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Abstract

The aim of this paper is to introduce the general form (so called RT class)
of the robust and classical Jarque-Bera (JB) test based on the location func-
tional. We introduce the two step procedure which is optimal for testing
against the individual or contaminated Pareto alternative. As a reference for
such a contamination we consider different Pareto distributions. We also give
practical guidelines for robust testing for normality against short and heavy
tailed alternatives. We concentrate mainly on simulation results for moder-
ate and small samples. However, we also prove consistency and asymptotic
distribution for introduced tests. We show that as the suitable measure of
nominal level of Pareto tail parameter we may take the t-Hill estimator intro-
duced in the paper. To guarantee the consistency of the whole procedure, we
also prove the consistency of t-Hill estimator. The introduced general class of
robust tests of the normality is illustrated at the selected datasets of financial
time series.

KEY WORDS: Hill estimator, t-Hill estimator, testing for normality, robust
tests for normality, returns, power comparison, Pareto tail, consistency, location
functional

1 Introduction

Problem of testing for normality plays central role by many financial decisions. Fi-
nancial time series typically results in volatility clustering, leptokurtosis probability
function of returns with fat tails and a higher peak at the mean than the normal
distribution. In the majority of cases of relevant analysis is expected that returns
derived from financial time series is Gaussian normal distributed random variable
with constant expected value and constant variance. But actually this is not true in
many practical situations and a lot of tests has been developed to test for normality.
The absence of exact solutions for the sampling distributions generated a large num-
ber of simulation studies exploring the power of these statistics as both directional
and omnibus tests (see for example (Gel and Gastwirth (2008)), (Gel et al. (2007)),
(Brys et al. (2008)), among others). In this paper we introduce the general class of
robust tests, the so called RT, based on robustification of JB and generalization of
robust JB test. In particular we provide remedies for some weaknesses of JB and
robust JB tests. Several examples aim to convince the reader that construction of
RT class has a natural basis.

Two issues typically enter the testing for normality against heavy tails: small
samples and contaminated heavy tailed data ((Brys et al. (2008)) and (Stehĺık et al.
(2010))). In this paper we provide a guidelines how to efficiently test for a normality
against European Pareto distribution, possibly contaminated, with the density

αcα

xα+1
, x > c. (1)

This distribution we denote for convenience as Pareto (α, c). We also provide a
guidelines how to efficiently test for normality against short tailed and heavy tailed
alternatives. We will concentrate especially on a small samples. Large sample behav-
ior of tests for normality has been already rather extensively studied in the literature
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(see e.g. (Locke and Spurrier (1977)) for U statistics based testing or (Saniga and
Miles (1979)) for a normality testing against stable alternatives). However, to the
best knowledge of authors, small sample situations are not covered satisfactory. One
exception is paper by (Spiegelhalter (1980)), which however, provide results only for
sample size n = 20 and does not consider Pareto alternatives. Roughly saying, small
samples almost always pass a normality test. Normality tests have little power to
tell whether or not a small sample of data comes from a Gaussian distribution. To
overcome this problem we introduce the simple two-step procedure to test efficiently
against Pareto tails:

Step 1) To estimate the nominal value of Pareto tail α under alternative.
Step 2) Based on the result in Step 1 to choose appropriate (preferably the most

powerful) test for normality in the reasonable subclass of RT class.
The paper is organized as follows. In section 2 the general robustification of

JB test is introduced and main theoretical results are given. There exists a large
amount of tests included in the RT class and it is not possible to discuss them
entirely. For our purposes we introduce the RTJB and RTRJB classes of tests. The
RT class power sensitivity on the tail index is given by the means of simulation in
section 3. In section 4 we introduce the suitable estimator of Pareto tail, based on
t-score, preferable to the other estimators under the contamination of Pareto tail.
To guarantee consistency of the whole procedure we also prove consistency of t-
estimator of Pareto tail parameter. In section 5 the given methods are illustrated on
the real data example. Discussion concludes the paper. To maintain the continuity
of explanation proofs and technicalities are put into Appendix.

2 General approach to robust JB test: RT class

Interestingly enough (see (Urzua (1996))), the classical JB test (see (Bera and

Jarque (1981)), with the well known test statistics JB = n
6

(
µ̂3

µ̂
3/2
2

)2

+ n
24

(
µ̂4

µ̂2
2
− 3
)2
)

has been known among statisticians since the work of (Bowman and Shenton (1975)).
They derived it after noting that, under normality, the asymptotic means of

√
b1

and b2 are 0 and 3, the asymptotic variances are 6/n and 24/n, and the asymptotic
covariance is 0. Yet, there are few instances in the statistics literature where the
Bowman-Shenton-Jarque-Bera test has been studied. As one author states in a
comprehensive survey of tests for normality ”Due to the slow convergence of b2 to
normality this test is not useful” (see (D’Agostino (1986)), p. 391). However, JB
test has gained grate popularity among economists. Later on, various modifications
has been made (e.g. test of Urzua (Urzua (1996))) and for a robustification see
robust Jarque-Bera (RJB) test (see (Gel and Gastwirth (2008))).

In our paper we introduce the general class of robust tests, the so called RT,
based on robustification of JB and generalization of robust JB test. In particular
we provide remedies for some weaknesses of JB and robust JB tests. RT class
is a flexible class of robust tests for normality based on a location functional. A
location functional has been introduced in a seminal paper by (Bickel and Lehman
(1975)) and it looks to be playing a crucial role also by robust testing. For a recent
discussion on location functional importance see (Wilcox (2005)). As it will be seen
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later, the power of RT class test mimics the effectiveness of location estimator in
typical cases. Thus trade off between power and robustness is a typical issue here.

The examples of location functional, relevant to our paper, are mean T(0) =∫
xdFn(x), median T(1) = F−1

n (1/2), trimmed mean T(2)(s) = 1
n−2s

∑n−s
i=s+1 Xi:n,

X1:n < X2:n < · · · < Xn:n be the order statistics, and pseudo-median, T(3) =
H−1

n (1/2), where Hn(y) =
∫
Fn(2y − x)h(x)dx.

Now let us define the RT class of normality tests. For that reason we relax
the form of j-th theoretical moment µj = E(X − E(X))j estimator by taking
Mj(r, T (Fn)) =

1
n−2r

∑n−r
m=1+r φj(Xm:n−T (Fn)), j ∈ {0, 1, 2, 3, 4} and φj is tractable

and continuous function φ0(x) =
√

π/2|x|, φ1(x) = x, φ2(x) = x2, φ3(x) = x3 and
φ4(x) = x4. The RT class is defined by

RT =
k1(n)

C1

(
Mα1

j1
(r1, T(i1)(s1))

Mα2
j2
(r2, T(i2)(s2))

−K1

)2

+
k2(n)

C2

(
Mα3

j3
(r3, T(i3)(s3))

Mα4
j4
(r4, T(i4)(s4))

−K2

)2

. (2)

The following theorems justify the feasibility of RT class.

Under the null hypothesis, for T (Fn) being mean, median, pseudo-median or
trimmed mean we have

lim
n→∞

E(Mj(r, T (Fn)) = E(X − E(X))j := µj, j = 0, 1, 2, 3, 4, (3)

where µ0 = σ. In other words, Mj(r, T (Fn)) is a consistent estimator of µj.
It can be seen from (2) there exist a vast amount of RT class tests, which we

can obtain for a different settings of ri, T(i), etc. Already known special cases of
RT class are classical Jarque-Bera test, test of Urzua, robust Jarque-Bera (RJB),
among others. The RT class approach may serve well as an testing instrument for
the type of stock return distribution (see (Yu (2001))).

2.1 RTJB subclass

In this subsection we focus on robustification of the Jarque-Bera test, given by RTJB

class defined as follows

RTJB =
k1(n)

C1

(
M3(r1, T(i1)(s1))

M
3/2
2 (r2, T(i2)(s2))

−K1

)2

+
k2(n)

C2

(
M4(r3, T(i3)(s3))

M2
2 (r4, T(i4)(s4))

−K2

)2

.

(4)
The RTJB subclass is a special case of RT test statistics for k1(n) = n, k2(n) = n,

α1 = 1, α2 = 3/2, α3 = 1, α4 = 2, j1 = 3, j2 = 2, j3 = 4, j4 = 2.
Let X1, ..., Xn be iid N(µ, σ2), i.e. null hypothesis holds. Then

√
n

( (
M3(r1, T(i1)(s1))/M

3/2
2 (r2, T(i2)(s2))

)
−K1(

M4(r3, T(i3)(s3))/M
2
2 (r4, T(i4)(s4))

)
−K2

)
→ N

((
0
0

)
,

(
C1 0
0 C2

))
(5)

where T(i) for i ∈ {0, 1, 2, 3} denotes using of arithmetic mean T(0), median T(1),
trimmed mean T(2)(s) or pseudo-median T(3), respectively.
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Corollary 1 The RT test statistic from (4) asymptotically follows χ2
2.

Choosing of an appropriate constants C1 and C2 is the hardest aspect of the vari-
ants of RT class. To obtain the constants C1, C2 we need to find the expressions for
E(Mk

n1,n2
) for a finite sample size. Such calculations are very tedious and therefore

we obtain these constants from Monte Carlo simulations. Notice, that the critical
constant (for small and mid samples) under the trimming (r > 0) are different from
critical constants without trimming (r = 0), since only asymptotical distribution
is normal (see (Stigler (1973))) in this case. Notice that two levels of trimming
enter RT class: first trimming (with trimming constant s) enters trimming in the
location estimator T (Fn), the latter on trimming (with trimming constant r) enters
Mj(r, T ). Amazing property of RT class and robust tests in general is, that power of
RT class mimics the effectiveness of location estimator. Thus practitioner can tune
how much of robustness is needed, of course at price of the power. One should be
really careful here: mechanical downweighting of peculiar observations may divert
attention from important clues to new discovery. Two typical extremal behaviors
occur in robust testing: the tests which are more robust have smaller power (since
they are not affected by single outliers) and tests with higher power are typically
less robust (because they are affected by single outliers).

Therefore, Table 1 and 2 contain the results of Monte Carlo simulations of these
constants for RTJB subclass. Notice, that prevalent number of cases led asymptot-
ically to C1 = 6, exception where C1 = 18 for the case of location functional being
median or pseudomedian. In all cases C2 = 24 asymptotically. Also notice that for a
large trimming (by r2 and s2) we obtain the slow convergence to asymptotical value
of the constant.

Table 1: Monte Carlo simulations of C1 of M1
3 (r1, T(i1)(s1))/M

3/2
2 (r2, T(i2)(s2))

r1,r2,i1,i2,s1,s2 n = 25 n = 50 n = 100 n = 200 n = 500 n = 1000 asympt.
0,0,0,0,0,0 4.73 5.34 5.41 5.72 5.80 6.01 6
0,0,0,1,0,0 4.35 5.10 5.27 5.65 5.77 6.00 6
0,0,0,2,0,1 4.70 5.33 5.41 5.72 5.80 6.01 6
0,0,0,2,0,5 4.55 5.29 5.40 5.72 5.80 6.01 6
0,0,0,3,0,0 4.33 5.09 5.28 5.65 5.77 6.00 6
0,0,1,0,0,0 15.48 16.02 15.93 16.73 16.72 17.23 18
0,0,1,1,0,0 13.42 14.90 15.32 16.39 16.58 17.16 18
0,0,2,0,1,0 6.52 6.48 6.08 6.14 6.01 6.13 6
0,0,2,2,1,1 6.48 6.47 6.08 6.14 6.01 6.13 6
0,0,2,0,5,0 10.36 9.05 7.70 7.19 6.56 6.47 6
0,0,2,2,5,5 9.93 8.96 7.68 7.19 6.56 6.47 6
0,0,3,0,0,0 14.47 14.33 14.22 14.44 14.37 14.77 18
0,0,3,3,0,0 11.63 12.91 13.49 14.07 14.22 14.69 18
0,1,0,2,0,1 20.01 11.23 8.10 7.17 6.45 6.38 6
0,5,0,2,0,5 1555.40 82.89 23.85 13.27 8.70 7.59 6
1,0,2,0,1,0 1.25 2.08 2.82 3.63 4.52 5.14 6
1,1,2,2,1,1 3.53 3.88 4.08 4.50 5.01 5.45 6
5,0,2,0,5,0 0.06 0.30 0.81 1.55 2.76 3.70 6
5,5,2,2,5,5 3.92 3.18 3.18 3.48 4.10 4.66 6
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Table 2: Monte Carlo simulations of C2 of M1
4 (r3, T(i3)(s3))/M

2
2 (r4, T(i4)(s4))

r3,r4,i3,i4,s3,s4 n = 25 n = 50 n = 100 n = 200 n = 500 n = 1000 asympt.
0,0,0,0,0,0 13.67 18.44 20.06 21.36 22.91 24.05 24
0,0,0,1,0,0 13.60 18.32 19.96 21.31 22.89 24.02 24
0,0,0,2,0,1 13.41 18.36 20.04 21.36 22.91 24.05 24
0,0,0,2,0,5 13.11 18.17 19.98 21.34 22.91 24.05 24
0,0,0,3,0,0 13.49 17.94 19.97 21.24 22.91 24.03 24
0,0,1,0,0,0 19.43 21.70 22.04 22.43 23.35 24.33 24
0,0,1,1,0,0 15.86 19.85 20.99 21.89 23.12 24.19 24
0,0,2,0,1,0 15.68 19.36 20.41 21.49 22.94 24.06 24
0,0,2,2,1,1 15.36 19.27 20.38 21.48 22.94 24.06 24
0,0,2,0,5,0 17.45 20.31 20.84 21.67 23.00 24.08 24
0,0,2,2,5,5 16.19 19.94 20.74 21.65 22.99 24.08 24
0,0,3,0,0,0 20.29 22.11 21.66 22.18 23.15 24.23 24
0,0,3,3,0,0 14.82 19.15 20.41 21.50 22.93 24.10 24
0,1,0,2,0,1 476.55 142.40 70.79 46.50 34.82 31.28 24
0,5,0,2,0,5 480641.50 4330.28 550.24 180.03 77.75 53.36 24
1,0,2,0,1,0 2.05 3.11 4.47 6.62 10.63 13.59 24
1,1,2,2,1,1 7.13 8.09 8.95 10.87 14.04 16.33 24
5,0,2,0,5,0 0.14 0.66 1.37 2.1 3.82 5.96 24
5,5,2,2,5,5 5.68 4.02 4.20 5.32 7.72 9.99 24

2.2 RTRJB subclass

Here we focus also on robustification of the robust Jarque-Bera test introduced by
(Gel et al. (2007)). This robustification is given by RTRJB class of statistics defined
as follows

RTRJB =
k1(n)

C1

(
M3(r1, T(i1)(s1))

M3
0 (r2, T(i2)(s2))

−K1

)2

+
k2(n)

C2

(
M4(r3, T(i3)(s3))

M4
0 (r4, T(i4)(s4))

−K2

)2

.

(6)
The RTRJB subclass is a special case of RT test statistics for k1(n) = n, k2(n) =

n, α1 = 1, α2 = 3, α3 = 1, α4 = 4, j1 = 3, j2 = 0, j3 = 4, j4 = 0.

Let X1, ..., Xn be iid N(µ, σ2), i.e. null hypothesis holds. Then

√
n

( (
M3(r1, T(i1)(s1))/M

3
0 (r2, T(i2)(s2))

)
−K1(

M4(r3, T(i3)(s3))/M
4
0 (r4, T(i4)(s4))

)
−K2

)
→ N

((
0
0

)
,

(
C1 0
0 C2

))
(7)

where T(i) for i ∈ {0, 1, 2, 3} denotes using of arithmetic mean T(0), median T(1),
trimmed mean T(2)(s) or pseudo-median T(3), respectively.

Corollary 2 The RT test statistic from (6) asymptotically follows χ2
2.

Choosing of an appropriate constants C1 and C2 is the hardest aspect of the
variants of RTRJB class, again. To obtain the constants C1, C2 we use Monte Carlo
simulations.
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Therefore, Table 3 and 4 contain the results of Monte Carlo simulations of these
constants for RTRJB subclass. Notice, that prevalent number of cases led asymptot-
ically to C1 = 6, exception where C1 = 18 for the case of location functional being
median or pseudomedian. In all cases C2 = 58 asymptotically. Also notice that for a
large trimming (by r2 and s2) we obtain the slow convergence to asymptotical value
of the constant.

Table 3: Monte Carlo simulations of C1 of M1
3 (r1, T(i1)(s1))/M

3
0 (r2, T(i2)(s2))

r1,r2,i1,i2,s1,s2 n = 25 n = 50 n = 100 n = 200 n = 500 n = 1000 asympt.
0,0,0,0,0,0 5.91 5.84 6.05 6.03 5.89 5.97 6
0,0,0,1,0,0 6.64 6.17 6.22 6.12 5.93 5.99 6
0,0,0,2,0,1 6.13 5.91 6.07 6.04 5.89 5.98 6
0,0,0,2,0,5 6.41 6.00 6.11 6.05 5.9 5.98 6
0,0,0,3,0,0 5.59 5.65 5.96 5.99 5.88 5.97 6
0,0,1,0,0,0 16.41 15.97 16.89 17.20 16.86 17.05 18
0,0,1,1,0,0 19.10 17.23 17.55 17.56 17.00 17.11 18
0,0,2,0,1,0 8.12 7.09 6.80 6.47 6.10 6.09 6
0,0,2,1,1,0 9.10 7.48 6.98 6.56 6.13 6.11 6
0,0,2,2,1,1 8.42 7.16 6.82 6.47 6.10 6.09 6
0,0,2,0,5,0 12.20 9.79 8.58 7.59 6.66 6.43 6
0,0,2,1,5,0 13.87 10.34 8.82 7.70 6.70 6.45 6
0,0,2,2,5,5 13.35 10.06 8.66 7.62 6.67 6.43 6
0,0,3,0,0,0 15.62 14.86 14.99 14.53 14.45 14.52 18
0,0,3,1,0,0 17.22 15.52 15.32 14.70 14.51 14.55 18
0,0,3,3,0,0 14.15 14.16 14.63 14.36 14.39 14.49 18
0,1,0,2,0,1 19.47 10.40 8.16 7.07 6.32 6.20 6
0,5,0,2,0,5 1126.87 63.09 20.58 11.62 7.91 7.02 6
1,0,2,0,1,0 1.33 2.15 3.10 3.87 4.60 5.07 6
1,0,2,1,1,0 1.53 2.29 3.19 3.93 4.62 5.08 6
1,1,2,2,1,1 3.51 3.63 4.11 4.52 4.92 5.26 6
5,0,2,0,5,0 0.05 0.29 0.84 1.62 2.77 3.64 6
5,0,2,1,5,0 0.06 0.31 0.87 1.65 2.79 3.65 6
5,5,2,2,5,5 3.45 2.52 2.69 3.07 3.71 4.27 6

Table 4: Monte Carlo simulations of C2 of M1
4 (r3, T(i3)(s3))/M

4
0 (r4, T(i4)(s4))
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r3,r4,i3,i4,s3,s4 n = 25 n = 50 n = 100 n = 200 n = 500 n = 1000 asympt.
0,0,0,0,0,0 54.29 54.82 57.51 57.56 57.03 56.87 58
0,0,0,1,0,0 61.45 57.94 59.16 58.31 57.36 57.01 58
0,0,0,2,0,1 56.77 55.46 57.67 57.60 57.04 56.87 58
0,0,0,2,0,5 59.32 56.36 57.96 57.69 57.05 56.88 58
0,0,0,3,0,0 49.97 52.64 56.30 56.66 56.74 56.78 58
0,0,1,0,0,0 65.47 60.03 60.43 58.93 57.61 57.15 58
0,0,1,1,0,0 79.79 65.76 63.19 60.22 58.14 57.39 58
0,0,2,0,1,0 60.08 56.68 58.16 57.75 57.07 56.88 58
0,0,2,1,1,0 68.40 59.98 59.84 58.51 57.40 57.02 58
0,0,2,2,1,1 63.12 57.38 58.32 57.79 57.07 56.89 58
0,0,2,0,5,0 64.60 58.99 59.17 58.11 57.16 56.91 58
0,0,2,1,5,0 75.54 62.75 60.94 58.89 57.49 57.05 58
0,0,2,2,5,5 72.81 60.97 59.68 58.25 57.17 56.92 58
0,0,3,0,0,0 67.14 60.34 60.03 58.81 57.52 57.19 58
0,0,3,1,0,0 76.69 63.97 61.80 59.63 57.86 57.34 58
0,0,3,3,0,0 60.30 57.61 58.54 57.80 57.20 57.09 58
0,1,0,2,0,1 505.67 171.90 107.82 81.83 67.21 62.39 58
0,5,0,2,0,5 283511.75 3276.38 545.07 207.18 106.18 81.29 58
1,0,2,0,1,0 4.02 8.80 15.89 23.46 33.02 38.97 58
1,0,2,1,1,0 4.76 9.45 16.38 23.79 33.23 39.07 58
1,1,2,2,1,1 21.70 22.96 27.32 31.77 38.02 42.13 58
5,0,2,0,5,0 0.06 0.40 1.61 4.78 12.51 20.36 58
5,0,2,1,5,0 0.07 0.43 1.67 4.86 12.59 20.42 58
5,5,2,2,5,5 16.76 11.19 12.01 15.51 21.86 27.77 58

2.3 Finding a tractable group of RTJB and RTRJB tests

Main reason for using RTJB and RTRJB subclasses in this paper is that RTJB gen-
eralizes JB and RTRJB generalizes RJB tests. The aim of this section is to find
by cluster analysis a group of RTJB and RTRJB tests, which substantially improve
the properties of classical JB and RJB tests (e.g. power for symmetric short tailed
alternatives like uniform). For that reason we have conducted the power comparison
on 61 ordered variants of RTJB and RTRJB tests. By ordered we mean combination
of the most efficient mean with robust location estimators (median, pseudomedian,
trimmed mean and trim-trim estimator). By trim-trim estimator we mean double
trimmed estimator, i.e. one trimming is employed for location estimator, while sec-
ond trimming is employed for the empirical moment itself. Simulation study has
been performed with sample sizes n = 10 and n = 25, 100000 repetitions and the
following alternatives: Cauchy, Laplace, one sided Cauchy, exponential, Weibull,
Pareto, uniform and Beta distributions. By clustering based on power values (from
all 61 analyzed tests of RTJB class) the following five representatives of RTJB class
has been obtained (for detailed definition see Appendix): RTJB2, RTJB9, RTJB39,
RTJB42 and RTJB43. Analogously we conducted the clustering analysis and compar-
ison of powers of RTRJB tests. Consequently, we have obtained from all 61 analyzed
tests these four representatives (for detailed definition see Appendix): RTRJB13,
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Figure 1: n=10
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Figure 2: n=25

RTRJB33, RTRJB42 and RTRJB59.
Figures 1 and 2 illustrate the power comparison at the level of significance α =

0.05, sample sizes n = 10 and n = 25, and alternatives: 1: Cauchy, 2: Laplace,
3: one sided Cauchy, 4: exponential, 5: Weibull(2,1), 6: Pareto(α = 1, c = 1),
7: contaminated Pareto: 0.8 Pareto(α = 1, c = 1) + 0.2Pareto(α = 2, c = 1), 8:
Uniform, 9: Beta(0.5, 0.5), 10: Beta(2, 2).

From the Figures 1 and 2 we may conclude that:

• For very heavy tailed symmetric alternatives (Cauchy and Laplace) the JB
test is less powerful than the RJB test. The RJB test shows less power than
the JB test only by detecting the exponential distribution. In other cases JB
and RJB tests have comparable power.

• For very small sample size n = 10 the RTJB9 outperforms JB test for one
sided Cauchy, exponential, Pareto, contaminated Pareto, uniform and beta
alternatives. For small sample size n = 25 the RTJB9 outperforms JB test
only for exponential, uniform and beta distributions.

• For very small sample size n = 10 the RTRJB13 outperforms RJB test for one
sided Cauchy, exponential, Pareto, contaminated Pareto and beta(0.5, 0.5)
alternatives. For small sample size n = 25 the RTRJB13 outperforms RJB
test only for exponential, uniform and beta(0.5, 0.5) distributions.

• For symmetric short tailed alternatives (uniform and beta distributions) we
do not recommend JB and RJB tests. We recommend RTJB42 and RTJB9
tests for very small sample size n = 10 or RTJB42 and RTRJB42 tests for small
sample size n = 25. These tests improve power significantly.

• For symmetric and asymmetric heavy and moderately heavy tailed alternatives
(Cauchy, Laplace, one sided Cauchy, exponential, Pareto and contaminated
Pareto distributions) the RTJB42 and RTRJB42 are less powerful than the
other tests, especially for very small sample size n = 10. For symmetric
very short tailed alternatives (uniform and beta distributions) the RTJB42
and RTRJB42 tests show the highest power, especially for small sample size
n = 25.
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• Notice, that the discussed tests gain the similar power at alternative Weibull
(2,1) for very small and small sample sizes. However, having mid sample
n = 100 a big range of power differences has been observed already.

3 Sensitivity of power on the Pareto tail param-

eter

As may be seen from simulations in this section, unknown tail parameter α has
a substantial influence on the power of considered tests. More precisely we can
conclude that:

A) Power
Power of the tests is decreasing with increase of the parameter α.

B) Parameter c of Pareto (α, c) distribution
The obtained results of power for Pareto (α, c = 1), Pareto (α, c = 10) and

Pareto (α, c = 100) are the same, it means that power does not depend on the
parameter c. Therefore, the Tab. 5, 6 and 7 contains the results only for Pareto (α,
c = 1) distribution.

C) Comparison of the RTJB and RTRJB subclasses - very small sample
size

For n = 5 the most powerful test groups are RTJB17 − 31 and RTRJB17 − 31,
which are tests based on combination mean-trimmed mean for trimming location
parameter s = 1. For α ∈ {0.1, 0.5, 1, 2, 5} is the most powerful RTJB17 − 31
group and for α = 10 RTRJB17 − 31 group. Notice that the empirical standard
deviation of power of RTJB17− 31 and RTRJB17− 31 groups is ≈ 0.01. Despite the
relative small deviation of RTJB17− 31 and RTRJB17− 31 tests we have observed
relatively large deviations of RTJB1 − 16 and RTRJB2 − 16 tests. More precisely,
the deviation of power in RTJB2 − 16 tests is 0.25 for n = 5 and α = 0.1. For
comparison, the deviation of power in RTJB17− 31 and RTRJB17− 31 is only 0.01,
uniformly with respect to α. The deviation of power for RT2−16 is decreasing with
α, e.g. for α = 10 the deviation reached the level of deviation by RTJB17 − 31
and RTRJB17 − 31 tests. The higher variability in the group of mean-median may
influence the choosing of the most powerful test, however, the power of tests in
the mean-median group is in the average better than the power in group of mean-
trimmed mean. In contrast, the weakest group for n = 5 is RTJB47 − 61 group
based on combination mean-pseudomedian.

D) Comparison of the individual RTJB and RTRJB tests - very small
sample size

For n = 5 the most powerful test for small α ∈ {0.1, 0.5} is RTJB12 test, for
middle α ∈ {1, 2, 5} RTJB2 test and for large α = 10 RTRJB24 test (mean-trimmed
mean type for trimming location parameter s = 1). The weakest individual test is
RTRJB4 test, which is even biased.

E) Comparison of the RTJB and RTRJB subclasses - small sample sizes
For case n = 15 and 25 the results differ from the results obtained for n = 5.

For n = 15 and n = 25 the most powerful test group is RTJB2− 16, which are tests
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based on combination mean-median. Notice that the empirical standard deviation
of power of RTJB2 − 16 group is only ≈ 0.03. The weakest groups for n = 15
and n = 25 are RTJB32 − 46 and RTRJB32 − 46 groups based on combination
mean-trimmed-trimmed mean for trimming parameters r = s = 1.

F) Comparison of the individual RTJB and RTRJB tests - small sample
sizes

For n = 15 and n = 25 the most powerful test is the RTJB9 test (mean-median
type). This test was generally optimal for all asymmetric alternatives (e.g. expo-
nential, log normal, Weibull, χ2, Burr, Pareto, etc.). In some situations it may
happened that RTJB9 was not the most powerful test from RTJB class, however
the power difference to the most powerful individual test is negligible (the only ex-
ception is the case of n = 5, when RTJB9 was not the most powerful test and it
lost 10% of the power to the most powerful test). The weakest individual tests are
RTJB41, RTRJB42 (both combination of mean-trimmed mean type) and RTJB59
(mean-trim-trim type) tests.

G) The classical tests
We consider the following classical tests: the Anderson-Darling test (AD), the

Cramer-von Mises test (CM), the Jarque-Bera test (JB), the Jarque-Bera-Urzua
test (JBU), the robust Jarque-Bera test (RJB), the Lilliefors (Kolmogorov-Smirnov)
test (LT ), the Pearson chi-square test (PT ), the directed SJ test (SJdir), the
Shapiro-Wilk test (SW ), the standardized Geary test (GT ), the standardized Uthoff
test (UT ), the skewness test (SKT ), the kurtosis test (KT ) and two versions of the
Medcouple tests (MC and MC − LR). The Shapiro-Wilk test outperforms the
other classical tests for all Pareto (α,c = 1) distributions. The interesting thing is
that the Pearson chi-square test is a good competitor for the Shapiro-Wilk test for
n = 5. Comparison between subclasses RTJB, RTRJB and classical tests has shown
that the most powerful test is SW test. The only exception is sample size n = 5,
when PT is more powerful than SW test. Selected RT class tests outperforms
classical JB, RJB and SJdir tests. The best overall performance in RT class have
tests RTJB2− 16 and RTJB17− 31. These classes outperform the RTRJB2− 16 and
RTRJB17 − 31 classes. The most powerful individual tests in RT class are RTJB9
and RTJB12, however, their powers are lower than the power of SW test. Notice,
that power of RTJB9 is comparable with the power of Epps-Pulley test ((Epps and
Pulley (1983))).

H) Contaminations
We have also considered the contaminated Pareto having cummulative distribu-

tion function (CDF) F = (1−p)Pareto(α1, c1)+pPareto(α2, c2). For our simulation
we assume 10000 replications, shapes α1 = 0.1, 0.5, 1, 5, c1 = 1, α2 = 10, c2 = 1 and
p = 0.2. We have chosen 20% of contamination to be able to explore the extremely
small sample sizes (n = 5, 15 and 25). The obtained results more-less mimic the
results for the individual Pareto. That means for n = 5 the most powerful tests
are RTJB2, RTJB12, SW and PT tests (the power of RTJB2 and RTJB12 tests is
even higher than the power of SW and PT tests). For n = 15 and n = 25 the most
powerful tests are SW and RTJB9 (the power of SW test is slightly higher than the
power of RTJB9 test).

I) Comparison of JB, RJB, RTJB and RTRJB tests
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The power of JB test is equal or higher than RJB for all analyzed Pareto
distributions. On the other hand, we can find some tests from RTJB and RTRJB

subclasses, which outperform the classical JB and RJB tests - e.g. RTJB2, RTJB9,
RTJB39, RTRJB13 and RTRJB42 tests.

The following tables list the most important results from our simulations dis-
cussed above (A-I). Notice that blank entries in tables mean that datum was not
available.
Table 5: Power of analyzed tests against Pareto (α, c = 1) distributions for n = 5

test α = 0.1 α = 0.5 α = 1 α = 2 α = 5 α = 10
RTJB1 = JB 0.882 0.597 0.430 0.306 0.220 0.190
RTJB2− 16 0.802 0.546 0.379 0.270 0.192 0.168
RTJB17− 31 0.889 0.604 0.437 0.312 0.224 0.192
RTJB32− 46 0.632 0.357 0.236 0.158 0.116 0.102
RTJB47− 61 0.373 0.261 0.193 0.144 0.112 0.099
RTJB1− 61 0.677 0.445 0.313 0.222 0.162 0.141
RTRJB1− 16 0.843 0.573 0.416 0.289 0.203 0.185
RTRJB17− 31 0.878 0.588 0.429 0.298 0.213 0.194
RTRJB32− 46 0.636 0.358 0.243 0.166 0.117 0.108
RTRJB47− 61 0.649 0.438 0.321 0.219 0.154 0.141
RTRJB1− 61 0.753 0.491 0.353 0.244 0.172 0.157

JBU 0.879 0.594 0.423 0.302 0.219 0.182
LT 0.898 0.572 0.388 0.266 0.189 0.156
PT 0.949 0.664 0.480 0.355 0.268 0.234
RJB 0.879 0.586 0.412 0.291 0.206 0.173
SJdir 0.874 0.567 0.391 0.270 0.188 0.158
SW 0.955 0.664 0.468 0.327 0.232 0.196
GT 0.020 0.045 0.048 0.048 0.049 0.050
UT 0.859 0.525 0.348 0.234 0.159 0.136
SKT 0.885 0.606 0.437 0.311 0.226 0.190
KT 0.870 0.564 0.390 0.271 0.189 0.160
MC . 0.355 0.235 0.169 0.134 0.126

MC − LR . 0.405 0.261 0.186 0.143 0.131

Table 6: Power of analyzed tests against Pareto (α, c = 1) distributions for n = 15
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test α = 0.1 α = 0.5 α = 1 α = 2 α = 5 α = 10
RTJB1 = JB 1.000 0.980 0.917 0.803 0.650 0.579
RTJB2− 16 1.000 0.986 0.934 0.832 0.685 0.616
RTJB17− 31 1.000 0.980 0.919 0.806 0.655 0.584
RTJB32− 46 0.986 0.896 0.776 0.630 0.473 0.411
RTJB47− 61 0.999 0.966 0.888 0.762 0.598 0.527
RTJB1− 61 0.996 0.958 0.880 0.758 0.603 0.535
RTRJB1− 16 1.000 0.978 0.906 0.784 0.627 0.543
RTRJB17− 31 0.999 0.956 0.863 0.732 0.572 0.491
RTRJB32− 46 0.995 0.913 0.782 0.626 0.460 0.386
RTRJB47− 61 0.997 0.955 0.862 0.728 0.562 0.482
RTRJB1− 61 0.998 0.951 0.854 0.719 0.556 0.477

JBU 0.999 0.966 0.880 0.752 0.591 0.525
AD 1.000 0.997 0.968 0.896 0.766 0.710
CM 1.000 0.996 0.960 0.878 0.730 0.669
LT 1.000 0.990 0.920 0.787 0.611 0.540
RJB 1.000 0.976 0.897 0.767 0.602 0.533
PT 1.000 0.993 0.942 0.821 0.628 0.543
SJdir 1.000 0.970 0.868 0.702 0.507 0.435
SW 1.000 0.998 0.976 0.921 0.809 0.760
GT 0.985 0.820 0.620 0.429 0.268 0.218
UT 1.000 0.961 0.840 0.656 0.450 0.377
SKT 1.000 0.984 0.932 0.838 0.702 0.641
KT 0.995 0.908 0.764 0.597 0.426 0.367
MC 0.000 0.770 0.550 0.398 0.285 0.259

MC − LR 0.000 0.914 0.711 0.530 0.375 0.327

Table 7: Power of analyzed tests against Pareto (α, c = 1) distributions for n = 25
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test α = 0.1 α = 0.5 α = 1 α = 2 α = 5 α = 10
RTJB1 = JB 1.000 1.000 0.993 0.958 0.875 0.817
RTJB2− 16 1.000 1.000 0.994 0.967 0.897 0.846
RTJB17− 31 1.000 1.000 0.993 0.959 0.879 0.822
RTJB32− 46 0.997 0.977 0.932 0.844 0.710 0.642
RTJB47− 61 1.000 0.998 0.984 0.938 0.842 0.780
RTJB1− 61 0.999 0.994 0.976 0.927 0.833 0.773
RTRJB1− 16 1.000 0.999 0.989 0.947 0.850 0.773
RTRJB17− 31 1.000 0.998 0.979 0.916 0.800 0.715
RTRJB32− 46 1.000 0.993 0.959 0.874 0.736 0.647
RTRJB47− 61 1.000 0.996 0.975 0.912 0.792 0.705
RTRJB1− 61 1.000 0.997 0.976 0.913 0.795 0.711

JBU 1.000 0.999 0.986 0.939 0.828 0.774
AD 1.000 1.000 0.999 0.989 0.956 0.928
CM 1.000 1.000 0.998 0.984 0.935 0.896
LT 1.000 1.000 0.994 0.958 0.862 0.791
PT 1.000 1.000 0.996 0.966 0.885 0.837
RJB 1.000 0.999 0.987 0.939 0.825 0.765
SJdir 1.000 0.998 0.973 0.880 0.705 0.609
SW 1.000 1.000 1.000 0.995 0.976 0.957
GT 1.000 0.965 0.850 0.641 0.424 0.334
UT 1.000 0.998 0.965 0.850 0.652 0.549
SKT 1.000 1.000 0.996 0.976 0.915 0.882
KT 1.000 0.988 0.928 0.801 0.621 0.534
MC 0.000 0.918 0.741 0.570 0.429 0.388

MC − LR 0.000 0.981 0.868 0.695 0.519 0.466

4 t-Estimator of Pareto tail

As it was shown in previous section, the power of RT class tests depend on a
particular value of the Pareto parameter α. The Pareto-type distribution means
that as x → ∞, then survival function F̄ (x) = 1− F (x), where F is the c.d.f., can
be written as F̄ (x) = x−αl(x), where α > 0 and l is a slowly varying function. The
parameter γ = 1/α is known as the extreme value index or tail index, which helps
to indicate the size and frequency of extreme events under F .

Let X1, ..., Xn be iid sample from F . If F is strictly Pareto, F̄ (x) = cx−α, x > xc,
the distribution of relative excesses Yi = Xi/t over high threshold t conditionally on
Xi > t is Pareto with parameter α and support [1,∞). Denoting the corresponding
order statistics by X1,n ≤ ... ≤ Xn,n, Hill (1975) suggested to estimate γ̂ by

γ̂k = Hk,n =
1

k

k∑
j=1

log
Xn−j+1,n

Xn−k,n

(8)

where Xn−k,n is the k-th threshold. The Hill estimator is based on a fact that for
a sample Y1, ..., Yn from strict Pareto distribution with support [1,∞) and survival
function F̄ (x) = x−α,
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1

α̂n

=
1

n

n∑
i=1

log Yi

is the maximum likelihood estimator of 1/α. The Hill estimator Hk,n was shown by
Mason (1982) to be consistent estimator for γ (as k, n → ∞, k/n → 0) whatever the
slowly varying function l may be. Since for every choice of k, one obtains another
estimator γ̂k = Hn,k, results are studied by means of Hill plots {k,Hn,k} for some
range of k ≤ n − 1. However, maximum likelihood estimators are often not very
robust, which makes them sensitive to few particular observations, which consti-
tutes a serious problem even in extreme value statistics. Using maximum likelihood
estimator point of view, the assumption that for a Pareto-type distribution, above a
certain threshold, the relative excesses behave as ordered data from a strict Pareto
distribution is sometimes over-optimistic. This mostly happens when the slowly
varying part disappears at a very slow rate in many instances resulting in severe
bias.

It is known, that formal heavy-tailed propositions can only be satisfactorily in-
volved for empirical constructs if sample data can be taken as a reasonable rep-
resentation of the underlying distribution. In practice, distribution data may be
contaminated by errors. The point of departure is recent research which has shown
that Hill estimator is nonrobust. This means that small amounts of data contami-
nation in the wrong place can reverse unambiguous conclusions. The ”wrong place”
usually means in the upper tail of distribution. As shown in (Brazauskas and Serfling
(2000A)), small errors in the estimation of the tail index can bring large errors in the
estimation of quantiles. Robust methods for extreme values have been recently ad-
dressed by literature. (Brazauskas and Serfling (2000B)) consider robust estimation
in the strict Pareto model. (Vandewalle et al. (2007)) proposed robust tail index
estimation procedure for the semi-parametric setting of Pareto-type distributions.
As discussed in the paper (Stehĺık et al. (2010)), t-estimation is at least competitive
estimation technique at presence of heavy tails. In (Fabián and Stehĺık (2008)) we
have shown that t-estimation is clearly better when contamination is present. In
this paper we study the generalization of Hill estimator based on t-estimator for
Pareto and we show it to be more robust than the classical one. The main novelty
of this approach is distributional sensitivity of the estimator: despite all classical
modification of Hill estimator for Pareto regularly varying tails are based on asymp-
totics x → ∞, our method is more sensitive to the interior of the distribution and
thus to the distribution itself. In the recent literature there were some works on
robustification of Hill estimator, however, our main aim in this section is to con-
struct the t-Hill like estimator, which is distributional sensitive. However, as it can
be seen from this section, as a side effect we get also robustness. For the theory of
t-estimation see Appendix and references therein.

Let us consider Pareto distribution with support X = [1,∞) and density

f(x) =
α

xα+1
.
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t-variant of the Hill estimator has the form

γ̂k =
1

α̂k

= H∗
k,n =

1

1
k

k∑
j=1

Xn−k,n

Xn−j+1,n

− 1, (9)

where harmonic mean is taken from the last k observed values weighted with thresh-
old Xn−k,n.

In (Fabián and Stehĺık (2009)) we proven the consistency of the t-Hill estimator
for Pareto distribution. The consistency of the t-Hill estimator guarantees the con-
sistency of the whole procedure. For the case of unknown location parameter of the
Pareto distributions the following lemma provides the estimation technique based
on t-estimation.

For European Pareto with density (1) the t-estimator of location parameter c
has the form

ĉM = min(ĉ, x(1)),

where x(1) is the first order statistic, which is also the maximum likelihood estimate
of the threshold parameter.

In the following subsection we illustrate the natural robustness of the t-Hill
estimator of the Pareto distributions. For this purpose we compare t-Hill and Hill
estimators by the means of simulations. For more detailed discussion on natural
robustness of t-estimation see (Stehĺık et al. (2010)) or (Fabián and Stehĺık (2008)).

4.1 Comparisons

One of problems with the Hill estimator is that it is not sufficiently robust. On the
other hand, since the t-Hill estimator is based on harmonic mean, it is resistant to
large observations so that it may yield more realistic values for large k. Hill and
t-Hill plots for random sample from Pareto P (1) distribution are shown in Figure
3. The length of the sample was 1001 points. It is apparent that t-moment Hill
estimator in his first part too much oscillates. The reason is that it is very sensitive
to an abrupt change of the threshold value.
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Figure 4 and Figure 5 show Hill plotH = {k,Hn,k} and t-Hill plotH∗ = {k,H∗
n,k}

for samples generated from the contaminated Pareto distribution

Fc = 0.9 ∗ P (1) + 0.1 ∗ P (δ)

with δ = 2 (see Figure 4) and δ = 3 (see Figure 5).

It is apparent that values of t-Hill plots for large k are not too much influenced
by large observed values as in ordinary Hill plots.

5 Illustrative examples

5.1 t-Hill estimator

Real data are taken from Example 1 in (Stehĺık et al. (2010)). These data consist
of 96 payments in one year in non life insurance. Figure 6 illustrates the Pareto tail
estimation by t-Hill and Hill estimators for this data.

5.2 Illustrating of step 1 and step 2

Here we illustrate steps 1 and 2 of our procedure. Firstly we generate Pareto distri-
bution with shape parameter α, and secondly we estimate α̂ by t-Hill estimator from
the generated data. Afterwards we choose optimal tests for normality for both α and
α̂ and compare their powers. We have chosen Pareto distributions (α ∈ {0.5, 1, 3},
c = 1) for n = 5 and n = 15. For t-Hill estimator we have chosen k = 2 a k = 5.

• Pareto (α = 0.5, c = 1, n = 5, k = 2): we recommend tests RTJB2, SW and
PT. We have α̂ = 0.56. For such a value we recommend tests RTJB2, SW and
PT .

• Pareto (α = 1, c = 1, n = 5, k = 2): we recommend tests RTJB2, RTRJB13,
SW and PT. We have α̂ = 0.93. For such a value we recommend tests RTJB2,
RTRJB13, SW and PT .
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• Pareto (α = 3, c = 1, n = 5, k = 2): we recommend tests RTJB2, RTRJB13,
SW and PT. We have α̂ = 3.31. For such a value we recommend tests RTJB2,
RTRJB13, SW and PT.

• Pareto (α = 0.5, c = 1, n = 15, k = 5): we recommend tests RTJB9, RTRJB13
and SW. We have α̂ = 0.36. For such a value we recommend tests RTJB9,
RTRJB13 and SW .

• Pareto (α = 1, c = 1, n = 15, k = 5): we recommend tests RTRJB13 and SW.
We have α̂ = 1.22. For such a value we recommend tests RTRJB13 and SW .

• Pareto (α = 3, c = 1, n = 15, k = 5): we recommend tests SW and AD which
show higher powers than classes RTJB and RTRJB. We have α̂ = 3.28. For
such a value we recommend SW test.

• Contaminated Pareto distribution F = 0.8 Pareto(α = 0.5, c = 1)+0.2Pareto(α =
10, c = 1) for n = 15 and k = 5. We have α̂ = 0.65. For such a value we rec-
ommend tests RTJB9, RTJB13, RTRJB13, SW and AD.

• Contaminated Pareto distribution F = 0.8Pareto(α = 1, c = 1)+0.2Pareto(α =
10, c = 1) for n = 15 and k = 5. We have α̂ = 0.78. For such a value we rec-
ommend tests RTJB9, SW and AD.

• Contaminated Pareto distribution F = 0.8Pareto(α = 3, c = 1)+0.2Pareto(α =
10, c = 1) for n = 15 and k = 5. We have α̂ = 3.09. For such a value we rec-
ommend tests RTJB9, SW and AD.

5.3 Testing for normality

Here we consider two illustrative examples.
Firstly we consider the illustrative example of claims for the mandatory, non-

funded 1st (pay-as-you-go) pillar given by (Potocký and Stehĺık (2005)). Therein
is considered a closed group of Slovakian people, all aged 50 in the year 1998, and
interest is in the estimation of the total claim amount for this group in the year
2010 when the members are supposed to retire. We have n = 10 of the salaries
given from (SLOVSTAT on-line) (see Labour Market, III.3-10, Structure of average
gross nominal monthly wage of employees in the economy of the SR). Fig. 7, 8
and 9 present histogram, normal Q-Q plot and boxplot, respectively. In all cases
normality is not rejected. The smallest p-value is 0.149 of KT test and the highest
one is 0.976 of directed SJ test.

Secondly we consider the illustrative example of absolute logarithmic returns of
USD/EUR exchange rate for n = 25 (Q2/2003 - Q2/2009). The Pareto fit to the data
was checked by KS test gaining p-value of 0.14. Fig. 10, 11 and 12 present histogram,
normal Q-Q plot and boxplot, respectively. Selected tests from the classical tests and
RTJB and RTRJB classes show p-value greater than 0.05. In particular we consider
tests CM , LT , directed SJ , SW , GT , UT , MC, MC−LR, RTJB32, RTJB36− 38,
RTJB40, RTJB44, RTRJB32, RTRJB35 − 38, RTRJB40, RTRJB42, RTRJB44 − 46.
Selected tests have a smaller power for the considered Pareto alternatives. Moreover,
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these tests are not able to detect asymmetric alternatives. The smallest p-value is
0 of selected tests and the highest one is 0.634 of MC test.

The selected tests have a high power against symmetric heavy tailed alternatives.
The distribution of absolute logarithmic price changes could be considered to be
asymmetric (see also histogram and boxplot). The outlier presence is a reason why
some tests did not rejected normality.

6 Discussion and conclusions

This paper introduces the general class of robust tests for normality and discuss
their properties. The paper also deals with applications of these normality tests on
datasets of selected financial time series. In the simulation study we have focused
on the power study of selected tests from RTJB and RTRJB subclasses. We have
compared these tests with the selected classical tests for the normality on the large
scale of alternatives.

General guidelines. Based upon our experience we can recommend the fol-
lowing general guidelines for normality testing.

• For heavy tailed symmetric or asymmetric alternatives: there exist no better
tests than SJdir or RJB. Comparable powers are obtained also for RTJB9,
RTJB43, RTRJB13 and RTRJB59 tests.

• For asymmetric light tailed alternative there is no better test than SW . The
best mimic from RTJB and RTRJB subclasses is RTJB9 (with a small decrease
in power)

• For symmetric short tailed alternative the best test isKT test. For Beta(0.5, 0.5)
SW outperforms KT test. RTJB subclass outperforms RTRJB subclass. The
best test from RTJB subclass is RTJB42 test. For uniform alternative, n = 25,
power of KT test is 0.447, SW test power is 0.290 and RTJB42 test power is
0.316. For Beta(0.5, 0.5) alternative, n = 25, power of KT test is 0.823, SW
test power is 0.861 and RTJB42 test power is 0.763

• For bimodal alternatives, the best power is gained by Geary and Uthoff tests.
The JB, JBU , RJB, KT and SJdir are even biased, especially for small sam-
ples. In contrast some robust modifications of JB and RJB tests (RTJB39,
RTJB42 and RTRJB42) show nonzero power and are comparable with the
Geary and Uthoff tests. Power increase of the selected tests from RTJB and
RTRJB subclass in comparison with the classical JB and RJB tests is as fol-
lows: e.g. for the bimodal mixture F = 0.5N(0, 1)+0.5N(5, 1) and sample size
n = 24 JB, JBU , RJB tests and directed SJ test gain almost zero powers.
However selected tests from RTJB and RTRJB subclass gain relatively good
power, i.e. RTJB39 has power 0.81, RTRJB42 has power 0.95 and RTJB42
power is even 0.97. The latter values of power are comparable with the best
tests for normality against such alternatives, e.g. Geary and Uthoff tests with
power 0.99.

19



• For location-contaminated standard normal distribution alternatives having
CDF F = pN(0, 1) + (1 − p)N(µ2, 1) with p = 0.1, 0.3, 0.5, 0.7, 0.9 and µ2 =
0, 1, 2, 3, 4, 5, the best tests are JBU , JB, KT , GT , UT and DT tests. Com-
parable results are also for RTJB9 test.

• For scale-contaminated standard normal distribution alternatives having CDF
F = pN(0, 1)+(1−p)N(0, σ2

2) withp = 0.1, 0.3, 0.5, 0.7, 0.9 and σ2
2 = 1, 4, 9, 16, 25,

the best tests are SJdir and RJB. Comparable results are obtained also for
RTJB9, RTJB43 and RTRJB59 tests.

• For location- and scale-outliers models, the tests with higher power are JBU ,
JB, DT , AD, CM , SW , RTJB39, RTJB42 and RTRJB42 tests.

• Many results of this paper are in the coherence or are extending the results of
previous studies, e.g. (Thadewald and Bunning 2007).

Interpretation of power differences. Some interpretation for the power be-
havior can be made using the kurtosis as a metric to measure departure from normal-
ity in the certain class of distributions (see (Keilson and Steutel 1974)). For instance
the power of RTJB tests under Weibull alternative and mid sample n = 100 belongs
to range (0.13, 0.76) and power of RTRJB tests belongs to range (0.03, 0.96) since
kurtosis is 3.14. Thus the departure from normality is less than by uniform mid
sample n = 100 with kurtosis 1.83, where the robustness of the tests led to the
higher spread of the powers, approximately within the range (0.00, 0.99) of RTJB

tests and (0.00, 1.00) of RTRJB tests. On the other hand the power of RTJB under
Laplace alternative and mid sample n = 100 belongs to range (0.11, 0.83) and power
of RTRJB tests belongs to range (0.42, 0.94) since kurtosis is 5.32. These relations
will be worth further investigation.

Testing against Pareto tail
In the step 1 of our testing procedure we estimate Pareto tail parameter α by

t-Hill estimator. There are two main ways of avoiding misleading conclusions due
to nonrobust tools in the presence of contaminated data. One is based on statistics
that automatically remove from the sample data that are potentially troublesome.
The other relies on the specification of parametric models for the distribution of
the data and uses robust estimators of the parameters. As can bee seen from this
paper, t-Hill estimator of Pareto tail index is distribution sensitive and ”naturally”
robust. If more accurate fit to the central part of distribution is needed, we suggest
to use e.g. combining a Pareto estimate of the upper tail with a non-parametric
estimate of the rest of the distribution, as suggested by (Cowell and Victoria-Feser
(2007)) and by (Davidson and Flachaire (2007)) with bootstrap methods. In this
paper authors used deliberately t-Hill estimator. However we are aware of fact that
competitive estimators may exist and further comparisons and investigations should
be done in this direction.

The authors are aware about the results in the Pareto tail parameter tests of the
form H0 : F is of Pareto with tail α ≤ α0 against the lighter right tail alternative,
e.g. (Jurečková (2000)) or (Jurečková and Picek (2001)). There is a possibility
to construct adaptive procedures where 1) in the first step consistent test of α is
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employed to a dataset; and in the second step 2) we took an appropriate robust
tests for normality, dependently on α from the 1st step. However, in our paper we
considered mainly mid and small samples and therefore more work should be done
to validate such a procedures. Therefore we considered this problem to be out of
the scope of this paper and further investigations may be of interest.
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7 Appendix

7.1 Definition of tests

1) The ”mean-median” Jarque-Bera test statistic RTJB2 defined by

RTJB2 =
n

6

(
M3(0, T(0)(0))

M
3/2
2 (0, T(0)(0))

)2

+
n

24

(
M4(0, T(0)(0))

M2
2 (0, T(1))0))

− 3

)2

.

2) The ”mean-median” Jarque-Bera test statistic RTJB9 defined by

RTJB9 =
n

18

(
M3(0, T(1)(0))

M
3/2
2 (0, T(0)(0))

)2

+
n

24

(
M4(0, T(0)(0))

M2
2 (0, T(0))0))

− 3

)2

.

3) The ”mean-trimmed-trimmed mean” Jarque-Bera test statistic RTJB39 de-
fined by

RTJB39 =
n

6

(
M3(1, T(2)(1))

M
3/2
2 (0, T(0)(0))

)2

+
n

24

(
M4(0, T(0)(0))

M2
2 (0, T(0))0))

− 3

)2

.

4) The ”mean-trimmed-trimmed mean” Jarque-Bera test statistic RTJB42 de-
fined by

RTJB42 =
n

6

(
M3(1, T(2)(1))

M
3/2
2 (0, T(0)(0))

)2

+
n

24

(
M4(1, T(2)(1))

M2
2 (1, T(2))1))

− 3

)2

.

5) The ”mean-trimmed-trimmed mean” Jarque-Bera test statistic RTJB43 de-
fined by

RTJB43 =
n

6

(
M3(1, T(2)(1))

M
3/2
2 (1, T(2)(1))

)2

+
n

24

(
M4(0, T(0)(0))

M2
2 (0, T(0))0))

− 3

)2

.

6) The RTRJB13 test statistic defined by
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RTRJB13 =
n

18

(
M3(0, T(1)(0))

M3
0 (0, T(1)(0))

)2

+
n

58

(
M4(0, T(0)(0))

M4
0 (0, T(0)(0))

− 3

)2

.

7) The RTRJB33 test statistic defined by

RTRJB33 =
n

6

(
M3(0, T(0)(0))

M3
0 (0, T(0)(0))

)2

+
n

58

(
M4(1, T(2)(1))

M4
0 (0, T(0)(0))

− 3

)2

.

8) The RTRJB42 test statistic defined by

RTRJB42 =
n

6

(
M3(1, T(2)(1))

M3
0 (0, T(0)(0))

)2

+
n

58

(
M4(1, T(2)(1))

M4
0 (1, T(2)(1))

− 3

)2

.

9) The RTRJB59 test statistic defined by

RTRJB59 =
n

18

(
M3(0, T(3)(0))

M3
0 (0, T(3)(0))

)2

+
n

58

(
M4(0, T(0)(0))

M4
0 (0, T(3)(0))

− 3

)2

.

7.2 t-estimation

It was shown in Fabián (2008) that regular continuous distributions with interval
support X ∈ R can be characterized, besides the cumulative distribution function
F (x) and probability density f(x), by its t-score, given by

T (x) =
1

f(x)

d

dx

(
− 1

η′(x)
f(x)

)
, (10)

where η : X → R is an appropriate, strictly increasing continuous mapping. In the
case of support X = (a,∞), mapping

η(x) = log(x− a) (11)

yields often the simplest formulas for t-scores. The t-score is a suitable function for
using the generalized moment method for estimation of parameters of heavy-tailed
distributions, since it appeared that T is for these distributions bounded, and the
moments

ET k =

∫
X
T (x)k dF (x), k = 1, 2, ..., (12)

exist and are often given by simple expressions. Let us call them the t-score mo-
ments. Particularly,

ET = 0 (13)

and ET 2 is the Fisher information for x∗, which is the solution of equation

x∗ : T (x) = 0,
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called the t-mean, which can be considered as a measure of central tendency of
distributions (Fabián, 2008).

Let θ ∈ Θ ⊆ Rm and (X1, ..., Xn) be iid sample from Fθ. The parametric version
of (12) yields the generalized moment estimation equations for θ in the form

θ̂n :
1

n

n∑
i=1

T (xi; θ)
k = ET k(θ), 1 ≤ k ≤ m. (14)

Since θ̂n is the M-estimate, it is strongly consistent and asymptotically normal with
the asymptotic variance-covariance matrix derived by Fabián (2001). Since distri-
butions with heavy tails have bounded t-scores, θ̂n of heavy-tailed distributions are
robust with respect to large values in observed samples.

7.3 Proofs

Proof of Theorem 1
For mean Under the null, µ is the mean of Normal distribution and

√
n(Mn −

µ) ∼ N(0, 1/(4f(µ)2)) (see (Casella and Berger 2002), p. 484). Thus E(µ−Mn)
k →

0 for n → ∞.
For k = 2 we have E(Xi−Mn)

2 = E(Xi−µ)2+E(µ−Mn)
2+2E(Xi−µ)(µ−Mn).

For k = 3 we have

E(Xi−Mn)
3 = 3E[(Xi−µ)2(µ−Mn)]+E(µ−Mn)

3+E(Xi−µ)3+3E(Xi−µ)(µ−Mn)
2

Thus E(µ − Mn)
3 → 0 for n → ∞ and from Cauchy-Schwarz inequality we have

|E(Xi − µ)2(µ − Mn)| ≤
√

E(Xi − µ)4E(µ−Mn)2 → 0 for n → ∞. Similarly for
other mixed terms.

For k = 4 we have E(Xi − Mn)
4 = E(Xi − µ)4 + 6E[(Xi − µ)2(µ − Mn)

2] +
E(µ−Mn)

4+4E(Xi−µ)3(µ−Mn)+ 4E(Xi−µ)(µ−Mn)
3. Thus E(µ−Mn)

4 → 0
for n → ∞ and from Cauchy-Schwarz inequality we have |E(Xi − µ)2(µ−Mn)

2| ≤√
E(Xi − µ)4E(µ−Mn)4 → 0 for n → ∞. Similarly for other mixed terms.
For trimmed mean and median
First, let us consider the trimmed mean, M2(n). We have P (|M2(n) − µ| ≥ ϵ) ∼

O(1/n), ∀ϵ > 0 for n → ∞ because of the normal asymptotical distribution of M2(n)

(see (Stigler (1973))) and E(M2(n)) = µ. Particularly for the median M1(n) we obtain
P (|M1(n) − µ| ≥ ϵ) ∼ 1/(4f(µ)2n), ∀ϵ > 0 and

√
n(M1(n) − µ) ∼ N(0, 1/(4f(µ)2))

(see (Casella and Berger 2002), p. 484). Thus Mi(n), i = 1, 2 converge in probability
to µ. Since gj(u) = (1/n)

∑n
i=1 φj(Xi−u) is a continuous function for j = 0, 1, 2, 3, 4,

gj(Mi(n)) converge in probability to g(µ) which is a consistent estimator of µj. There-
fore also gj(Mi(n)) is a consistent estimator of µj, where µ0 = σ.

For pseudo-median
We have for a symmetric density h (under null hypothesis density is normal)

M3(n) ∼ N(M3, τ
2/n), τ = 1√

12
∫
h2(x)dx

(see (Hettmansperger and McKean (1998))).

Proof of Theorem 2 From convergence in probability, we have the following
convergence in distribution M3,i−µ̂3 → 0, M4,j−µ̂4 → 0, and M2

2,l → σ4 for n → ∞.
The proof is completed by employing of multivariate Slutsky’s theorem.
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Proof of Theorem 3
From convergence in probability, we have the following convergence in distribu-

tion M3 − µ̂3 → 0 and M4 − µ̂4 → 0. The rest of the proof follows from Theorem 1
and its proof in (Gel and Gastwirth (2008)).

Proof of Lemma 1.
Using the mapping η = log(x − 1), η′(x) = 1/(x − 1) and, by (10), the t-score

(10) is
Tα(x) = −1− (x− a)f ′(x)/f(x) = α(1− x∗/x)

where x∗ = (α+ 1)/α. It follows from (14) and (13) that

n∑
i=1

T (xi;α) = 0

so that x̂∗ = x̄H where x̄H = n/
∑n

1 1/xi is the harmonic mean, and

α̂ = 1/(x̂∗ − 1).

It suggests to introduce a variant of the Hill estimator as

γ̂k =
1

α̂k

= H∗
k,n =

1

1
k

k∑
j=1

Xn−k,n

Xn−j+1,n

− 1, (15)

where harmonic mean is taken from the last k observed values with thresholdXn−k,n.

Proof of Lemma 2.
Using mapping η = log(x − 1) we obtain from (10) the t-score T (x;α) = −1 −

(x − c)f ′(x)/f(x) = α(1 − x∗/x) where x∗ = c(α + 1)/α. Since ET 2 = α/(α + 2)
and η′(x∗) = 1/(x∗ − c), the measure of variability is

ω2 =
c2(α+ 2)

α3
. (16)

For a given ω, α is determined from (16).
The t-score moment equations are

n∑
i=1

(1− x∗/xi) = 0

1

n

n∑
i=1

(1− x∗/xi)
2 =

1

α(α+ 2)
,

so that x̂∗ = x̄H is the harmonic mean. Denoting x̄2H = n/
∑n

i=1 1/x
2
i and

ρ =
x̄2H

x̄2
H − x̄2H

,
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from the second equation α̂ =
√

(1 + ρ)− 1 and

ĉ = x̄Hα̂/(α̂+ 1).

The t-score moment estimator of the threshold parameter is then

ĉM = min(ĉ, x(1)),

where x(1) is the first order statistic, which is also the maximum likelihood estimate
of the threshold parameter.
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