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Abstract

The paper introduces two new data augmentation algorithms for sampling the
parameters of a binary or multinomial logit model from their posterior distribu-
tion within a Bayesian framework. The new samplers are based on rewriting the
underlying random utility model in such a way that only differences of utilities
are involved. As a conseqence, the error term in the logit model has a logistic
distribution. If the logistic distribution is approximated by a finite scale mix-
ture of normal distributions, auxiliary mixture sampling can be implemented to
sample from the posterior of the regression parameters. Alternatively, a data
augmented Metropolis–Hastings algorithm can be formulated by approximating
the logistic distribution by a single normal distribution. A comparative study on
five binomial and multinomial data sets shows that the new samplers are supe-
rior to other data augmentation samplers and to Metropolis–Hastings sampling
without data augmentation.

Keywords: Binomial data, multinomial data, data augmentation, Markov
chain Monte Carlo, logit model, random utility model

1 Introduction

Applied statisticians and econometricians commonly have to deal with modelling a
binary or multinomial response variable in terms of covariates. Examples include mod-
elling the probability of unemployment in terms of risk factors, and modelling choice
probabilities in marketing in terms of product attributes. A widely used tool for an-
alyzing such data are binary or multinomial regression techniques using generalized
linear models.

Estimation of these models is quite challenging, in particular if latent components
are present, such as in random-effects modelling or in state space modelling of discrete
data. Fahrmeir and Tutz (2001) provide a review of likelihood-based estimation meth-
ods; see also Fahrmeir and Kaufmann (1986a) and Fahrmeir and Kaufmann (1986b)
for a rigorous mathematical treatment.

Zellner and Rossi (1984) were the first to perform Bayesian inference for a logit
model using importance sampling based on a multivariate Student-t distribution, with
mean and scale matrix being equal to the posterior mode and the asymptotic covariance
matrix. Starting with Zeger and Karim (1991), many Markov chain Monte Carlo
(MCMC) methods have been developed for the Bayesian estimation of the binary
and the multinomial logit model. MCMC estimation has been based on single-move
adaptive rejection Gibbs sampling Dellaportas and Smith (1993), Metropolis–Hastings
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(MH) sampling Gamerman (1997); Lenk and DeSarbo (2000); Rossi et al. (2005), data
augmentation and Gibbs sampling Holmes and Held (2006); Frühwirth-Schnatter and
Frühwirth (2007), and data augmented Metropolis–Hastings sampling Scott (2009).

In the present article we focus on practical Bayesian inference for binary and multi-
nomial logit models using data augmentation methods. For these models, data aug-
mentation relies on the interpretation of the logit model as a random utility model
McFadden (1974). Frühwirth-Schnatter and Frühwirth (2007) and Scott (2009) base
data augmentation directly on this random utility model (RUM) by introducing the
utilities as latent variables. Holmes and Held (2006) choose the differences of utili-
ties as latent variables, which is the standard data augmentation method underlying
MCMC estimation of probit models, see e.g. Albert and Chib (1993) and McCulloch
et al. (2000). We call this interpretation the difference random utility model (dRUM).

In the following we show how to implement data augmentation based on the dRUM
representation for the binary and the multinomial logit model. We introduce yet
two other data augmentation MCMC samplers by extending the ideas underlying
Frühwirth-Schnatter and Frühwirth (2007) and Scott (2009) to the dRUM representa-
tion. The extension of the data augmented MH algorithm of Scott (2009) is straight-
forward, while the extension of the auxiliary mixture sampling approach of Frühwirth-
Schnatter and Frühwirth (2007) involves approximating the logistic distribution by a
finite scale mixture of normal distributions Monahan and Stefanski (1992).

We compare the two new data augmentation samplers with the three existing ones
for several well-known case studies. This exercise reveals that data augmentation
samplers based on the dRUM representation are considerably more efficient in terms of
reducing autocorrelation in the resulting MCMC draws than data augmentation based
on the RUM. Under the dRUM representation, both auxiliary mixture sampling and
data augmented MH sampling are considerably faster than the sampler suggested by
Holmes and Held (2006), making the two new samplers an attractive alternative to
other data augmentation methods.

Since it is often believed that MCMC sampling without data augmentation can be
even more efficient than MCMC sampling with data augmentation, we include several
MH algorithms into our comparison, namely the independence MH sampler suggested
in Rossi et al. (2005), a multivariate random walk MH with asymptotically optimal
scaling chosen as in Roberts and Rosenthal (2001), and the DAFE-R MH algorithm
suggested by Scott (2009). While the independence MH sampler of Rossi et al. (2005)
turns out to be superior to any other MH sampler without data augmentation, we
find for all but one (very well-behaved) case study that our two new dRUM data
augmentation samplers are superior to the independence MH sampler both in terms of
efficiency and in terms of the effective sampling rate.

2 MCMC Estimation Based on Data Augmenta-

tion for Binary Logit Regression Models

Given a sequence y1, . . . , yN of binary data, the binary logit regression model reads:

Pr(yi = 1|β) = πi(β) =
exp(xiβ)

1 + exp(xiβ)
, (1)
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where xi is a row vector of regressors, including 1 for the intercept, and β is an unknown
regression parameter of dimension d. Furthermore we assume that, conditional on
knowing β, the observations are mutually independent.

To pursue a Bayesian approach, we assume that the prior distribution p(β) of β
is a normal distribution, Nod(b0,B0) with known hyperparameters b0 and B0. The
posterior density p(β|y) of β given all observations y = (y1, . . . , yN) does not have a
closed form:

p(β|y) ∝ p(β)
N∏
i=1

[exp(xiβ)]
yi

1 + exp(xiβ)
.

Hence Bayesian estimation relies either on data augmentation, to be discussed in this
section, or on MH sampling, as in Section 4.

2.1 Writing the Logit Model as a Random Utility Model

The interpretation of a logit model as a random utility (RUM) model was introduced
by McFadden (1974). Two representations of the logit model as a RUM are common.

Let yuki be the utility of choosing category k, which is assumed to depend on covari-
ates xi. The RUM representation corresponding to the logit model reads:

yu0i = xiβ0 + δ0i, δ0i ∼ EV, (2)

yu1i = xiβ1 + δ1i, δ1i ∼ EV, (3)

yi = I{yu1i > yu0i},

where I{·} is the indicator function and δ0i and δ1i are i.i.d. random variables following
a type I extreme value (EV) distribution with density:

fEV(δ) = exp
(
−δ − e−δ

)
, (4)

with expectation E(δ) = γ and variance V(δ) = π2/6, where γ = 0.5772 is Euler’s
constant.

Thus category 1 is observed, i.e. yi = 1, iff yu1i > yu0i; otherwise yi = 0. To achieve
identifiability, it is assumed that β0 = 0, i.e. β = β1, because only the difference
β = β1 − β0 can be identified.

An alternative way to write the logit model as an augmented model involving
random utilities is the difference random utility model (dRUM), which is obtained
by choosing a baseline category, typically 0, and to consider the model involving the
differences of the utilities:

zi = xiβ + ϵi, ϵi ∼ Lo, (5)

yi = I{zi > 0},

where zi = yu1i − yu0i. The error term ϵi = δ1i − δ0i, being the difference of two i.i.d. EV
random variables, follows a logistic (Lo) distribution, with density:

fLo(ϵ) =
eϵ

(1 + eϵ)2
,

with E(ϵ) = 0 and V(ϵ) = π2/3.
For both representations the binary logit regression model (1) results as the marginal

distribution of yi.
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2.2 Data Augmentation Based on the Random Utility Model

Several data augmentation algorithms have been suggested for the logit model, all of
which are based on the interpretation of a logit model as a random utility model.
However, depending on whether the RUM or the dRUM is considered, different data
augmentation algorithms result.

Frühwirth-Schnatter and Frühwirth (2007) and Scott (2009) consider the RUM rep-
resentation (2) for data augmentation and introduce for each i, i = 1, . . . , N , the latent
utility of choosing category 1, i.e. z = (yu11, . . . , y

u
1N), as missing data. Holmes and Held

(2006) use the dRUM representation (5) and introduce the differences in utilities, i.e.
z = (z1, . . . , zN), as missing data. For both representations, data augmentation leads
to a two-step MCMC sampler which draws from the conditional densities p(z|β,y) and
p(β|z,y), respectively.

For both representations it is possible to sample all components of z|β,y simulta-
neously in a simple manner. For the RUM this step reads:

yu1i = − log (Ex (1 + λi) + Ex (λi) (1− yi)) , (6)

where Ex (λ) denotes a random variable from an exponential distribution with density
equal to λ exp(−λy). For the dRUM this step reads:

zi = log(λiUi + yi)− log(1− Ui + λi(1− yi)), (7)

where Ui ∼ Un [0, 1]. In both cases λi = exp(xiβ).
In contrast to sampling from p(z|β,y), sampling from p(β|z,y) is not possible

in closed form, regardless of the underlying representation. Conditional on z, the
posterior of β is independent of y and can be derived from regression models (3) or
(5), respectively, which are linear in β, but have a non-normal error term. Various
methods have been suggested to cope with this non-normality when sampling the
regression parameter β.

Scott (2009) uses an independence MH algorithm where a normal proposal distri-
bution Nod(bN ,BN) for β is constructed by approximating the non-normal error δ1i
appearing in (3) by a normal error with same mean and variance:

bN = BN

(
B0

−1b0 +
6

π2
X′(z− γ)

)
, BN =

(
B0

−1 +
6

π2
X′X

)−1

, (8)

where row i of the (N × d) matrix X is equal to the regressor xi of the logit model (1).
This leads to a very fast sampler, because BN is fixed while running MCMC; however,
the acceptance rate might be low in higher dimensional problems.

Frühwirth-Schnatter and Frühwirth (2007) approximate the density of the EV dis-
tribution in (3) by the density of a finite normal mixture distribution with 10 compo-
nents with optimized, but fixed parameters (mr, s

2
r, wr) in component r :

yu1i = xiβ + ϵi, ϵi|ri ∼ No
(
mri , s

2
ri

)
, ri ∼ MulNom(w1, . . . , w10). (9)

To perform MCMC estimation they add the latent indicators r = (r1, . . . , rN) as miss-
ing data. The advantage of this additional data augmentation is that conditional on z
and r, the regression parameter β may be sampled from regression model (9), leading
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to a normal conditional posterior. To complete MCMC, each indicator ri has to be
sampled from the discrete posterior ri|zi,β which is a standard step in finite mixture
modelling.

Holmes and Held (2006) represent the logistic distribution appearing in (5) as an
infinite scale mixture of normals Andrews and Mallows (1974):

zi = xiβ + ϵi, ϵi|ωi ∼ No (0, ωi) ,
√
ωi/2 ∼ KS, (10)

where KS is the Kolmogorov–Smirnov distribution. To perform MCMC estimation
they add the latent scaling factors ω = (ω1, . . . , ωN) as missing data. Conditional on
z and ω, the regression parameter β is sampled from regression model (10), leading
to a normal conditional posterior. To complete MCMC, each scaling factor ωi has
to be sampled from the posterior ωi|β, zi which has no closed form, the density of
the KS distribution having no closed form either, but only a representation involving
an infinite series. To sample ωi, Holmes and Held (2006) implement a single move
rejection sampling method based on deriving upper and lower squeezing functions from
a truncated series representation of the density of the KS distribution. However, as
will be illustrated by the case studies in Section 5, this rejection sampling step makes
the algorithm computationally intensive and therefore quite slow.

2.3 Two New Samplers Based on the dRUM Representation

The case studies to be discussed in Section 5 demonstrate a remarkable advantage
of Holmes and Held (2006) compared to Frühwirth-Schnatter and Frühwirth (2007),
namely that the autocorrelations of the MCMC draws are in general much smaller,
making the sampler more efficient. This increase in efficiency turns out to be closely
related to using the dRUM rather than the RUM representation of the logit model.

In this paper, we propose two new samplers based on the dRUM representation of
the logit model. They are constructed by applying the ideas underlying Frühwirth-
Schnatter and Frühwirth (2007) and Scott (2009). As will be illustrated by the case
studies, these samplers are much faster than the approach of Holmes and Held (2006),
while the efficiency is about the same. Both are much more efficient than the corre-
sponding ones in the RUM representation.

To apply the ideas underlying Scott (2009) to the dRUM representation, we con-
struct a proposal density for β by approximating the error term in (5) by a normal
error with zero mean and variance equal to π2/3. Because a logistic error is closer to
the normal distribution than an error following the EV distribution, it is to be expected
that the acceptance rate for the resulting independence MH algorithm is much higher
than in the RUM model. This expectation is confirmed by our case studies. Details of
this sampler are given in Algorithm 1.

Algorithm 1 Independence Metropolis–Hastings algorithm in the dRUM representa-
tion of a logit model.

Choose starting values for β and z = (z1, . . . , zN) and repeat the following steps:

(a) Propose βnew from the proposal q(βnew|z) = Nod (bN ,BN) with moments:

bN = BN

(
B0

−1b0 +
3

π2
X′z

)
, BN =

(
B0

−1 +
3

π2
X′X

)−1

.
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Accept βnew with probability min(α, 1), where:

α =
p(z|βnew)p(βnew)q(β|z)
p(z|β)p(β)q(βnew|z)

,

and p(z|β) is the likelihood of model (5):

p(z|β) =
N∏
i=1

fLo(zi − xiβ).

(b) Sample from zi|β,y for i = 1, . . . , N as in (7). 2

To apply the ideas underlying Frühwirth-Schnatter and Frühwirth (2007) to the
dRUM representation, we approximate in (5) the density of the logistic distribution
fLo(ϵi) by the density of a normal mixture distribution. As fLo(ϵi) is symmetric around
0, it is sensible to use a finite scale mixture of normal distributions with all compo-
nent means being equal to 0. For a fixed number H of components this mixture is
characterized by component specific variances s2r and weights wr :

fLo(ϵi) ≈
H∑
r=1

wrfNo(ϵi; 0, s
2
r). (11)

The contribution of Monahan and Stefanski (1992) to the handbook of the logistic
distribution Balakrishnan (1992) contains such an approximation. As they use a dif-
ferent parameterization, the correct weights and variances in (11) are given by wr = pr
and s2r = 1/(s⋆r)

2, where pr and s⋆r are the values published in Monahan and Stefanski
(1992, Table 18.4.1). The corresponding parameters are reproduced in Table 1. We
investigate the accuracy of this approximation as well as an alternative approximation
in Subsection 2.4.

In general, we expect the number of components necessary to approximate the lo-
gistic distribution to be smaller than in Frühwirth-Schnatter and Frühwirth (2007),
because the logistic distribution is much closer to the normal distribution than the EV
distribution. In fact, the results in Subsection 2.4 show that the 3-component approx-
imation of Monahan and Stefanski (1992) gives about the same acceptance rates as
the 10-component approximation in the RUM representation, see Frühwirth-Schnatter
and Frühwirth (2007, Table 2), while choosing H = 6 leads to an extremely accurate
approximation. Thus we recommend choosing H = 3 in larger applications, where
computing time matters, and to work with H = 6 whenever possible.

Having approximated the density of the logistic distribution by a scale mixture of
H normal densities, we obtain a representation of the dRUM similar to (10), but ωi is
drawn with fixed probabilities w1, . . . , wH from the set {s21, . . . , s2H}:

zi = xiβ + ϵi, ϵi|ωi ∼ No (0, ωi) , (12)

ωi = s2ri , ri ∼ MulNom(w1, . . . , wH).

Note that in this way we approximate the logit model by a very accurate finite scale
mixture of probit models.

6



Like in Holmes and Held (2006), we add the scaling factors ω = (ω1, . . . , ωN) as
missing data. However, an advantage compared to Holmes and Held (2006) is that
instead of sampling ωi directly, we sample an indicator ri from the discrete posterior
ri|zi,β, which can be done in a very efficient manner, and define ωi = s2ri . Details of
this sampler are given in Algorithm 2.

Algorithm 2 Auxiliary mixture sampling in the dRUM representation of a logit model.

Choose starting values for z = (z1, . . . , zN) and ω = (ω1, . . . , ωN) and repeat the
following steps:

(a) Sample the regression coefficient β conditional on z and ω based on the normal
regression model (12) from Nod (bN ,BN) with moments:

bN = BN

(
B0

−1b0 +
n∑

i=1

xi
′zi/ωi

)
, BN =

(
B0

−1 +
n∑

i=1

xi
′xi/ωi

)−1

.

(b) For i = 1, . . . , N , sample from zi|β,y as in (7). Sample the indicator ri condi-
tional on zi from the discrete density:

Pr(ri = j|zi,β) ∝
wj

sj
exp

[
−1

2

(
zi − log λi

sj

)2
]
,

and set ωi = s2ri . The quantities (wj, s
2
j), j = 1, . . . , H are the parameters of the

H component finite mixture approximation tabulated in Table 1. 2

2.4 Finite Mixture Approximations to the Logistic Distribu-
tion

Monahan and Stefanski (1992) obtained their finite scale mixture approximation by
minimizing the KS-distance between the true and the approximate distribution func-
tion. The results are given in Table 1.

Because the approximation in Frühwirth-Schnatter and Frühwirth (2007) is based
on minimizing the Kullback–Leibler distance between the densities, we redid a related
analysis for the logistic distribution. The fitted components are reported in Table 2.

Similarly as in Frühwirth-Schnatter and Frühwirth (2007), we evaluate the effect of
using different distance measures and different numbers of mixture components for a
simple example, namely Bayesian inference for N i.i.d. binary observations y1, . . . , yN ,
drawn with Pr(yi = 1|β) = π = eβ/(1 + eβ).

First we run the data augmented MH algorithm as in Algorithm 2, which cor-
responds to approximating the logistic distribution by the single normal distribution
No (0, π2/3), i.e. H = 1. Then the data augmented MH algorithm is refined by propos-
ing β from an approximate model, where the logistic distribution is approximated by
a scale mixture of H normal distributions with H ranging from 2 to 6. Similarly as
in Frühwirth-Schnatter and Frühwirth (2007), we use numerical integration methods
to compute the corresponding expected acceptance rate for various values of π and N .
Table 3 and Table 4 report, respectively, the expected acceptance rate for the mixture
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Table 1: Approximation of the density of the logistic distribution by finite scale mix-
tures of normal distributions with H components, based on Monahan and Stefanski
(1992).

H = 2 H = 3 H = 4 H = 5 H = 6
r s2r 100wr s2r 100wr s2r 100wr s2r 100wr s2r 100wr

1 1.6927 56.442 1.2131 25.22 0.95529 10.65 0.79334 4.4333 0.68159 1.8446
2 5.2785 43.558 2.9955 58.523 2.048 45.836 1.5474 29.497 1.2419 17.268
3 7.5458 16.257 4.4298 37.419 3.012 42.981 2.2388 37.393
4 9.701 6.0951 5.9224 20.759 4.0724 31.697
5 11.77 2.3291 7.4371 10.89
6 13.772 0.90745

Table 2: Approximation of the density of the logistic distribution by finite scale mix-
tures of normal distributions with H components, based on minimizing the K-L dis-
tance.

H = 2 H = 3 H = 4 H = 5 H = 6
r s2r 100wr s2r 100wr s2r 100wr s2r 100wr s2r 100wr

1 1.9658 68.966 1.4418 38.834 1.1509 20.638 0.95132 10.159 0.84678 5.8726
2 6.2324 31.034 3.7181 52.719 2.6072 52.008 1.9567 40.842 1.61 28.74
3 9.1139 8.4469 5.6748 25.032 3.8969 36.99 2.8904 36.756
4 11.884 2.3212 7.5025 11.233 5.0772 22.427
5 14.163 0.7753 8.9109 5.8701
6 15.923 0.33466

approximation based on Monahan and Stefanski (1992) and the mixture approximation
based on the Kullback–Leibler distance.

As expected, by increasing the number of components the expected acceptance rate
approaches 100% for both distances. The expected acceptance rates are rather similar
for both distance measure; however, the approximations obtained by Monahan and
Stefanski (1992) are slightly better than the approximations based on the Kullback–
Leibler distance. Both approximations are already very good for H as small as 3 and
are extremely accurate for H = 6.

Note that the mixture approximation is applied not only once, but N times. Both
tables show how the approximation error accumulates with increasing N . Again, we
find that the mixture approximations derived by Monahan and Stefanski (1992) are
slightly more reliable in this respect than the mixture approximations based on the
Kullback–Leibler distance.
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Table 3: Expected acceptance rate in percent for a Metropolis–Hastings algorithm,
based for H = 1 on the normal distribution No (0, π2/3) and for H > 1 on the scale
mixture approximations of Monahan and Stefanski (1992). N is the number of i.i.d.
binary observations, and π is the probability of observing 1.

π N H
1 2 3 4 5 6

0.05 1 90.990 99.165 99.889 99.984 99.998 100.00
10 89.508 98.628 99.778 99.961 99.994 99.999
100 88.562 97.956 99.630 99.932 99.986 99.997

1000 88.267 97.850 99.549 99.906 99.980 99.996

0.20 1 90.787 99.188 99.889 99.980 99.997 100.00
10 88.491 98.408 99.740 99.957 99.992 99.999
100 88.273 97.831 99.611 99.927 99.986 99.997

1000 88.139 97.697 99.518 99.900 99.979 99.995

0.50 1 90.966 99.207 99.897 99.984 99.998 100.00
10 88.748 98.321 99.724 99.950 99.991 99.998
100 88.289 97.883 99.630 99.929 99.986 99.997

1000 88.236 97.678 99.520 99.899 99.978 99.995

Table 4: Expected acceptance rate in percent for a Metropolis–Hastings algorithm,
based on a mixture approximation with H components minimizing the Kullback–
Leibler distance. N is the number of i.i.d. binary observations, and π is the probability
of observing 1.

π N H
2 3 4 5 6

0.05 1 98.788 99.786 99.958 99.992 99.992
10 97.996 99.580 99.908 99.981 99.988
100 97.745 99.499 99.879 99.973 99.987

1000 97.732 99.470 99.875 99.972 99.986

0.20 1 98.750 99.791 99.958 99.992 99.992
10 97.909 99.548 99.903 99.979 99.988
100 97.696 99.475 99.875 99.973 99.986

1000 97.618 99.457 99.873 99.972 99.986

0.50 1 98.818 99.798 99.960 99.992 99.992
10 97.846 99.534 99.896 99.979 99.988
100 97.654 99.477 99.873 99.971 99.986

1000 97.625 99.463 99.873 99.971 99.986

3 MCMC Estimation Based on Data Augmenta-

tion for the Multinomial Logit Regression Model

Let {yi} be a sequence of categorical data, i = 1, . . . , N , where yi is equal to one of
m+1 unordered categories. The categories are labeled by L = {0, . . . ,m}, and for any
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k the set of all categories but k is denoted by L−k = L \ {k}.
We assume that the observations are mutually independent and that for each k ∈ L

the probability of yi taking the value k depends on covariates xi in the following way:

Pr(yi = k|β0, . . . ,βm) = πki(β0, . . . ,βm) =
exp(xiβk)
m∑
l=0

exp(xiβl)

, (13)

where β0, . . . ,βm are category specific unknown parameters of dimension d. To make
the model identifiable, the parameter βk0 of a baseline category k0 is set equal to 0:
βk0 = 0. Thus the parameter βk is in terms of the change in log-odds relative to the
baseline category k0. In the following, we assume without loss of generality that k0 = 0.
To pursue a Bayesian approach, we assume that the prior distribution p(βk) of each
βk is a normal distribution Nod(b0,B0) with known hyperparameters b0 and B0.

3.1 Data Augmentation in the RUM

As for the binary model, data augmentation is based on writing the multinomial logit
model as a random utility model McFadden (1974):

yuki = xiβk + δki, k = 0, . . . ,m, (14)

yi = k ⇔ yuki = max
l∈L

yuli. (15)

Thus the observed category is equal to the category with maximal utility. If the random
variables δ0i, . . . , δmi appearing in (14) are i.i.d. following an EV distribution, then the
multinomial logit model (13) results as the marginal distribution of yi.

Frühwirth-Schnatter and Frühwirth (2007) and Scott (2009) use this RUM for-
mulation of the multinomial logit model to carry out data augmentation based on
introducing the latent utilities as missing data, i.e. z = ((yuk1, . . . , y

u
kN), k = 1, . . . ,m).

As for the binary RUM it is possible to sample the latent utilities z|β1, . . . ,βm,y
simultaneously:

yuki = − log

(
− log(Ui)

1 +
∑m

l=1 λli

− log(Vki)

λki

I{yi ̸= k}
)
, (16)

where Ui and V1i, . . . , Vmi are m + 1 independent uniform random numbers in [0, 1],
and λli = exp(xiβl) for l = 1, . . . ,m.

3.2 Data Augmentation in the dRUM

An alternative way to write a multinomial model is as a difference random utility
model (dRUM) which is obtained by choosing a baseline category k0 and considering
the model involving the differences of the utilities. This representation is the standard
choice in the MCMC literature on the multinomial probit model, see e.g. McCulloch
et al. (2000) and Imai and van Dyk (2005).
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If we write the multinomial logit model as a dRUM, we obtain the following repre-
sentation:

zki = xiβk + ϵki, ϵki ∼ Lo, k = 1, . . . ,m, (17)

yi =

{
0, if maxl∈L−0 zli < 0,

k > 0, if zki = maxl∈L−0 zli > 0,

where zki = yuki − yu0i and ϵki = δki − δ0i. The regression parameters appearing in (17)
are identical to the ones appearing in (13), because βk0 = β0 = 0.

In contrast to the multinomial probit model, where ϵi = (ϵ1i, . . . , ϵmi)
′ follows a

multivariate normal distribution, the vector ϵi appearing in the dRUM representation
of the multinomial logit model has a multivariate logistic distribution with logistic
marginals (Balakrishnan, 1992, Section 11.2). While the errors in the RUM repre-
sentation (14) are i.i.d., the errors ϵki in the dRUM representation (17) are no longer
independent across categories.

This complicates MCMC sampling to a certain degree. Following the MCMC lit-
erature on the multinomial probit model, we could introduce z = ((zk1, . . . , zkN), k =
1, . . . ,m) as missing data and sample β1, . . . ,βm|z and z|β1, . . . ,βm,y. However, while
sampling β1, . . . ,βm|z is trivial in the multinomial probit model because ϵi is multi-
variate normal, this step is non-standard in the multinomial logit model because ϵi is
multivariate logistic.

In the present paper we consider a different way of representing a multinomial model
by differences in utilities. Note that equation (15) may be written as

yi = k ⇔ yuki > yu−k,i, yu−k,i = max
l∈L−k

yuli. (18)

Thus category k is observed iff yuki is bigger than the maximum of all other utilities.
Now we define for each (fixed) value of k ∈ L−0 the latent variables wki as the difference
between yuki and yu−k,i and construct binary observations dki = I{yi = k}. Then it is
possible to rewrite (18) as a binary model in the dRUM representation:

wki = yuki − yu−k,i, dki = I{wki > 0}. (19)

We term (19) the partial dRUM representation, because dki uses only partial informa-
tion from the original data, namely whether yi is equal to k or not.

It should be mentioned that the partial dRUM representation is not restricted to
the multinomial logit model, but holds for arbitrary error distributions in the RUM
representation (14). However, while the distribution of wki is in general unfeasible, it
has an explicit form for the multinomial logit model. First of all,

exp
(
−yu−k,i

)
∼ Ex (λ−k,i) , λ−k,i =

∑
l∈L−k

λli, (20)

because exp(−yu−k,i) = minl∈L−k
exp(−yuli), and exp(−yuli) ∼ Ex (λli). We recall that

λli = exp(xiβl). (20) may be rewritten as yu−k,i = log(λ−k,i) + δ−k,i, where δ−k,i follows
an EV distribution. Therefore

wki = yuki − yu−k,i = xiβk − log (λ−k,i) + δki − δ−k,i,
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where δ−k,i and δk,i are i.i.d. following an EV distribution. Thus the multinomial logit
model has the following partial dRUM representation:

wki = xiβk − log (λ−k,i) + ϵki, dki = I{wki > 0}, (21)

where ϵki ∼ Lo. Evidently, for m = 1, (21) reduces to the dRUM given by (5).
The constant log(λ−k,i) appearing in (21) is independent of βk and depends only

on the regression parameters β−k of the remaining categories. Thus given zk =
(wk1, . . . , wkN) and β−k, the regression parameter βk corresponding to category k ap-
pears only in a linear regression model with logistic errors, given by (21).

Thus the partial dRUM is very useful when implementing MCMC for a multinomial
model. At each MCMC draw we iterate over the categories for k = 1, . . . ,m. For each k,
the partial dRUM actually is a binary dRUM and we may proceed as in Subsection 2.3
to sample zk|βk,y and βk|β−k, zk.

Evidently, wki|βk, yi is distributed according to a logistic distribution, truncated to
[0,∞) if yi = k, and truncated to (−∞, 0] otherwise. Thus wki is sampled as:

wki = log (λ⋆
kiUki + I{yi = k})− log (1− Uki + λ⋆

ki I{yi ̸= k}) ,

where Uki ∼ Un [0, 1] and λ⋆
ki = λki/λ−k,i.

Then βk is sampled from the non-normal regression model (21), where the constant
log(λ−k,i) is added to both sides of equation (21) to obtain a zero mean error. To deal
with the non-normality of ϵki, one can apply any of the sampling strategies discussed
in Subsection 2.3 for the dRUM representation of the logit model.

Actually, Holmes and Held (2006) sample βk for a multinomial logit model using
the partial dRUM representation, but do not provide a rigorous derivation from a
random utility model as we did above. They represent the logistic distribution of ϵki in
(21) as an infinite scale mixture of normals and introduce and sample scaling factors
ωki, i = 1, . . . , N , for all k = 1, . . . ,m. As for the logit model, this sampler is rather
demanding from a computational point of view.

Alternatively, we can apply the ideas underlying Scott (2009) to the partial dRUM
representation (21). This involves sampling βk by an independence MH algorithm,
where the proposal is constructed from regression model (21) by replacing the logistic
error term ϵki by a normal error with the same variance, i.e. π2/3.

Finally, the finite scale mixture approximation of the logistic distribution introduced
in Subsection 2.3 may be applied to (21). This involves introducing and sampling
indicators rki, i = 1, . . . , N , for all k = 1, . . . ,m. Because this sampling step can be
implemented in a very efficient way, auxiliary mixture sampling in the partial dRUM
representation turns out to be much more efficient than the related sampler of Holmes
and Held (2006).

4 MCMC Sampling without Data Augmentation

It is generally believed that MCMC samplers based on data augmentation are less
efficient than MCMC samplers without data augmentation. However, we will demon-
strate in Section 5 that the new data augmentation samplers introduced in this paper
are more efficient than commonly used MH algorithms.
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For our comparison we consider the two MH algorithms suggested in Rossi et al.
(2005) and the DAFE-R MH algorithm suggested by Scott (2009). We assume without
loss of generality that the baseline is chosen equal to 0 and provide details for the
multinomial model. We use β = (β1, . . . ,βm) to denote the vector of all unknown
regression parameters. The binary model results with m = 1.

Rossi et al. (2005, Section 3.11) discuss various MH algorithms based on the ex-
pected Hessian of the negative log-posterior − log p(β|y). The elements of this matrix
read:

−E

(
∂2 log p(β|y)

∂β2
k

)
= B0

−1 +
N∑
i=1

xi
′xi πki(β)(1− πki(β)), (22)

−E

(
∂2 log p(β|y)

∂βk∂βl

)
= −

N∑
i=1

xi
′xi πki(β)πli(β).

An alternative approach uses the expected Hessian of the negative log-likelihood− log p(y|β);
however, this matrix is rank deficient if for a certain category k, πki = 0 for all
i = 1, . . . , N . Thus, adding the prior information matrix B0

−1 in (22) helps to stabilize
the inverse of the expected Hessian in cases where for a certain k the probabilities πki

are equal or close to 0 for most of the observations.
To obtain a proposal variance-covariance matrix that is independent of β, the prob-

abilities πki(β) are substituted by some estimator, for instance π̂ki = πki(β̂), with β̂
being the posterior mode. It is useful to write the expected Hessian matrix as:

H = Im ⊗B0
−1 +

N∑
i=1

(Diag (π̂i)− π̂iπ̂i
′)⊗ xi

′xi,

where π̂i = (π̂1i · · · π̂mi)
′.

Rossi et al. (2005) construct two kinds of MH algorithms based on the matrix
H, namely an independence MH algorithm with a multivariate Student-t proposal
tν(β̂,H

−1) with a small number of degrees of freedom ν, and a random walk MH
algorithm with proposal βnew|βold ∼ Nomd(β

old, s2H−1) with scaling factor s2. Roberts
and Rosenthal (2001) prove that for a (md)-variate normal posterior distribution with
variance-covariance equal to the identity matrix an asymptotically optimal scaling is
given by s2 = 2.382/(md), with the corresponding optimal acceptance rate being equal
to 0.234. Since the posterior p(β|y) is asymptotically normal with variance-covariance
matrix equal to H−1, we use the following random walk proposal for β:

βnew|βold ∼ Nomd

(
βold,

2.382

md
H−1

)
. (23)

Rossi et al. (2005, p.95) suggest to use the scaling factor s2 = 2.932/(md); however, it
turns out that this scaling is inferior to the asymptotically optimal scaling.

Scott (2009) introduces the so-called DAFE-RMH algorithm which is based on com-
puting the asymptotic variance-covariance matrix of the augmented posterior p(β|y, z)
from the augmented random utility model (3). This variance-covariance matrix is used
as a proposal in a multivariate random walk MH algorithm for the marginal model.
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For the binary model this proposal reads:

βnew|βold ∼ Nod

(
βold,

(
B0

−1 +
6

π2
X′X

)−1
)
. (24)

The DAFE-R MH algorithm is applied to a multinomial logit model by using the
proposal βnew

k |βold
k ∼ Nod(β

old
k , (B0

−1 + 6/π2X′X)−1) for single-move sampling of βk

from p(βk|β−k,y).
The proposal used in the DAFE-R MH algorithm has the advantage that the

variance-covariance matrix depends only on X and consequently is very easily com-
puted prior to MCMC sampling, while determining the Hessian H requires estimators
of all unknown probabilities πki. However, since the DAFE-R is a random walk MH
algorithm, it is likely to be inferior to the asymptotically optimal random walk (23),
which is confirmed by the case studies in Section 5.

For a binary model, for instance, the proposal of the asymptotically optimal random
walk simplifies to:

βnew|βold ∼ Nod

(
βold,

(
d

2.382
B0

−1 +X′Diag (a1, . . . , aN)X

)−1
)
,

where ai = π̂i(1 − π̂i)d/2.38
2. This proposal looks rather similar to the DAFE-R

proposal (24), the main difference being the weight attached to xi
′xi, which is equal

to 6/π2 = 0.6079 rather than ai for the DAFE-R algorithm. Thus if, on average,
6/π2 > ai, the scaling of the DAFE-R algorithm is too small, causing the acceptance
rate to be too high. For instance, if π̂i = 0.5 this happens if d < 14, while for π̂i = 0.1
this happens if d < 38. Thus we expect that the acceptance rate of the DAFE-R
algorithm is too high in small regression models.

5 Comparison of the Various MCMC Algorithms

We apply nine different MCMC samplers to five well-known data sets. The (binary)
nodal involvement data Chib (1995) is a small data set (N = 53) with a small set of
regressors (d = 5). The (binary) heart data Holmes and Held (2006) is a medium sized
data set (N = 270) with a larger set of regressors (d = 14). The (binary) German
credit card data Holmes and Held (2006) is a large data set (N = 1000) with a large
number of regressors (d = 25). The (multinomial) car data Scott (2009) is a medium
sized data set (N = 263) with 3 categories and a small set of regressors (d = 4).

Finally, we consider the (multinomial) Caesarean birth data of Fahrmeir and Tutz
(2001, Table 1.1), where the outcome variable has 3 categories (no infection and two
type of infections) and N = 251. The data are organized as a three-way contingency
table with eight factor combinations. The table is very unbalanced with a few cells
containing a large fraction of the data, while other cells are empty. This makes statis-
tical inference quite a challenge, and for illustration we fit a saturated logit model, i.e.
d = 8.

For all examples, we take an independent standard normal prior for each regression
coefficient and use each MCMC method to produce M = 10000 draws from the pos-
terior distribution after running burn-in for 2000 iterations. All implementations are
carried out using Matlab (Version 7.3.0) on a notebook with a 2.0 GHz processor.
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Naturally, we prefer fast samplers being nearly as efficient as i.i.d. sampling from the
posterior p(β|y). Thus in Tables 5– 9 we summarize for each data set the performance
of the various samplers in CPU time TCPU (in seconds) needed to obtain the M draws
(excluding burn-in) and the efficiency compared to i.i.d. sampling.

To evaluate the loss of efficiency, we compute for each regression coefficient βkj,
k = 1, . . . ,m, j = 1, . . . , d the inefficiency factor

τ = 1 + 2 ·
K∑

h=1

ρ(h),

where ρ(h) is the empirical autocorrelation of the MCMC draws of that particular
regression parameter at lag h. The initial monotone sequence estimator of Geyer (1992)
is used to determineK, based on the sum of adjacent pairs of empirical autocorrelations
Φ(s) = ρ(2s) + ρ(2s + 1). If n is the largest integer so that Φ(s) > 0 and Φ(s) is
monotone for s = 1, . . . , n, then K is defined by K = 2n + 1. We determine for each
regression coefficient the effective sample size ESS Kass et al. (1998) according to ESS
= M/τ . The closer ESS is to M , the smaller is the loss of efficiency. In Tables 5– 9 we
report the median ESS for all regression coefficients, as well as the minimum and the
maximum.

To compare a slow, but efficient sampler with a fast, but inefficient sampler, we
consider for each regression coefficient the effective sampling rate ESR (per second),
defined as ESR = ESS/TCPU, and report the median ESR for all regression coefficients,
as well as the minimum and the maximum. The median ESR is the most significant
number in comparing the different MCMC samplers: the higher the median, the better
the sampler.

We analyze three samplers using data augmentation in the dRUM, namely the
sampler of Holmes and Held (2006) (dRUM-HH), our new auxiliary mixture sampler
which substitutes the logistic distribution by the finite scale mixture approximation of
Monahan and Stefanski (1992) with H = 3 and H = 6 (dRUM-FSF), and the new data
augmented MH sampler which uses the posterior of the approximate standard linear
regression model as proposal in the spirit of Scott (2009) (dRUM-Scott). We consider
two samplers using data augmentation in the RUM, namely the auxiliary mixture
sampler of Frühwirth-Schnatter and Frühwirth (2007) (RUM-FSF) and the original
data augmented MH sampler of Scott (2009) (RUM-Scott). Finally, we consider the
various random walk MH algorithms discussed in Section 4, namely the independence
MH sampler of Rossi et al. (2005) (MH-Rossi), the asymptotically optimal random walk
MH sampler of Roberts and Rosenthal (2001) (MH-RR), and the DAFE-R algorithm
of Scott (2009) (MH-Scott).

We start the various MCMC samplers in the following way. All MH algorithms (with
and without data augmentation) as well as all partial dRUM samplers for the multino-
mial logit model need a starting value for βk, k = 1, . . . ,m, which is set to 0. All data
augmentation samplers need starting values for z. For binary models starting values for
z are sampled under the RUM representation from (6) and under the dRUM representa-
tion from (7) using λi = log π̂− log(1− π̂), where π̂ = min(max(

∑N
i=1 yi/N, 0.05), 0.95).

For multinomial models starting values for z are sampled from (16) with λ0i = 1 and
λli = log π̂l − log(1 − π̂l), where π̂l = min(max(

∑N
i=1 I{yi = l}/N, 0.05), 0.95) for

l = 1, . . . ,m. These values are transformed according to (19) to obtain starting values
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Table 5: Comparing MCMC samplers for the nodal involvement data (N = 53, d = 5,
m = 1); based on M = 10 000 draws after burn-in of 2 000 draws.

a TCPU ESS (total draws) ESR (draws/s)
Sampler (%) (s) min med max min med max

dRUM-HH 25.4 3459.0 3883.5 4948.7 136.2 152.9 194.8
dRUM-FSF (H = 3) 5.1 3616.2 4025.1 4162.7 707.8 787.8 814.8
dRUM-FSF (H = 6) 5.5 3862.3 3986.1 4298.3 708.3 731.0 788.2
dRUM-Scott 71.5 2.9 3035.6 3156.4 3229.4 1061.8 1104.0 1129.6

RUM-FSF 8.7 213.6 233.4 305.7 24.6 26.9 35.3
RUM-Scott 32.9 3.6 459.6 533.8 593.5 126.2 146.6 163.0

MH-Rossi 14.5 3.7 837.8 884.8 1042.5 225.3 237.9 280.3
MH-RR 29.8 3.1 552.5 652.9 754.6 181.3 214.3 247.7
MH-Scott 54.4 3.0 339.5 450.6 477.4 111.5 147.9 156.7

Table 6: Comparing MCMC samplers for the heart data (N = 270, d = 14, m = 1);
based on M = 10 000 draws after burn-in of 2 000 draws.

a TCPU ESS (total draws) ESR (draws/s)
Sampler (%) (s) min med max min med max

dRUM-HH 94.3 863.2 1379.6 6225.6 9.2 14.6 66.0
dRUM-FSF (H = 3) 12.1 808.8 1432.4 5569.0 66.7 118.1 459.3
dRUM-FSF (H = 6) 14.7 931.6 1432.0 6196.7 63.4 97.4 421.5
dRUM-Scott 43.7 6.2 446.0 778.6 2037.7 72.3 126.2 330.2

RUM-FSF 31.0 57.2 94.0 868.5 1.84 3.03 28.0
RUM-Scott 5.6 7.5 17.0 30.7 156.1 2.3 4.1 20.8

MH-Rossi 18.0 5.5 320.6 421.2 588.1 58.6 77.0 107.5
MH-RR 27.0 4.8 212.1 255.2 300.7 44.5 53.6 63.1
MH-Scott 43.1 4.6 129.8 194.9 500.5 28.1 42.2 108.2

for wki in the partial dRUM representation. Finally, all elements of the latent scaling
factors ω are initialized with 1 for dRUM-HH, with π2/3 for dRUM-FSF, and with
π2/6 for RUM-FSF.

Not surprisingly, we find for all data sets that MH sampling without data aug-
mentation is faster than any data augmentation sampler in terms of CPU time TCPU.
To evaluate any MH sampler (with or without data augmentation) we report addi-
tionally the acceptance rate a, which is averaged over the categories for MH-Scott for
multinomial models. For both random walk MH samplers a should be close to the
asymptotically optimal rate of 0.234, which is actually the case for MH-RR with the
exception of the Caesarean birth data in Table 9. The acceptance rate of MH-Scott
deviates from the asymptotically optimal rate for all examples but the German credit
card data in Table 7, which causes the effective sample size and the effective sampling
rate to be smaller than for MH-RR.

With the exception of the Caesarean birth data, MH-Rossi outperforms the other
MH samplers without data augmentation in terms of effective sample size and effective
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Table 7: Comparing MCMC samplers for the German credit card data (N = 1000,
d = 25, m = 1); based on M = 10 000 draws after burn-in of 2 000 draws.

a TCPU ESS (total draws) ESR (draws/s)
Sampler (%) (s) min med max min med max

dRUM-HH 333.4 1556.0 2325.7 3494.4 4.7 7.0 10.5
dRUM-FSF (H = 3) 41.8 1573.5 2313.5 3780.1 37.7 55.4 90.4
dRUM-FSF (H = 6) 61.5 1666.9 2268.3 3872.2 27.1 36.9 63.0
dRUM-Scott 30.4 21.6 592.6 824.4 1090.8 27.4 38.2 50.5

RUM-FSF 134.2 91.5 133.7 261.5 0.68 1.00 1.95
RUM-Scott 0.8 25.0 9.7 11.8 26.1 0.39 0.47 1.0

MH-Rossi 7.1 11.2 117.3 178.5 290.9 10.4 15.9 25.9
MH-RR 25.0 11.1 92.5 138.2 188.0 8.3 12.5 17.0
MH-Scott 22.0 10.4 103.9 149.8 189.2 10.0 14.4 18.1

Table 8: Comparing MCMC samplers for the car data (m = 2, N = 263, d = 3); based
on M = 10 000 draws after burn-in of 2 000 draws.

a TCPU ESS (total draws) ESR (draws/s)
Sampler (%) (s) min med max min med max

dRUM-HH 182.5 1716.8 2558.2 3020.5 9.4 14.0 16.6
dRUM-FSF (H = 3) 20.9 1831.7 2535.8 3200.5 87.6 121.2 153.0
dRUM-FSF (H = 6) 27.20 1570.9 2307.6 2942.4 57.8 84.8 108.2
dRUM-Scott 70.2 13.0 1468.3 2101.1 2662.8 113.4 162.2 205.6

RUM-FSF 46.6 111.3 171.8 253.2 2.4 3.7 5.4
RUM-Scott 33.8 9.5 289.8 388.7 472.8 30.6 41.1 49.9

MH-Rossi 57.4 6.0 3158.0 3323.7 3899.0 526.3 554.0 649.8
MH-RR 27.2 5.3 366.2 397.2 499.1 69.3 75.2 94.5
MH-Scott 61.7 10.2 269.4 365.1 527.0 26.5 35.8 51.7

sampling rate. This is true even for the German credit data where the acceptance rate
is as low as 7.1%. In general, the acceptance rate of MH-Rossi varies considerably
across the various case studies, being pretty high for the car data in Table 8 and being
extremely small for the Caesarean birth data in Table 9.

For the Caesarean birth data the Hessian matrix is very ill-conditioned due to the
unbalanced data structure mentioned earlier, leading to a very low acceptance rate both
for MH-Rossi and MH-RR. For this particular data set MH-Scott outperforms the other
MH samplers, because it avoids the Hessian when constructing the variance-covariance
matrix of the proposal density.

When comparing the various data augmentation samplers in the RUM and in the
dRUM representation, we find for all case studies that both the effective sample size
and the effective sampling rate are considerably higher for the dRUM representation
than for the RUM representation, leading to the conclusion that data augmentation in
the RUM should be avoided.

Among the data augmentation samplers in the dRUM representation, data aug-

17



Table 9: Comparing MCMC samplers for the Caesarean birth data (m = 2, N = 251,
d = 8); based on M = 10 000 draws after burn-in of 2 000 draws.

a TCPU ESS (total draws) ESR (draws/s)
Sampler (%) (s) min med max min med max

dRUM-HH 177.8 1153.4 2643.1 4553.1 6.5 14.9 25.6
dRUM-FSF (H = 3) 21.0 1195.2 2587.8 4621.8 56.8 123.0 219.8
dRUM-FSF (H = 6) 26.4 1125.5 2777.4 4765.0 42.6 105.1 180.2
dRUM-Scott 63.9 12.3 714.9 1790.8 3084.8 58.4 146.2 251.8

RUM-FSF 42.1 148.6 344.1 899.6 3.5 8.2 21.4
RUM-Scott 23.4 10.2 213.5 389.9 729.2 21.0 38.3 71.6

MH-Rossi 2.0 5.7 37.0 89.1 120.0 6.5 15.5 20.9
MH-RR 3.9 4.9 22.8 50.0 83.5 4.7 10.3 17.1
MH-Scott 39.8 9.7 254.7 354.1 486.7 26.3 36.6 50.3

mented MH based on the approximate normal proposal (dRUM-Scott) is the fastest.
As expected, the acceptance rate a, which should be as high as possible, is considerably
larger for dRUM-Scott than under the RUM representation (RUM-Scott), because the
logistic distribution underlying the dRUM is much closer to a normal distribution than
the extreme value distribution underling the RUM. For the German credit data in Ta-
ble 7, for instance, the acceptance rate increases from 0.8% for RUM-Scott to 30.4%
for dRUM-Scott.

Compared to dRUM-Scott, the other two dRUM data augmentation samplers are
slower, because both dRUM-HH and dRUM-FSF introduce the latent scaling factors
ω as a second set of auxiliary variables. We find that dRUM-HH requires much more
computation time than dRUM-FSF, even if the latter uses the very accurate mixture
approximation with six components, while the efficiency in terms of effective sample
size is more or less the same. This makes our new dRUM auxiliary mixture sampler
much more efficient in terms of effective sampling rate than the sampler of Holmes and
Held (2006).

Interestingly the effective sample size of dRUM-HH and dRUM-FSF is larger than
dRUM-Scott. Introducing the latent scaling factors ω allows dRUM-HH and dRUM-
FSF to accept β at each sweep of the MCMC sampler, because a conditional Gibbs step
is implemented. In contrast to that dRUM-Scott uses an MH update for β, meaning
that the sampler is stuck at the current value with probability 1− a, which increases
the autocorrelation in the MCMC sample.

When we compare our new dRUM data augmentation samplers, we find that they
outperform any other data augmentation sampler in terms of the effective sampling
rate. With the exception of the car data in Table 8, the samplers even outperform the
independence MH sampler of Rossi et al. (2005). The relatively high acceptance rate
of MH-Rossi for the car data explains its superiority for this particular example.

Finally, we discuss the performance of our new samplers in relation to each other.
While dRUM-Scott is faster, dRUM-FSF has a higher effective sample size. The effec-
tive sampling rate is higher for dRUM-Scott with the exception of the German credit
card data in Table 7, where the acceptance rate of dRUM-Scott is smaller than in the
other examples. It appears from the various tables that an acceptance rate of dRUM-
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Scott above 40% makes the sampler more efficient in terms of the effective sampling
rate than dRUM-FSF.

Because the coding of dRUM-Scott is extremely simple, we recommend to make this
new data augmented MH sampler the first choice. However, while there is no tuning
in the proposal of dRUM-Scott — which makes it easy to implement — there is, on
the other hand, no control over the acceptance rate. Thus the acceptance rate may be
arbitrarily small, depending on the particular application. Thus, if the acceptance rate
turns out to be considerably smaller than say 40%, it is to be expected that dRUM-FSF
is more efficient and should be the method of choice.

6 Concluding Remarks

In this paper we have introduced yet two other data augmentation algorithms for
sampling the parameters of a binary or a multinomial logit model from their posterior
distribution within a Bayesian framework. They are based on rewriting the underlying
random utility model in such a way that only differences of utilities appear in the
model. Applications to five case studies reveal that these samplers are superior to
other data augmentation samplers and to Metropolis–Hastings sampling without data
augmentation.

We have confined our investigations to the standard binary and multinomial logit
regression model; however, we are confident that our new samplers will be of use for the
MCMC estimation of more general latent variable models such as analyzing discrete-
valued panel data using random-effects models, or analyzing discrete-valued time series
using state space models. For latent variable models, auxiliary mixture sampling in
the dRUM representation is of particular relevance, because introducing the auxiliary
latent variables z and ω leads to a conditionally Gaussian model, which allows efficient
sampling of the random effects or the state vector.

Furthermore, dRUM auxiliary mixture sampling could be useful for Bayesian vari-
able selection in binary data analysis simply by replacing less efficient samplers such
as the Holmes and Held (2006) sampler, which was used in the same paper for variable
selection in logistic regression models, and the RUM auxiliary mixture sampling, which
was used in Tüchler (2008) for covariance selection in panel data models with random
effects. Furthermore, it could be applied to the stochastic variable selection approach
of Frühwirth-Schnatter and Wagner (2010) for state space modelling of binary time
series.

It remains an open issue whether representations comparable to the dRUM exist for
more general discrete-valued distributions. Frühwirth-Schnatter et al. (2009) improve
auxiliary mixture sampling for data from a binomial or multinomial distribution by
using an aggregated RUM representation instead of the RUM representation of the un-
derlying individual binary experiments. It seems worth investigating whether auxiliary
mixture sampling for such data can be improved further using an aggregated version
of the dRUM representation; however, we leave this issue for further research.
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