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Abstract

When collecting spatial data, it has become a standard practice to posi-
tion the measurement points spread out uniformly across the available space.
These so-called space-filling designs are now ubiquitous in corresponding pub-
lications and conferences. The statistical folklore is that such designs have
superior properties when it comes to prediction and estimation of response
functions. In this presentation we want to review the circumstances under
which this superiority holds, provide some new arguments and clarify the mo-
tives to go beyond space-filling. We will accompany these findings with a
simple two-dimensional example with seven observations.

1 Introduction

The predominance of space-filling designs for collecting spatial data Y (x) with
coordinates x ∈ X is, from a model-based viewpoint, based on the notion
that such designs are good for maintaining the maximal prediction (kriging)
variance

max
x∈X

Var[Ŷ (x)]

at small values. This observation turns up frequently in the applied literature
(e.g., (1)), theoretically it was shown most rigorously (2) for a certain class
of space-filling designs and increasingly weaker correlations (see also (3) for
a motivation for the limit-kriging approach). For the relationship among the
various types of space-filling designs see (4).

The model underlying these considerations and our investigations is the
correlated random field, given by

Y (x) = η(x, β) + ε (x) . (1)

Here, β is an unknown vector of parameters in Rp, η(·, ·) a known function
and the random term ε (x) has zero mean, (unknown) variance σ2 and a
parameterized spatial error correlation structure such that IE[ε (x) ε (x′)] =
σ2c(x, x′; ρ). It is often assumed that the deterministic term has a linear
structure, i.e., η(x, β) = f>(x)β, and that the random field ε (x) is Gaussian,
allowing estimation of β, σ and ρ by Maximum Likelihood.

Note that setup (1) is used in such diverse areas of spatial data analysis (cf.
(5)) as mining, hydrogeology, natural resource monitoring and environmen-
tal sciences, and has become the standard modeling paradigm in computer
simulation experiments.

2 Beyond space-filling

It is conventional practice that all unknown parameters are estimated from
the same data set, but clearly the classic kriging variance does not reflect
the additional uncertainty resulting from the estimation of the covariance
parameters. A first-order expansion of the kriging variance for ρ̂n around
its true value is used in (6) (see also (7) for more precise developments),
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which yields an explicit correction term to augment the (normalized) kriging
variance. This naturally leads to a design criterion,

max
x∈X

{
Var[Ŷt(x)] + tr

{
M−1

ρ Var[∂Ŷt(x)/∂ρ]
}}

, (2)

to be minimized, which is called EK(empirical kriging)-optimality in (8) (see
also (9) for a similar criterion). Here Mρ stands for the information matrix
for the covariance parameters ρ and the objective is to take the dual effect
of the design into account: obtaining accurate predictions at unsampled sites
and improving the accuracy of the estimation of the covariance parameters
(those two objectives being conflicting, see (10)) through the formulation of
a single criterion.

It is quite evident now that space-filling designs are not very efficient
with respect to the EK-criterion, since they lack short distances that are
required for capturing the local correlation. Let us demonstrate this on our
reference example. We will assume the Ornstein-Uhlenbeck process on X =
[0, 1]2, which is a special case of (1) with η(x, β) = β, i.e. f(x) ≡ 1, and
c(x, x′; ρ) = ρ|x−x′|, setting σ2 ≡ 1 to avoid identifiability problems (see, e.g.,
(11)). For a similar one-dimensional case, some results have been reported in
(12). Furthermore, we will here report only results for n = 7 observations and
ρ = exp{−7} ∼ 0.001, although similar, albeit perhaps more trivial results
were achieved for other choices of ρ. For growing n there is expectedly a
tendency towards approaching space-filling, which however is counterbalanced
by decreasing ρ. This relation requires more detailed investigations in the
future, but the below given necessarily limited cases seem to encapture the
general behaviour well.

Fig. 1 displays a scatter-plot of the EK-criterion values against the minimal
distances among all 7 points for 1000 uniformly randomly generated designs
on [0, 1]2, the latter criterion to be maximized being commonly referred to as
maximin distance, see (2). From this display it is evident that designs that
are good in the maximin (space-filling) sense (right part of the plot) do not
tend to achieve acceptably low levels for the corrected kriging variance (2),
the EK-criterion.

The EK-criterion as a function of the design points is very rough and far
from being convex. It is thus very unpromising if we try to find the optimal
design on the entire unit square and we confine the search to a uniform grid
of 21× 21 points where the 7 design points may be located.

The iterative search started with a random design, in each iteration one
of the design points was exchanged following the Federov-exchange-algorithm
combined with simulated annealing. That is, we exchanged one point of the
actual design with 100 randomly selected non-design-points on the grid. For
each of these 100 new designs we computed the EK-criterion. If the minimal
EK-criterion of these 100 new designs was less than the EK-criterion of the ac-
tual design, the corresponding new design was accepted and the temperature-
parameter temp of the simulated annealing process decreased. If the best
new design was worse than the actual design it was accepted with probability
P = exp(EKold−EKnew

temp ) where EKnew and EKold are the EK-criterion values
of the best new and the actual design respectively. After 20 successive itera-
tions without improvement of the EK-criterion the search was stopped with
the best design found. The EK-optimal design found on our grid is shown in
Fig. 2, the EK-value of this design is 1.1821.
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Figure 1: Scatterplot of minimal dis-
tances (horizontal) versus EK-criterion
values (vertical) for 1000 uniformly ran-
domly generated designs.
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Figure 2: Level plot of the EK-criterion
for the EK-optimal design (red dots)
found on a grid of 21× 21 points.

3 A substitute criterion

To avoid space-filling, we could thus now proceed by finding designs that opti-
mize the EK-criterion. However, the EK-criterion is computationally complex,
since each test of candidate design requires to evaluate (2), which in turn re-
quires the evaluation of the target function for all points in the candidate set.
It is evident that this is unfeasible for higher dimensions and that it would
thus be useful to have an alternative criterion that can substitute EK and
similarly reflects the total prediction uncertainty.

In the design of experiments literature, a connection between prediction-
oriented and estimation-oriented criteria is well known and runs under the
heading “equivalence theory”. It goes back to the celebrated paper by Kiefer
and Wolfowitz (13) who established the equivalence of optimal designs be-
tween two criteria of optimality for the regression with independent error
case, one related to parameter estimation, the other related to prediction
(i.e., equivalence between D- and G-optimality). Since the EK-criterion is
analogous to G-optimality for the correlated error case, this has motivated
(14) to suggest to maximize a compound criterion with weighing factor α,

|Mβ(ξ, ρ)|α · |Mρ(ξ, ρ)|(1−α), (3)

which consists of determinants of information matrices (D-optimality) corre-
sponding to trend and covariance parameters respectively. For the detailed
definition of these information matrices see, e.g., (14) or (15) for computa-
tionally efficient implementations. We shall call criterion (3) CDα-optimality
(compound D-optimality) in the following.

Let us see how CDα-optimality relates to EK-optimality by looking at
the same randomly generated 1000 designs from above. Two scatterplots for
α = 0.7 and α = 0.8 are displayed in Fig. 3 and 4 respectively. It is quite
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Figure 3: Scatterplot of CD0.7-criterion
values (horizontal) versus EK-criterion
values (vertical) for 1000 uniformly ran-
domly generated designs.
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Figure 4: Scatterplot of CD0.8-criterion
values (horizontal) versus EK-criterion
values (vertical) for 1000 uniformly ran-
domly generated designs.

evident from these pictures that the two criteria are in general good accor-
dance (although the scatter branches out for higher values of α). However,
of relevant importance is only the behaviour in the lower right corner, i.e. in
the region of the desired extremes of the criteria. The achievable extremes
are indicated by the dashed lines and the triangles indicate the values for
the designs found optimal under the respectively other criterion. It turns out
that especially the CD0.8-optimal design approaches the mininum EK-value
of 1.182 quite closely by a value of 1.194.

The accordance of the two criteria breaks down if too small (below 0.5)
or too high (above 0.85) values are chosen for α. It is clear that an efficient
way of choosing an appropriate α is therefore needed but for this example it
sufficed to try several values to come up with a reasonable choice. For proper
α both criteria are seeking to find a compromise between space-filling behavior
(i.e., estimation the trend parameter in (1) and minimization of the kriging
variance component in (2)) and clustering (i.e., estimation of the covariance
parameter ρ and minimization of the correcting term component in (2)). This
can be observed by looking at Fig. 5 and 6 which display the EK-criterion
contour lines for α = 0.7 and α = 0.8 CDα-optimal designs respectively. The
position x where the maximum is reached in the EK-criterion (2) is indicated
by a diamond.

We may also learn something from looking at the worst designs. It is (un-
fortunately) much easier to maximize the EK-criterion (2) than to minimize
it. The maximization of the EK-criterion yields a design as displayed in 7
with a criterion value of 2.90. This design strongly resembles the maximin
design for seven points (cf. www.packomania.com), the EK-criterion contours
are given in 8 with a maximum value of 2.68, just slightly better than the
worst design! This again demonstrates the need to go beyond space-filling for

4



α

 0.2 

 0.2 

 0.2 

 0.4 

 0.4 

 0.5 

 0.5 

 0.5 

 0.6 

 0.6 

 0.7 

 0.7 

 0
.7

 

 0.8 

 0
.8

 

 0.8 

 0.8 

 0.9 

 0.9 

 0.9 

 0.9 

 1 

 1 

 1 

 1 

 1.1 

 1.1 

 1.1 

 1.1 

 1.2 

 1.2 

Figure 5: Level plot of the EK-criterion
for the CD0.7-optimal design (red dots)
found on a grid of 21× 21 points.

α

 0.2 

 0
.2

 

 0.3 

 0.4 

 0.4 

 0.4 

 0.4 

 0
.5

 

 0.5 

 0
.5

 

 0.6 

 0.6  0.7 

 0.7 

 0.7 

 0.7 

 0.8 

 0
.8

 

 0.8 

 0.8 

 0.8 

 0.9 

 0.9 

 0.9 

 0.9 

 0.9 

 1 

 1 

 1 

 1 

 1 

 1.1 

 1.1 

 1.1 

 1.1 

 1.1 

Figure 6: Level plot of the EK-criterion
for the CD0.8-optimal design (red dots)
found on a grid of 21× 21 points.

these type of problems.

4 Outlook

From these examples and similar one-dimensional considerations in (12) we
are thus led to believe that good EK-efficiencies can be produced for CDα-
optimal designs in more complex setups and/or higher dimensions as well.
This would be very advantageous since EK-optimal designs are much more
difficult to generate than CDα-optimal designs, since they require embedded
optimizations over the candidate sets. Our quasi equivalence will allow to
replace the very demanding optimization (2) by the much less intensive (3)
without much loss in efficiency.
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Figure 7: Level plot of the EK-criterion
for the worst EK-optimal design (red
dots) found on a grid of 21× 21 points.
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