MCMC estimation for skew-t mixtures is possible through following three-step sampler if the

hyperparameters C0 and C0 are fixed:

(a) Sample θ⋆1, . . . ,θ
⋆
K (except ν1, . . . , νK) and η conditional on z, S, w and y.

(b) Sample z and S conditional on θ⋆1, . . . ,θ
⋆
K , η, w and y.

(c) Sample ν1, . . . , νK and w conditional on y and the remaining parameters.

MCMC estimation is started with wi = 1, i = 1, . . . , N , and ν1 = . . . = νK = 10, while

starting value for S and z are selected as in Appendix B.2. For the hierarchical prior (31) a

further step has to be added as described at the end of Appendix B.2.

Step(a). Sample η as in Appendix B.2, Step(a). Sample (ξk,ψk,Σk) for k = 1, . . . , K,

from p(ξk,ψk,Σk|z,S,w,y) = p(ξk,ψk|Σk,z,S,w,y)p(Σk|z,S,w,y) where:

(ξ
′

kψ
′

k)
′|Σk,z,S,w,y ∼ N2r (vec(bk),Bk ⊗Σk) , (37)

Σk|z,S,w,y ∼ W−1
r (ck,Ck) ,

bk =
(

bξk bψk

)
=
(
ywkX

w
k +

(
1
Dξ

bξ0
1
Dψ

bψ0

))
Bk,

Bk = ((Xw
k )

′
Xw
k +B−1

0 )−1,

Ck = C0 +
1

2

(∑
i:Si=k

wiεiε
′

i +
1

Dξ
(bξk − bξ0)(b

ξ
k − bξ0)

′
+

1

Dψ
(bψk − bψ0 )(b

ψ
k − bψ0 )

′

)
.

ck and εi are the same as in (34). The Nk rows of the matrix Xw
k ∈ ℜNk×2 are equal to all

rescaled regressors xi = (
√
wi

√
wizi) where Si = k. Similarly, the Nk columns of the matrix

ywk ∈ ℜr×Nk are equal to all rescaled observations
√
wiyi where Si = k.

Step(b). Sample Si independently for each i = 1, . . . , N from p(Si|yi,θ⋆1, . . . ,θ⋆K ,η)

which is equal to following discrete distribution:

p(Si = k|ξk,ψk,Σk, νk, ηk,yi) ∝ fST (yi; ξk,Ωk,αk, νk) ηk.

fST (yi; ξk,Ωk,αk, νk) is the density of the multivariate skew-t distribution defined in (12)

and (Ωk,αk) are determined from (ψk,Σk) as in (18). Sample zi independently for i =

1, . . . , N from p(zi|Si, wi,θ⋆k,yi) using the truncated normal posterior (33) corresponding to

31



the random effects model (22):

zi|Si = k, wi,yi,θ
⋆
k ∼ T N [0,∞) (ai,k, Ak/wi) ,

where ai,k and Ak are the same as in (36).

Step(c). Depending on the degree of data augmentation in the conditional density

p(ν1, . . . , νK |·), different Metropolis-Hastings steps to sample νk result. The fastest algorithm

is sampling νk from p(νk|ξk,ψk,Σk,S,w,y) as Lin et al. (2007) did for Student-t mixtures.

However, we found that this works only, if the degree of freedom is small in all components.

We observed tremendous inefficiency factors if some of the νks were larger than about 10.

Sampling νk from p(νk|ξk,ψk,Σk,S,y) where w is integrated out increases efficiency consid-

erably. We gained additional efficiency by sampling νk without conditioning on S and w from

p(νk|θ⋆−k, ξk,ψk,Σk,η,y) where θ⋆−k denotes all component specific parameters expect θ⋆k.

However, this sampler is the most time consuming one because it involves the computation

of the observed-data likelihood function p(y|θ⋆1, . . . ,θ⋆K ,η).

To sample νk for k = 1, . . . , K from p(νk|θ⋆−k, ξk,ψk,Σk,η,y) we use a Metropolis-

Hastings algorithm with a uniform log random walk proposal

log(νnewk − 1) ∼ U [log(νk − 1)− cνk , log(νk − 1) + cνk ]

with fixed width parameter cνk . Accept ν
new
k with probability

min

(
1,
p(y|θ⋆−k, (θ⋆k)new,η)p(νnewk )(νnewk − 1)

p(y|θ⋆1, . . . ,θ⋆K ,η)p(νk)(νk − 1)

)
,

where (θ⋆k)
new = (ξk,ψk, Σk, ν

new
k ). The computation of the acceptance rate involves the

computation of the observed-data likelihood function

p(y|θ⋆1, . . . ,θ⋆K ,η) =
N∏
i=1

(
K∑
k=1

ηkfST (yi; ξk,Ωk,αk, νk)

)
.

Note that p(y|θ⋆1, . . . ,θ⋆K ,η) may be computed efficiently by observing that the contribution

of only one component density changes.
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Finally, sample wi independently for i = 1, . . . , N from p(wi|θ⋆1, . . . ,θ⋆K , z,S,y). To derive

this posterior observe that wi appears both in the observation equation (22) as well as in the

prior distribution of the random effect zi given in (20):

p(wi|yi, Si = k, zi,θ
⋆
k) ∝ p(yi|ξk,Ωk,ψk, wi)p(zi|wi, νk)p(wi|νk)

∝
∣∣wiΣ−1

k

∣∣1/2 exp(−wi
2
ε

′

iΣ
−1
k εi

)
w

1/2
i exp

(
−wiz

2
i

2

)
w
νk/2−1
i exp

(
−wiνk

2

)
,

where εi is the same as in (34). This is the kernel of following Gamma distribution:

wi|yi, zi, Si = k,θ⋆k ∼ G
(
νk + r + 1

2
,
νk + z2i + tr(εiε

′
iΣ

−1
k )

2

)
.

B.4 Label Switching and Post-processing MCMC

To make sure that we explore all labelling subspaces we add a random permutation step as

in Frühwirth-Schnatter (2001) to the MCMC scheme introduced in the previous subsection

and perform post-processing of the MCMC output to handle label switching.

Following Celeux (1998), we use standard k-means clustering in the point process represen-

tation of the MCMC draws to identify the finite mixture model. For univariate skew normal

and skew-t mixtures we apply k-means clustering to (ξk, αk, ωk). For multivariate mixtures

k-means clustering is applied to the component means µk defined in (8) and (13), respectively.

The whole method is based on the idea that MCMC draws belonging to the same compo-

nent will cluster around the same point in the point process representation of the underlying

“true” mixture model (Stephens, 2000a). In cases where the simulation clusters are well-

separated all classification sequences are a permutation of {1, . . . , K} and indicate how to

rearrange the component specific parameters in order to obtain a unique labelling. This

method not only allows to identify the component specific parameters, but also identifies a

unique labelling of the allocations, see Frühwirth-Schnatter (2006, p. 96f).
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