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Abstract

In many practical investment situations the amount of available memory
stock data is extremely huge. Thus many investors are attracted to base their
decisions on the information ”currently available in their minds” (see Nocetti
(2005,2006)). The main aim of this letter is to provide some dimensionality or
complexity reduction analytic tool which is based on the information theory
concepts. Particularly, we discuss a various risk measurement models possibly
of application in the risk management. First we recall the model of Markowitz
who gave the concept of mean variance efficient frontier to find all efficient
portfolios that maximize the expected returns and minimize the risk. We also
recall Markovian risk measures. Some measures of portfolio analysis based on
entropy mean-variance frontier and maximum entropy model in risk sharing
are proposed and studied. Risk aversion index and Pareto-optimal sharing of
risk sharing are explained. In view of these facts it is very interesting to study
how the investor should make investments so that his total expected return
is maximized and risk of loosing his capital is minimized. We also link these
measures with its probabilistic rationale.

1 Introduction

Every investor wants to maximize his profits by selecting proper strategy for in-
vestment. There are investments like government and bank securities, real estate,
mutual funds and blue chips stocks which have low return but are relatively safe
because of a proven record of non-volatility in price fluctuations. On the other hand,
there are investments which bring high returns, but may be prone to a great deal
of risk and the investor makes loss in case the investment goes sour. To overcome
the above mentioned problem the investor should invest his funds in a spread of
low and high risk securities in such a way that the total expected return for all his
investments is maximized and at the same time the risk of losing his capital is min-
imized. Since the various outcomes as well as the probabilities of these outcomes
and the return on a unit amount invested in each security are known, therefore,
there is not much difficulty in maximizing the expected return. However, the main
problem is to overcome risk factor. The earliest measure proposed regarding risk
factor was variance of the returns on all investments in the portfolio and was based
on the argument that risk increases with variance. (8) gave the concept of mean-
variance efficient frontier and this enabled him to find all the efficient portfolios
which maximize the expected returns and minimize the variance.

Also other standard models of portfolio selection under parameter uncertainty
are typically based on the assumption that investors learn about the true data
generating process of asset returns using all available information. This assumption
requires investors to have up to date databases of extremely large size. (10) argued,
however, that many investors do not use databases as econometricians, but make
decisions based on the information currently available in their minds. In line with
this argument, Nocetti (2005) presents a model where individuals exert mental effort
to estimate the parameters of an economic model, by retrieving observations from
a stock of memories.
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In our paper we would like to provide approaches how to reduce the ”dimen-
sionality of the problem” of finding the optimal investment, which is typically not
uniquely defined. The main principle we use is the information theory approach. (6)
made a brief account of application of entropy optimization principles in minimizing
risk in portfolio analysis. (4) have applied these principles in characterizing crop
area distributions for optimal yield. In this paper we make a study of various risk
measure models and discuss their utilities in finance management. The paper is
organized as follows: In section 2 we discuss the Markowitz Mean-Variance-Efficient
Frontier and interpret it in the context of maxEnt optimization. In section 3 we
discuss the Maximum Entropy Mean-Variance Frontier. In section 4 we introduce
the concept of Markovian risk measure. In section 5 we discuss the Risk Aversion
Index. In section 6 we discuss the Pareto-Optimal Sharing of Risks. Finally in
section 7 the Maximum Entropy principle in Risk Sharing is discussed.

2 Markowitz Mean-Variance-Efficient Frontier

Let pj be the probability of j-th outcome for j = 1, 2, ...,m and rij be the return
on i-th security for i = 1, 2, n, when j-th outcome occurs. Then the expected return
on the i − th security is ri =

∑m
j=1 pjrij, i = 1, 2, , n. Variance and covariance of

returns are given by σ2
i =

∑m
j=1 pj(rij − ri)

2, i = 1, 2, , n and ρikσiσk =
∑m

j=1 pj(rij −
ri)(rkj − rk), i, k = 1, 2, , n; i ̸= k. A person decides to invest proportions x1, x2, , xn

of his capitals in n securities. If xi ≥ 0 for all i and
∑

i=1 xi = 1, then the mean E
and variance V of the expected returns are driving indicators for investor.

Markowitz suggested that x1, x2, , xn be chosen to maximize E and to minimize
V or alternatively, to minimize V keeping E at a fixed value.

Corresponding to each vector (x1, x2, , xn), there are certain values of E and V,
so that corresponding to each portfolio, there is unique point in the E-V plane.

3 Maximum Entropy Mean-Variance Frontier

One of the investor’s objective is to diversify his portfolio so that out of all points
on the mean-variance efficient frontier, he chooses that portfolio for which his in-
vestments in different stocks as equal as possible i.e. to make R1, R2, , Rm as equal
as possible among themselves. Any departure of R1, R2, .., Rm from equality is con-
sidered a measure of risk which can be minimized if we choose x1, x2, , xn so as to
maximize the entropy measure −

∑m
j=1

Rj∑m
j=1 Rj

ln[
Rj∑m
j=1 Rj

]. Since this does not in-

clude pj’s, therefore, we can modify the principle to say that pjRj’s should be as
equal as possible i.e. the entropy of the probability distribution pjRj/R̄ should be
as large as possible, where R̄ is the mean return on investment. For this we maxi-
mize −

∑m
j=1

pjRj

R̄
ln[

pjRj

R̄
] subject to

∑m
j=1 pjRj = R̄. Applying Lagrange’s method of

multipliers, we get pjRj = R̄/m. Thus according to our first principle Rj = R̄, while
according to second principle Rj = (1/pj)R̄/m. If pj = 1/m i.e. if the outcomes are
equally likely, the two principles give the same results. Again since we want Rj’s to

be as equal as possible we want the probability distribution Pj =
pjRj

R̄
to be as close

to the probability distribution pj as possible. So we chose x1, x2, , xn to minimize
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either D(Pj, pj) or D(pj, Pj). If we use Kullback and Leibler ’s measure (see (7)),
then we have D(Pj, pj) =

∑m
j=1 pjRj lnRj− ln R̄. Since ln R̄ is constant, therefore, it

implies that
∑m

j=1 pjRj lnRj should be as small as possible. This is the third princi-
ple. Next to minimize D(pj, Pj) we again apply Kullback-Leibler’s measure and get∑m

j=1 pj ln(pj/Pj) or
∑m

j=1 pj ln(pjRj) should be as small as possible, which is fourth
principle. We can also use Harvda and Charvat’s measure of directed divergence or
cross-entropy (see (3)). In that case we have to minimize 1

α−1
(
∑m

j=1 P
α
j p

1−α
j − 1) or

1
α−1

(
∑m

j=1 p
α
j P

1−α
j −1). Thus according to 5th and 6th principle, we choose x1, x2, , xn

to minimize respectively 1
α−1

E(R1−α − 1) or 1
α−1

E(Rα − 1) where R = pj/Pj.

Corollary 1 By employing of the maximum entropy principle the investor mini-
mizes the risk of any departure of R1, R2, .., Rm from equality. Then Thus according
to our first principle Rj = R̄, while according to second principle Rj = (1/pj)R̄/m.
If pj = 1/m i.e. if the outcomes are equally likely, the two principles give the same
results.

4 Markovian risk measure

Particularly, one can be interested in the risk measure based on the Markov inequal-
ity, so called Markovian risk measure (see (2)) The Markov inequality can be gener-
alized as follows. Let X be a random variable, a ∈ R. Let Φ(x, y) be any Lebesgue
measurable bivariate function and ν(x) any non-negative and non-decreasing func-
tion such that E[ν(X)] < ∞ and E [Φ(X, y)ν(X)] < ∞ for all relevant y. Then

P{X ≥ a} ≤ E [Φ(X, a)ν(X)]

E[ν(X)]
(1)

Supposing X ≥ 0 with probability 1, a ≥ 0, Φ(x, y) = xr/yr and ν = 1 in
Markov inequality, one gets classical Markov inequality as a special case of (1).

By a risk measure π we understand a mapping from the set of risk (random)
variables to the set of real numbers.

In what follows we put X = S, where S is a risk variable. Using (1) it is not
difficult to prove that, under certain conditions, for some α, 0 ≤ α ≤ 1 there exists
a minimal value πM such that

P [S > πM ] ≤ E[Φ(S, πM)ν(S)]/E[ν(S)] ≤ α ≤ 1.

This value is the solution of the equation

E[Φ(S, πM)ν(S)]/E[ν(S)] = α

and is called a Markovian risk measure of the risk variable S at level α. When α = 1,
the equation

E[Φ(S, πM)ν(S)]/E[ν(S)] = 1 (2)

is called the unifying equation. Many well-known insurance premium principles and
corresponding risk measures follow from (2) as special cases, i.e. the mean value
principle, the zero-utility premium principle and the Swiss premium calculation
principle (see also (2)). This approach can also be used when seeking the ”best”
(in a sense suitably defined) strategy of insurance companies how to avoid ruin. For
details see e.g.(11).
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5 Risk Aversion Index

Let us consider a lottery in which the returns are x1, x2, ..., xn with probabilities
p1, p2, ..., pn so that mean monetary return is

x̄ =
n∑

i=1

pixi. (3)

It may be noted that the utility of an amount x is not always proportional to
x. If the monetary value is doubled, for some persons the utility increases, but it
is less than double of the previous one. Such persons are also called risk-averse and
those for which the utility is more than doubled will be called risk-prone. Thus the
attitude to risk of every person is characterized by u(x). For risk-averse persons,
u(x) increases at a decreasing rate i.e. u“(x) < 0 or u(x) is concave function, while
for risk-prone persons u“(x) > 0 and u(x) is a convex function and for risk-neutral
persons u“(x) = 0.

Pratt [8] and Arrow [1] defined a risk-aversion index (RAI) as

RAI = −(u“(x)/u‘(x)). (4)

It can be easily verified that if u(x) = log(x), then RAI = 1/x > 0 and if
u(x) = ex, then RAI = −1 < 0 and RAI = 0 in case u(x) = x.

Next, we explain how the expression (4) can be obtained by two different meth-
ods. We define x̄ =

∑n
i=1 pixi as certain monetary equivalent (CME) and also define

⋆X by u(X + ⋆X) =
∑n

i=1 piU(X +xi), where X is the positive initial capital. This
can be written as

u(X + X + x̄− x̄) =
n∑

i=1

piU(X + x̄+ xi − x̄) (5)

or

u(X + x̄) + (⋆X − x̄)u‘(X + x̄) + ((⋆X − x̄)2/2!)u‘(X + x̄) + ... = u(X + x̄)+

+
n∑

i=1

pi(xi − x̄)u‘(X + x̄) +
n∑

i=1

pi((xi − x̄)2/2!)u“(X + x̄) + ...

Neclecting (⋆X − x̄)2 and higher orders, we have

(x̄− ⋆X) = −(1/2)(u“(X + x̄)σ2
x/u‘(X + x̄) = (1/2)RAIσ2

x. (6)

Thus CME exceeds ⋆X by an amount proportional to RAI and this arises due to
the attitude to risk of investor. The concept of RAI can be generalized for u(x, y)
and we get

RAI = r11σ
2
x + 2r12σxσy + r22σ

2
y , (7)

where risk averse functions are
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r11 = −(1/2)(uxx/(u
2
x+u2

y)
1/2, r12 = −uxy/(u

2
x+u2

y)
1/2, r22 = −(1/2)(uyy/(u

2
x+u2

y)
1/2

(8)
This can be further generalized for u(x1, x2, ..., xn) to get

RAI = −(1/2)(
n∑

i=1

riiσ
2
i + 2

n∑
i=1

m∑
j=1

rijσiσj), (9)

where

rij = (∂2u/∂xi∂xj)(
n∑

i=1

(∂u/∂xi)
2)1/2. (10)

If risk aversion index for two variables is 0, then

uxxσ
2
x + 2uxyσxσy + uyyσ

2
y = 0, (11)

which is an elliptic partial equation of second order.

6 Pareto-Optimal Sharing of Risks

A number m of persons agree to share risks in a business on basis of optimal sharing
of risks and profits in such a manner that no individual can increase his expected
utility without decreasing the expected utilities of others.

Let a risk have n possible states s1, s2, ..., sn with payments x1, x2, ..., xn and with
probabilities p1, p2, ..., pn. Let payments be partitioned among m individuals whose
utility functions are u1, u2, ..., um. Let xij be the payment of jth individual in case
of ith outcome, then the expected utility of this partitioned risk is given by

ūj =
n∑

i=1

piuixij, j = 1, 2, ...,m, (12)

where
∑m

i=1 xij = xi.
We can plot the m expected utilities in m dimensional space. If the m expected

utilities are negative, then no partition is acceptable because (0, 0, ..., 0) will be
preferred by all. In case all ui‘s are positive, we maximize

λ1ū1 + λ2ū2 + ...+ λmūm (13)

subject to
∑n

i=1 λj = 1, λj > 0. Thus we get a linear hyperplane

λ1ū1 + λ2ū2 + ...+ λmūm = k(λ1, λ2, ..., λm). (14)

The envelope of this hyperplane gives the equation of the Pareto optimal hy-
perplane. All points of this hyper-surface are accepted but which point is chosen
depends on the relative bargaining power of the partner or they can choosethe point
of intersection with the line

ū1 = ū2 = ... = ūm. (15)
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Thus this equitable Pareto optimal sharing can be obtained instead of individual.
We can have groups fighting for increasing their social, political or economic utilities
and arriving at Pareto Optimal Equilibria. When these equilibria are disturbed, new
Pareto optimal positions have to be obtained.

7 Maximum Entropy principle in Risk Sharing

The Pareto optimal boundary gives infinity of solutions and we need one more
criterion to get a unique solution. This is possible by considering that payments are
divided as Kapur [4] uniformly as possible subject to other constraints. For this we
maximize the following measure of entropy as suggested by Kapur [4]:

H⋆ = −
n∑

i=1

pi

m∑
j=1

xij/xi ln(xij/xi) = −
n∑

i=1

pi/xi

m∑
j=1

xij ln xij + constant (16)

Thus out of all Pareto Optimal solutions we choose that one which maximizes
H∗. Raiffa [9] has shown that the Pareto Optimal solution is obtained by maximizing∑m

j=1 λjūj =
∑m

j=1 λj

∑n
i=1 piuj(xij) =

∑n
i=1 pi

∑m
j=1 λjuj(xij) subject to∑m

j=1 xij = xi,
∑m

j=1 λj = 1. This will determine xij in term of λ1, .., λm. Since
normalization

∑m
j=1 λj = 1, therefore H⋆ is function of λ1, .., λm−1. We choose

λ1, .., λm−1 satisfying 0 ≤ λj ≤ 1 for j = 1, 2, ..,m − 1 and 0 ≤
∑m−1

j=1 λj ≤ 1
to maximize H∗.

Example 7.0.1 Special Case of Exponential Utility Function
Let us consider uj(x) = 1−exp(−x/cj), j = 1, 2, ...,m. We maximize

∑n
i=1 piλj(1−

exp(−xij/cj)) subject to

m∑
j=1

xij = xi,
m∑
j=1

λj = 1. (17)

Following Lagrange’s method of multiplier, we get

xij/cj = xi/c−
m∑
j=1

cj/c ln(λj/cj) + ln(λj/cj), (18)

where c =
∑m

j=1 cj. Substituting in (16) and differentiating w.r.t. λk

∂H∗

∂λk

=
n∑

i=1

pi
ck
λk

[ m∑
j=1

(1 + lnxij
cj
c
− ln(1 + xij)

]
Since

∑m
k=1 λk = 1, this gives

c1(A−B1)

λ1

=
c2(A−B2)

λ2

= ... =
cn(A−Bn)

λn

= CA−
m∑
j=1

BjCj (19)

where

A =
m∑
i=1

pi

m∑
j=1

ln(1 + xij)
cj
c
, Bk =

n∑
i=1

pi ln(1 + xij) (20)
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Using (17, 18, 19) and (20) we can solve for x′
ijs and λ′

js.
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[11] Potocký R. (2008). On a dividend strategy of insurance companies,
EKONOMIE A MANAGEMENT, Vol. 11, Issue 4, pp. 103-109, ISSN1212-
3609

[12] Pratt, J.W., Risk aversion in the small and in the large, Econometrics, 32
(1964), 122-136.

[13] Raiffa, H., Decision analysis, Addison Wesley, 1968.

7


