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A randomized response strategy to be used in opinion polls

1. INTRODUCTION
Nonresponse and untruthful answering are always present in the practice of sam-

ple and population surveys. Such a respondent’s behavior causes serious problems
in the analysis of sample as well as population data, if the underlying mechanisms
are not “completely at random” (cf. Little and Rubin 2002, p.12). Subsequently
we will call variables, for which this is true, “sensitive”. Examples are domestic
violence, illegal employment, drug use, tax evasion or voting behavior.

Let U be an universe of N population units. Furthermore, let s be a probability
sample of size n with element inclusion probabilities ρk > 0 (∀ k = 1, 2, ..., N ; s ⊆ U ;
n ≤ N). In the presence of nonresponse and untruthful answering s is divided into
three disjoint sets of sampled elements: A set t of truthfully answering units, a set u

of elements, who answer untruthfully, and a “missing set” m (s = t+u+m). When
we wish to estimate for instance the total τ of a variable y, in the Horvitz-Thompson
estimator τ̂ the sample sum of the product yk · dk with the design weights dk = 1

ρk

is decomposed into

τ̂ =
∑

s
yk · dk =

∑
t
yk · dk +

∑
u
yk · dk +

∑
m

yk · dk (1)

(
∑

s is abbreviated notation for
∑

k∈s or
∑n

k=1
). The yk’s in the last two sums

of (1) cannot be observed. Furthermore, the estimation of τ on the basis of the
observed data in the sets t and u can be biased seriously. This will happen, if
the nonresponse and the untruthful answering mechanism are far from “completely
at random” and the u and/or m are of non-negligible size. Methods like data
imputation and weighting adjustment only account for nonresponse by estimating
the missing yk’s in m or increasing the design weights of the observed elements
according to some models.

But there also exists a family of statistical methods, which considers both non-
response and untruthful answering. These procedures of “randomized response” try
to minimize both rates by an increase of the respondents’ privacy protection. For
this purpose a questioning design is used, which – in contrast to the direct question-
ing on the sensitive subject – does not allow the data collector to assign the given
information to the sensitive variable.

The pioneering work in this field was published by Warner (1965). Since then
researchers have tried in different ways to increase the efficiency of the methods (cf.
for instance: Yu et al. 2008, or Christofides 2003), have presented generalizations
of such questioning designs (cf. for instance: Quatember 2009, or Chaudhuri 2001)
and have applied the methods in various studies (cf. for instance: Miner and Center
2008, or Lensvelt-Mulders et al. 2005).

In the subsequent section the randomized response strategy for the estimation
of the relative category sizes of a categorical variable presented by Liu and Chow
(1976) for simple random sampling with replacement will be extended to all prob-
ability sampling designs. In section 3 the case of respondents choosing the direct
response option over the randomized response option is considered and its effect on
the estimation process is presented. In the fourth section the privacy protection
offered by the questioning design is discussed. The concluding section considers

1



the application of the proposed strategy to opinion polls along with an illustrative
example.

2. THE PROPOSED STRATEGY
Let population U be divided by a categorical variable y with categories 1, 2, ..., m

into m non-overlapping subgroups U1, U2, ..., Um of sizes N1, N2, ..., Nm (U =
⋃

Ui,
N =

∑
Ni, Ui

⋂
Uj = ∅ ∀ i 6= j, i, j = 1, 2, ..., m). Furthermore the parameters of

interest be the relative sizes π1, π2, ..., πm of the subgroups with

πi =
Ni

N
(2)

(i = 1, 2..., m). For instance someone might be interested in the proportions of some
categories itself or – in the case of an ordinal or a quantitative discrete variable
y – the proportions could be needed to be able to calculate measures of position
or dispersion. Liu and Chow (1976) explicated a randomized response questioning
design for the estimation of such proportions for simple random sampling with re-
placement. Its theory can be extended to any probability sampling design in the
following way: A data collector asks a survey unit k of a probabaility sample s with
probability p0 for his or her value yk of variable y. Furthermore with probabilities
p1, p2, ..., pm the respondent is instructed just to answer “category 1”, “category 2”,
..., “category m” (

∑m

i=1
pi = 1 − p0).

Let for unit k variable value

yki =

{
1 if yk = i,

0 otherwise
(i = 1, 2, ..., m) indicate the membership of group Ui.

Moreover, let zk be the response category of survey unit k and

zki =

{
1 if zk = i,

0 otherwise.

Assuming cooperation, the probability of zki = 1 with respect to the randomized
response questioning design R is for given yki:

PR(zki = 1) = p0 · yki + pi. (3)

Then the term

ŷki =
zki − pi

p0

(4)

(p0 6= 0) is unbiased for the true value yki . Using these “estimates” the following
theorems apply:

Theorem 1: For a probability sampling design P with design weights dk

π̂i =
1

N
·
∑

s
ŷki · dk (5)

is an unbiased estimator of the relative size πi of group Ui (i = 1, 2, ..., m).

2



Theorem 2: The variance of π̂i is given by

V (π̂i) =
1

N2
·
[
VP

(∑
s
yki · dk

)
+

+
1

p2

0

·
(
pi · (1 − pi) ·

∑
U

dk + p0 · (1 − p0 − 2 · pi) ·
∑

U
yki · dk

)]
(6)

(i = 1, 2, ..., m). The first term within the squared bracket of (6) corresponds to the
variance formula for the direct questioning under the assumption of full cooperation.
Thereforer the second one can be seen as the price that has to be paid by the data
analyst for the increased privacy protection of the respondents.

Theorem 3: Variance (6) can be estimated unbiasedly by

V̂ (π̂i) =
1

N2
·
[
V̂P

(∑
s
yki · dk

)
+

+
1

p2

0

·
(
pi · (1 − pi) ·

∑
U

dk + p0 · (1 − p0 − 2 · pi) ·
∑

s
ŷki · d

2

k

])
(7)

(i = 1, 2, ..., m). For the proofs of all three theorems see the Appendix.
Notice, that for simple random sampling with replacement, formula (7) yields

Liu and Chow’s (1976) variance estimator (ibd., p.31).

3. COMBINING DIRECT AND RANDOMIZED RESPONSES
In practice it may often happen, that for instance a telephone interviewer rec-

ognizes during the necessary explanation of the randomized response questioning
design, that the interviewee is willing to deliver the sensitive information without
the randomization device. Such a respondent’s behavior can be incorporated in
the estimation procedure in the following way: Let population U be divided into
a subpopulation UD of elements not needing any privacy protection to provide the
information requested and a disjoint group UR, whose members will use the offered
randomization (U = UD + UR). Units k ∈ UD will deliver their true value yk, the
others the response category zk (k = 1, 2, ..., N). Therefore the probability sample
s will also be divided into a group sD with true and a group sR with randomized
responses on the sensitive variable (s = sD + sR). This modification in the respon-
dents’ behavior affects the estimation procedure described in the previous section in
the following way:

Theorem 4: For a mixture (M) of direct answers yk and randomized responses zk

π̂M
i =

1

N
· (

∑
sD

yki · dk +
∑

sR

ŷki · dk) (8)

is unbiased for πi (i = 1, 2, ..., m) for any probability sampling design P .

Theorem 5: The variance of π̂M
i is given by

V (π̂M
i ) =

1

N2
·
[
VP

(∑
s
yki · dk

)
+

+
1

p2

0

·
(
pi · (1 − pi) ·

∑
UR

dk + p0 · (1 − p0 − 2 · pi) ·
∑

UR

yki · dk

)]
(9)

3



(i = 1, 2, ..., m). The second term within the squared bracket of (9) is zero, when
UR = ∅ (i.e. y is a non-sensitive variable) and it corresponds to the second term of
(6), when UD = ∅. It follows, that V (π̂M

i ) ≤ V (π̂i).

Theorem 6: Variance (9) can be estimated unbiasedly by

V̂ (π̂M
i ) =

1

N2
·
[
V̂P

(∑
s
yki · dk

)
+

+
1

p2

0

·
(
pi · (1 − pi) ·

∑
sR

d2

k + p0 · (1 − p0 − 2 · pi) ·
∑

sR

ŷki · d
2

k

)]
(10)

(i = 1, 2, ..., m). For the proofs of theorems 4 to 6 see the Appendix.

4. MEASURING PRIVACY PROTECTION
Let us define the following measures λi of loss of privacy according to the different

categories i (i = 1, 2, ..., m):

λi =
P (zk = i|yk = i)

P (zk = i|yk 6= i)
(11)

with 1 ≤ λi ≤ ∞ (cf. Leysieffer and Warner, 1976). λi refers to the privacy protec-
tion with respect to a response zk = i. For the proposed technique of randomized
response these measures are given by

λi =
p0 + pi

pi

. (12)

λi = 1 corresponds to a totally protected privacy. This can only happen for
p0 = 0, so that the answers are randomly drawn with design probabilities p1 to pm.
The more λi differs from one, the more information on the membership of group Ui

is contained in the given answer zk and the less is the survey unit protected against
disclosure. A probability pi = 0 (i = 1, 2, ..., m) yields zki = yki. The loss of privacy
with respect to an answer given achieves its maximum λi = ∞.

If the membership of a certain category i of variable y is more sensitive than of
another category, its measure λi of loss of privacy should be less than that of the
other categories with regard to the respondents’ willingness to cooperate. In other
words the design probabilities p0 and p1 to pm should be chosen in accordance to
the sensitivity levels of the different categories.

5. AN APPLICATION TO OPINION POLLS
During the last decades results from opinion polls conducted shortly before a

forthcoming election have increasingly differed from the actual outcome of the elec-
tion. Particularly the proportions of parties from the two margins of the political
spectrum have constantly been underestimated. In Austria, for instance, repre-
sentatives of such parties occused opinion researchers of data manipulation. As a
consequence, these politicians claimed a prohibition of opinion polls short before
elections. Actually besides the increasingly late moment of voting decision mainly
the growing sensitivity of the variable “voting behavior” and particularly of certain
categories seem to be the main reason for this phenomenon.
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In a telephone or face-to-face survey the proposed questioning design is imple-
mented in the following way (for postal or web surveys the procedure has to be
adapted; see for instance: Lensvelt-Mulders et al. 2006, or Lensvelt-Mulders and
Boeije 2007): The interviewer tells the survey unit, that due to the sensitivity of the
subject a questioning design will be applied, which allows to protect the respondent’s
privacy. Of course, the effect of this questioning design on data protection has to
be explained to the respondents in a vivid way to produce the desired willingness to
cooperate (cf. Landsheer et al. 1999, p.6ff). Then the respondent is asked to think
of a person, of whom he or she knows the mobile phone number or the dates of birth
without delivering this information to the interviewer (for other random devices see
for instance: Warner 1986). If – let’s say – the last two digits of the phone number
are within a certain interval like from 00 to 79, the respondent shall answer truth-
fully to a question like “Imagine it’s election day. Which party gets your vote?”.
The (m−1) parties in question and a non-voting category give altogether m possible
answers. But if the two digits of the mobile phone number lie within an interval of
the remaining combinations (for example from 80 to 84), the respondent shall just
answer “party 1”. If the digits lie within another non-overlapping interval, the sur-
vey unit shall just answer “party 2” and so on. After all, these m disjoint intervals
have to cover all possible combinations. The chosen intervals determine the design
probabilities p1 to pm (

∑
pi = 1 − p0). Telephone companies or organizations like

the national statistical agencies might be able to deliver the required information.
If a respondent reveals during the design explanations that he or she is willing to

answer directly on the sensitive question (for instance by saying “It’s no problem for
me to answer this question honestly!”), this answer must be flagged. Then estimator
(8) can be applied.

6. A NUMERICAL EXAMPLE
Consider the following example just to get an idea of the effects of the proposed

strategy: A large population (of eligible voters for instance) is given. The variable
y of interest has – say – m = 4 categories with relative sizes π1 = 0.4, π2 = 0.3,
π3 = 0.2 and π4 = 0.1 to be estimated. For this purpose a simple random sample
without replacement of size n = 1, 000 is drawn from the population. As design
probabilities at first we choose p0 = 0.6 and p1 to p4 all equal to 0.1. This yields
measures of loss of privacy (section 4) of λi = 7 ∀ i = 1, ..., 4.

Using the proposed randomized response strategy and assuming full cooperation
of the respondents, the estimators are unbiased and their theoretical variances given
by

V (π̂1) = 0.623̇ · 10−3

V (π̂2) = 0.56 · 10−3

V (π̂3) = 0.476̇ · 10−3

V (π̂4) = 0.373̇ · 10−3.
Assuming next, that 70% of those elements of U belonging to group U1 during

the interview do signal their willingness to answer directly on the question and 50%
of group U2, 30% of group U3 and 10% of group U4 do so, the variances of the
unbiased estimators π̂M

i decrease to
V (π̂M

1
) = 0.405 · 10−3

V (π̂M
2

) = 0.385 · 10−3
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V (π̂M
3

) = 0.332 · 10−3

V (π̂M
4

) = 0.245 · 10−3.
The reduction of the variances compared to the pure randomized response strat-

egy lies between 30 to 35%. Note, that if all sampled units would answer truthfully
on the direct question, the four variances would be 0.24 ·10−3, 0.21 ·10−3, 0.16 ·10−3

and 0.09 · 10−3.
At last we increase the probability p0 to 0.8 and fix the other four design prob-

abilities at 0.05. This yields a higher measure of loss of privacy for a less sensitive
variable as above: λi = 17 ∀ i = 1, ..., 4. The variances of the estimators π̂i with the
pure randomization and those using the mixture of direct and randomized responses
(π̂M

1
) according to the mixing proportions given above would then decrease to
V (π̂1) = 0.364 · 10−3, V (π̂M

1
) = 0.292 · 10−3,

V (π̂1) = 0.322 · 10−3, V (π̂M
2

) = 0.266 · 10−3,
V (π̂1) = 0.259 · 10−3, V (π̂M

3
) = 0.215 · 10−3,

V (π̂1) = 0.177 · 10−3, V (π̂M
4

) = 0.138 · 10−3.
The interested readers may try to obtain further results by their own by inserting

differing design probabilities and mixing proportions into the formulae.

7. SUMMARY
The randomized response questioning design of Liu and Chow (1976) for sen-

sitive categorical variables was extended to all probability sampling designs. The
statistical properties of estimators of the relative sizes of m disjoint subpopulations
were presented. Furthermore the case of survey units, who disclaim the randomiza-
tion procedure in favor of the direct answer on the sensitive question under study
was implemented and developed. The privacy protection view of the questioning
design was also considered and an application on opinion polls presented along with
a numerical example. The results show exemplarily the effect of the proposed ran-
domized response questioning design on the efficiency of estimators.

If the direct questioning on the sensitive subject leads to considerable biases of
the estimators, the higher complexity of the randomized response questioning design
will pay. The accuracy of the estimators increases then although their variances
exceed the theoretical ones of the direct questioning.

APPENDIX:

PROOFS OF THEOREMS 1 TO 3:

E(π̂i) =
1

N
·EP

(
ER

(∑
s
ŷki · dk|s

))
=

1

N
·EP

(∑
s
yki · dk

)
=

1

N
·
∑

U
yki = πi.

Furthermore the variance is given by

V (π̂i) = VP (ER(π̂i|s)) + EP (VR(π̂i|s)),

where

VP (ER(π̂i|s)) =
1

N2
· VP

(∑
s
yki · dk

)
.

Let Ik = 1(k ∈ s) (k = 1, 2, ..., N) indicate the sample inclusion of a survey unit
k with EP (Ik) = 1

dk

. Because covariance CR(ŷki, ŷli|s) = 0 ∀ k 6= l, the following
expectation is derived:
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EP (VR(π̂i|s)) =
1

N2
· EP

(
VR

(∑
U

Ik · ŷki · dk|s
))

=
1

N2
· EP

(∑
U

I2

k · d2

k · VR(ŷki)
)

=
1

N2
·
∑

U
VR(ŷki) · dk.

VR(ŷki) results in

VR(ŷki) =
1

p2

0

· VR(zki)

and

VR(zki) = ER(z2

ki) − E2

R(zki)

= p0 · yki + pi − (p0 · yki + pi)
2

= p0 · yki + pi − p2

0
· y2

ki − 2 · p0 · pi · yki − p2

i

= pi · (1 − pi) + p0 · yki · (1 − p0 − 2 · pi).

It follows:

EP (VR(π̂i|s)) =
1

N2
·

1

p2

0

·
(
(pi · (1 − pi) ·

∑
U

dk + p0 · (1 − p0 − 2 · pi) ·
∑

U
yki · dk

)

This completes the proof of Theorem 2.
The theoretical variance V (π̂i) (6) can be estimated unbiasedly by inserting an

unbiased estimator V̂P (
∑

s yki · dk) for VP (
∑

s yki · dk) and
∑

s ŷki · d
2

k for
∑

U yki · dk,
because

E
(∑

s
ŷki · d

2

k

)
= E

(∑
U

ŷki · d
2

k · Ik

)

=
∑

U
d2

k · E(ŷki · Ik)

=
∑

U
yki · dk,

which proofs Theorem 3.

PROOFS OF THEOREMS 4 TO 6

The unbiasedness of ŷki for yki yields E(π̂M
i ) = πi.

Again
V (π̂M

i ) = VP (ER(π̂M
i |s)) + EP (VR(π̂M

i |s)).

and

VP (ER(π̂M
i |s)) =

1

N2
· VP

(∑
s
yki · dk

)
.

Furthermore

EP (VR(π̂M
i |s)) =

1

N2
· EP

(
VR

(∑
UD

Ik · yki · dk|s +
∑

UR

Ik · ŷki · dk|s
))

=
1

N2
· EP

(∑
UR

I2

k · d2

k · VR(ŷki)
)

=
1

N2
·
∑

UR

VR(ŷki) · dk.

7



Because of VR(ŷki) = 1

p2

0

·VR(zki) and VR(zki) as above we have the result of Theorem

5.
The theoretical variance V (π̂M

i ) (9) can be estimated unbiasedly by inserting

again an unbiased estimator V̂P (
∑

s yki · dk) for VP (
∑

s yki · dk) and
∑

sR
ŷki · d

2

k for∑
UR

yki ·dk. Additionally the term
∑

sR
d2

k estimates
∑

UR
dk unbiasedly, which gives

Theorem 6.
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