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SUMMARY

Health care quality monitoring by the Ministry of Health in Slovenia includes over 100 
business indicators of economy, efficiency and funding allocation, analysed annually for over 
20 hospitals. Most of these indicators are random-denominator same-quantity ratios with a 
highly correlated numerator and denominator, and the goal is identification of outliers. A 
large simulation study was performed to study the performance of three types of methods: 
common outlier detection tests for small samples – Grubbs, Dean & Dixon, and Nalimov test
– applied unconditionally and conditionally upon results of Shapiro-Wilk normality test; the 
boxplot rule; and the double-square-root control chart, for which we introduced regression-
through-origin-based control limits. Pert, Burr and 3-parameter-loglogistic distribution, which 
fitted the real data best, were used with no, one or two outliers in the simulated samples of 
size 5 to 30. Small (below 0.2; right-skewed) and large (above 0.5, more symmetrical) ratios 
were simulated. Performance of the methods varied greatly across the conditions. Formal 
small-sample tests proved virtually useless if applied conditionally upon passed normality 
pre-test in the presence of outliers. Boxplot rule performed most variedly, but was the only 
useful one for tiny samples. Our variant of the double-square-root control chart proved too 
conservative in tiny samples and too liberal for samples of size 20 or more without outliers, 
but appeared the most useful to detect actual outliers in samples of the latter size. As a 
possibility for future improvement and research, we propose pre-testing of normality using a 
class of robustified Jarque-Bera tests.
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1. INTRODUCTION

Health care quality monitoring by the Ministry of Health in Slovenia includes numerous
business indicators of economy, efficiency and funding allocation, which are annually 
analysed for all the hospitals in the country [1]. Examples of these indicators are the area of a 
hospital used for a certain service (e.g., dialysis or computed tomography) per total area of the 
hospital, and the expenses for a certain purpose (e.g., energy consumption or staff education) 
per total expenses of the hospital.

The essence of associated statistical analyses is identification of outliers, where a 
compromise between state-of-the-art and wide understandability is desired. Hence, an 
exploratory approach was adopted that combines three types of methods:

 three common outlier detection tests useful in small samples, namely the Grubbs test 
[2], the Dean & Dixon test [3] and the Nalimov test [4], which are all based upon 
assumption of normality and were hence tried unconditionally as well as 
conditionally upon results of normality tests;

 the Tukey [5] boxplot rule, i.e., identifying as outlier any value more than 1.5-times 
the inter-quartile range larger or smaller then the third or the first quartile, 
respectively;

 control charts.

The present study investigates these three approaches through extensive simulations. The 
paper first introduces a novel proposal regarding the application of appropriate control charts. 
The simulations setup and the simulation results are then presented, followed by empirical 
results on robust normality pretesting and outlier detection. Finally a summary is given with a 
discussion of related work and directions for further research.

2. CONTROL CHARTS

2.1. General considerations

The indicators addressed in this study are same-quantity ratios (thus bound between 0 and 1)
which are appropriately treated neither as proportions nor as fixed-denominator ratios. They 
are random-denominator ratios with highly correlated numerator and denominator. Examples 
of such indicators are presented in Figure 1. For the two types of indicators, i.e., small and 
large ratios (as detailed in the section 3), different scales are used in the histograms. The 
distributions of small ratios are right-skewed, while the distributions of large ratios are 
roughly symmetric. It is evident that there is very high correlation between the numerator and 
the denominator, while the ratios tend to be independent of their denominators. To avoid 
unauthorised disclosure and hospital identification without loosing the information relevant 
for our study, the actual quantities defining the numerator and the denominator are masked.

It is essential to note that funnel plots, which have rightfully been promoted for 
monitoring cross-sectional performance indicators in health care [6-9] and also in education 
[10], may not be the appropriate choice for such data. The reason is that virtually all points 
would get labelled as outliers in such plots because of huge denominators (thousands of 
square metres, millions of Euro) yielding excessively narrow confidence intervals for the 
average proportion (even at 99% confidence level). Even if the whole problem is considered 
as one of over-dispersion [11, 12], which has been recognised in health-care setting and for 
which different strategies have been suggested, and given that abandoning indicators is not an 
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option, neither random-effects models [11] nor the Laney’s approach [12] are universally 
feasible. Therefore, a different choice of the control chart and its control limits is tenable.

2.2. Proposed modification of the Double Square Root Chart

We opted for the double-square-root (Shewart) chart [13], in which the square-root of the 
numerator is plotted against the square-root of the difference between the denominator and the 
numerator. Like the funnel plot, this is also an increasingly popular method in statistical 
health-care quality control [14, 15]. However, it was essential to replace the traditional control 
limits – based on the underlying assumption of binomial distribution, like in funnel plots, and 
therefore much too narrow for our data – by newly defined ones. The newly defined control 
limits were obtained by using linear regression through the origin (the rationale being that, 
e.g., no costs can be incurred without income, no space can be used for a given purpose 
without any space, etc.) and estimating control limits using 95% confidence interval for 
prediction.

Four examples of such charts are presented in Figure 2. They show indicators with no 
outliers (upper left), one outlier above the control limits (upper right), one outlier below the 
control limits (lower left), and two outliers (one above and one below the control limits; lower 
right).

3. SIMULATION SETUP

We studied performance and agreement of the chosen methods through a large 
simulation study on realistic data. In accordance with the real data (Figure 1), two types of 
ratios were generated:

 the small ones belonging to the [0, 0.2] interval;
 the large ones belonging to the [0.5, 1] interval.

Samples of size 5, 10, 20, 25 and 30 were drawn from the three distributions that were found 
to best fit the empirical data. After automated fitting using EasyFit Professional 5.1 software 
(MathWave Technologies, 2009), the following distributions were chosen: Pert, 3-parameter 
Burr (2) (referred to henceforth simply as Burr) and 3-parameter loglogistic (3). To further 
improve resemblance to real data, the modified (4-parameter) Pert distribution (1) with the 
additional shape parameter (γ) was used [16] (referred to henceforth as 3Ploglog). While Pert 
is a bounded distribution, Burr and 3Ploglog are only non-negative, but they are nonetheless 
useful practical models for same-quantity ratios in rejection-based simulations because their 
parameters can be chosen so that large values are extremely rare (i.e., their right tail can be 
made extremely thin).
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Zero, one or two simulated outliers were included in the samples. The outliers were 
generated by increasing the relevant parameter (mode, scale parameter and mean for Pert, 
Burr and 3Ploglog, respectively) by 50 %, 100 %, 150 % and 500 % while holding other 
parameters (related to dispersion and shape) fixed. The simulation was performed with R [17]
using rejection sampling. The outliers, mc2d, lmom and actuar R packages were used.

First, data for the ratios were generated (drawn from the given distribution until all data 
were between 0 in 1) for the base sample and then for the outlier(s). The following parameters 
were used for the base population, whereby all the drawn values were divided by 1000:

 Small ratios
o Pert: min = 0, max = 30, mode = 10, γ = 5
o Burr: α = 2, k = 3, β = 30
o 3Ploglog: ξ = 0, μ = log(10), σ = 1.28

 Large ratios
o Pert: min = 400, max = 1000, mode = 700, γ = 5
o Burr: α = 3, k = 10, β = 750
o 3Ploglog: ξ = 0, μ = log(700), σ = 1.28

The outlier was always drawn from the same distribution as the base sample, except that 
the central tendency parameter of the distribution from which the outlier was drawn was 
larger. As already mentioned, its value was 150 %, 200 %, 250 % and 600 % of the value for 
the base population, i.e., larger by a factor of 0.5, 1, 1.5 and 5, respectively. For the outlier 
population, the following parameters were increased:

 mode for Pert,
 β for Burr and
 μ for 3Ploglog.

Because of complexity and time constraints, only three situations were simulated:

 no outliers;
 one outlier at the right-hand side of the sample distribution;
 two outliers at the right-hand side of the sample distribution.

Since correlation between the numerator and the denominator is required for the double-
square-root control chart, once the ratios had been obtained, the numerators were drawn from 
the uniform distribution with the lower bound set to 0 and the upper bound adjusted so that 
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the desired correlation was obtained. The desired correlation range was set between 0.2 and 
0.6, which is a relatively wide span, in order to avoid convergence problems.

Under each condition, 1000 samples were generated (or slightly fewer in case the 1000 
samples were not obtained within the 350 hours of run-time, after which the simulation was 
stopped).

4. SIMULATION RESULTS

The results of the simulations are summarised in Table I (no-outlier condition), Table II (one 
simulated outlier) and Table III (two-outlier condition).

When there were no outliers, the methods performed very well – with the estimated 
accuracy above 90%, except the boxplot rule and especially the Nalimov test, which achieved 
a 73% accuracy with n = 5 and dropped to merely 16% with n = 30. Naturally, the results of 
the formal outlier detection tests were better when we only considered those simulations in 
which normality was not rejected (i.e., in the conditional case), because otherwise "outliers" 
were occasionally found simply because of the skewness of the distributions from which the 
samples were drawn. Overall, the modified double-square-root control chart performed best 
under this condition.

Under the one-outlier condition, the formal outlier detection tests performed worse in 
the conditional case than in the unconditional cases. This highlights the problem of normality 
testing with outliers, which is addressed in the next section. However, accuracy was also low 
in the unconditional cases and did not depend markedly on the sample size. The boxplot rule 
proved the most accurate for small ratios, while the modified double-square-root control chart 
gave the best results for large ratios. It is also noteworthy that the performance of the boxplot 
rule worsened as sample size increased, while the performance of the control chart improved.

When two outliers were simulated, all methods performed rather poorly. Similarly to 
the one-outlier situation, the formal tests assuming normality performed much better when all 
the simulated samples were used (i.e., in the unconditional case). With small ratios, the 
boxplot rule achieved accuracy comparable to the formal tests applied unconditionally, while 
the modified double-square-root control chart was the least accurate. However, with large 
ratios, the control chart was the most accurate, while all other methods proved highly 
inaccurate.

To summarise, it is apparent that the performance of the methods varied greatly across 
the conditions. Formal small-sample tests became virtually useless if applied conditionally 
upon passed normality pre-test in the presence of (especially two) outliers with a sample size 
of 10. Among the formal tests, the Dean & Dixon test performed worst overall. The simple 
boxplot method performed the most variedly, but it was the only useful one for tiny samples. 
Our variant of the double-square-root control chart proved too conservative in tiny samples 
and too liberal under the no-outlier condition with n ≥ 20 (both conclusions holding also for 
the Nalimov test, and for boxplot for small ratios), but it appeared by far the most useful 
(though still far from perfect) to detect actual outliers with a larger n, especially with large 
ratios.

Regarding the chosen sample sizes, it should be noted that with a sample size above 30, 
the simulation procedure failed to converge. However, that did not pose a serious limitation to 
our study since we focused on small samples, because moderate or large samples are rarely 
encountered in statistical comparisons of such quality indicators between hospitals or similar 
organisations. Samples are bound to be of small or moderate size because particularly with 
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financial indicators, the comparisons can be meaningful only if truly comparable 
organisations are compared within a specific sector (e.g., hospital type) and/or a very 
homogenous area (e.g., Slovenia, which is relatively uniformly urbanised).

5. POSSIBILITIES FOR ROBUST NORMALITY PRETESTING

As the starting point for this section, we take the normality test that is commonly attributed to 
Jarque and Bera [18]. Actually [19], Bowman and Shenton [20] were the first to observe that
under normality, the asymptotic means of sample skewness and kurtosis statistics are 0 and 3,
respectively, the asymptotic variances of the two statistics are 6/n and 24/n, respectively, and 
their asymptotic covariance is 0. Another version of the skewness-kurtosis test for normality 
was suggested by D'Agostino and Pearson [21].

A class of robust normality tests for small samples possibly containing outliers against 
Pareto tails has recently been proposed [22]. This class also contains tests that accommodate 
the kind of alternative distributions that are known to be problematic for the Jarque-Bera test
(e.g., bimodal, Weibull and uniform). The proposal can be seen as an extension of the robust 
modification of the Jarque Bera test [23]. The base for the proposed class of tests is a location 
functional, denoted by T(F) [24], whereby the relevant location functionals (T(i) for i = 0..3) 
are arithmetic mean (T(0)), median (T(1)), trimmed mean (T(2)(s)) and pseudo-median (T(3)).
Relaxing the form of j-th theoretical moment estimator μj = E(X – E(X))j by using
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While k1(n) and k2(n) are theoretical values of proportions for first and second term of the 
statistics dependent on sample size, the C1 and C2 constants can be obtained from Monte 
Carlo simulations, whereby their values for small samples under trimming (r > 0) differ from 
those without trimming (r = 0). The K1 and K2 constants are small-sample variants of mean 
corrections so that asymptotical normality is obtained and thus the χ2 asymptotical distribution 
of the test statistics is valid.

Illustrative special cases of this class include the "median robustified JB test" (5), the 
"trimmed-mean robustified JB test" with trimming parameter s = 5 (6), the "pseudo-median 
robustified JB test" (7) and the "trim-trim robustified JB test" with trimming parameters 
s = r = 1 (8):
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Some theoretical results on consistency and asymptotical χ2 distribution of these and 
other RTJB class tests can be found in [22], where they were introduced. Here, we just briefly 
summarise some preliminary results of power and size comparisons through simulations with 
various distributions and sample sizes:

 In samples of size 25, the Jarque-Bera test and its successors [19, 23] had nearly 
zero power against the Beta(0.5, 0.5) alternative, as did the robust directed test of 
normality against heavy-tailed alternatives [25] even for sample sizes up to 200. 
Shapiro-Wilk and Anderson-Darling were the most powerful tests, while some RTJB

class tests were almost as powerful.
 Against the Burr (2, 1, 1) alternative in small samples, the power of JB test was 

comparable with the Anderson-Darling test, while the Shapiro-Wilk test and some
tests from the RTJB class were more powerful. With a sample size of 100, the power 
of all tests reached 1. Against logistic alternative, all normality tests had very low 
power in small samples (because of the resemblance of the logistic to the normal 
distribution).

 The most powerful test for normality against a mixture of two equally probable 
normal distributions with means 0 and 5 and unit variance were the D'Agostino, the 
Anderson-Darling and the Shapiro-Wilk test, while the power of RTJB class tests and 
of the (original and robust) Jarque-Bera test was very low for n = 25, though unlike 
for the latter, it improved quickly for the RTJB class tests with n = 50.

 In simulated samples from the standard normal distribution containing one extreme 
outlier (from the normal distribution with a mean of 3 and a unit variance), which 
can be viewed as assessing a particularly defined size of the tests (i.e., defining the 
proper decision as retaining the null hypothesis of normality despite the outlier), the 
simpler RTJB class tests did slightly better than the D'Agostino and the Jarque-Bera
test, though they were still very much on the liberal side. The Shapiro-Wilk test 
performed a little less liberally, while the estimated "size" was even closer to 
nominal for the Anderson-Darling test. The robust medcouple test [26] retained the 
proper size irrespective of sample size, but it proved the least powerful in the power 
comparisons mentioned above. Encouragingly, RTJB class tests with trimming 
applied to both the location and the generalised moment had almost as good power 
as the simpler RTJB class tests while their estimated "size" was very close to the 
nominal 5%.

A lot of work remains to be done regarding the RTJB class test, including simulations with 
other alternatives and under different assumptions. It is inevitably challenging to construct 
powerful tests that are robust at the same time. There is always a trade-off between power and 
robustness, which is where the RTJB class tests of normality might offer a useful compromise.

6. SUMMARY AND FUTURE DIRECTIONS

A large simulation study of outlier detection in small samples of random-denominator 
same-quantity ratios with a highly correlated numerator and denominator was performed. The 
performance of three types of methods was assessed: the common formal outlier-detection 
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tests (Grubbs, Dean & Dixon, and Nalimov test) applied unconditionally and conditionally 
upon results of (Shapiro-Wilk) normality test; the boxplot rule; and the double-square-root 
control chart (for which we introduced regression-through-origin-based control limits). Pert, 
Burr and 3-parameter-loglogistic distribution (which fitted the real data best) were used with 
zero, one or two outliers in the simulated samples of size 5 to 30. Small (below 0.2; right-
skewed) and large (above 0.5, more symmetrical) ratios were simulated. The performance of 
the methods varied greatly across the conditions. Formal small-sample tests became useless if 
applied conditionally upon passed normality pre-test in the presence of (especially two) 
outliers with a sample size of 10. Boxplot rule performed most variedly, but it was the only 
useful one for tiny samples. Our variant of the double-square-root control chart proved too 
conservative in tiny samples and too liberal for samples of size 20 or more without outliers, 
but it appeared the most useful to detect actual outliers in samples of the latter size (especially 
with large ratios).

Following further research on robust normality testing, it might be useful to repeat the 
first part of our outlier-detection simulations (i.e., the conditionally applied formal outlier 
tests) with different normality pre-tests. Improved normality pre-testing should improve the 
feasibility and usability of outlier tests in small samples since the naïve approach of 
abandoning normality pre-testing resulted in (too) many false alarms in the no-outlier 
simulations.

Putting our work in a broader context, we should first recognise that the extensive 
simulation approach to the problems of outliers and robustness owes its main origin to the 
work of Andrews, Hampel, Huber, Tukey and associates in the context of the Princeton
Robustness study [27]. Statistical process control literature has also dealt with outliers, though 
primarily within the context of time-dependent process data [28]. It should also be noted that 
the entire outlier detection approach which we assessed through simulations should be viewed 
as a heuristics rather than as statistical testing or strictly probabilistic decision-making. 
Constructing a general statistical test for outlier detection is namely an unsolvable problem 
without many specific substantial assumptions answering the question "What is an outlier?". 
This problem has some similarity with the problem of choosing the correct number of clusters 
posed nearly four decades ago [29]. Although the problem of clustering is challenging 
enough, even in one dimension [30], a clustering approach – which has been mentioned as an 
option for dealing with over-dispersion [11] – might be worth trying. Another alternative to 
analysing the kind of data that we addressed, which is better explored and established, are 
bootstrap tolerance intervals [31].

In conclusion, it may not be surprising that seemingly simplistic methods, exemplified 
by boxplots and control charts, which combine a robust "eye-balling" approach with "a touch"
of implicit inference and vast experience from practical data analysis [5, 32], have yet again 
proven their value in statistics applied to a real-life industrial and organisational setting.
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Figure 1. Examples of financial indicators of health care quality. In the left column, the 
distributions are shown as histograms; in the central column, the numerator is plotted against 
the denominator and the correlation is listed for each indicator; in the right column, the value 

of the indicator is plotted against the denominator.
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Figure 2. Examples of proposed double-square-root charts. The square-root of the numerator 
is plotted against the square-root of the difference between the denominator and the 

numerator, whereby the control limits are obtained by performing linear regression through 
the origin and estimating the 95% confidence interval for prediction. Outliers are depicted as 

large filled circles.
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Table I. Results of the simulations without outliers. MDSRCC denotes modified double-square-root control chart; Valid denotes the proportion of 
simulations that passed the Shapiro-Wilk normality test; Mean, Median and Max refer to the number of outliers found; Correct denotes the proportion of 

simulations in which the test identified no outliers.

Ratio n 5 10 20 25 30

type Test Valid Mean Median Max Correct Valid Mean Median Max Correct Valid Mean Median Max Correct Valid Mean Median Max Correct Valid Mean Median Max Correct

Grubbs 0.09 0 2 91% 0.11 0 3 89% 0.10 0 2 90% 0.08 0 2 92% 0.09 0 3 91%

Dixon 0.02 0 1 98% 0.04 0 1 96% 0.04 0 2 96% 0.04 0 2 96% 0.04 0 2 96%

Nalimov C
on

d
it

io
na

l

86%

0.33 0 3 73%

69%

0.70 0 5 52%

55%

1.27 1 6 28%

51%

1.50 1 6 23%

49%

1.69 2 7 16%

Grubbs 0.23 0 2 80% 0.44 0 5 69% 0.78 0 10 60% 0.96 0 8 57% 1.17 0 10 54%

Dixon 0.15 0 2 86% 0.22 0 4 82% 0.45 0 6 71% 0.52 0 6 68% 0.58 0 6 66%

Nalimov U
n

co
n

d
it

io
na

l

0.46 0 3 63% 1.13 1 6 38% 2.34 2 9 17% 2.91 2 10 13% 3.35 3 11 9%

Boxplot 0.47 0 2 61% 0.60 0 4 55% 0.97 1 6 47% 1.22 1 6 43% 1.42 1 6 40%

Small

MDSRCC 0.00 0 0 100% 0.11 0 1 89% 0.71 1 3 35% 0.99 1 3 21% 1.26 1 4 12%

Grubbs 0.06 0 2 94% 0.06 0 2 94% 0.07 0 2 93% 0.07 0 3 93% 0.07 0 3 94%

Dixon 0.04 0 2 96% 0.07 0 2 93% 0.04 0 3 96% 0.04 0 3 96% 0.03 0 2 97%

Nalimov C
on

d
it

io
na

l

87%

0.23 0 3 81%

74%

0.60 0 7 62%

63%

1.89 1 12 29%

63%

2.38 2 15 21%

63%

3.07 3 21 14%

Grubbs 0.10 0 2 91% 0.07 0 3 93% 0.07 0 4 94% 0.08 0 3 93% 0.07 0 4 94%

Dixon 0.09 0 2 92% 0.11 0 2 90% 0.13 0 5 89% 0.13 0 6 90% 0.11 0 5 92%

Nalimov U
n

co
n

d
it

io
na

l

0.27 0 3 79% 0.63 0 7 65% 1.62 1 12 47% 1.97 1 15 42% 2.43 1 21 39%

Boxplot 0.35 0 2 73% 0.29 0 10 80% 0.32 0 8 81% 0.31 0 9 82% 0.34 0 9 80%

Large

MDSRCC 0.00 0 0 100% 0.10 0 1 90% 0.71 1 3 37% 0.96 1 4 24% 1.30 1 4 12%
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Table II. Results of the simulations with one outlier. MDSRCC denotes modified double-square-root control chart; Valid denotes the proportion of 
simulations that passed the Shapiro-Wilk normality test; Mean, Median and Max refer to the number of outliers found; Correct denotes the proportion of 

simulations in which the test identified one outlier.

Ratio n 5 10 20 25 30

type Test Valid Mean Median Max Correct Valid Mean Median Max Correct Valid Mean Median Max Correct Valid Mean Median Max Correct Valid Mean Median Max Correct

Grubbs 0.17 0 2 15% 0.22 0 3 20% 0.29 0 2 27% 0.27 0 2 26% 0.28 0 2 27%

Dixon 0.05 0 2 4% 0.07 0 2 6% 0.10 0 2 10% 0.09 0 2 9% 0.09 0 1 9%

Nalimov C
on

d
it

io
na

l

47%

0.49 0 3 29%

21%

1.06 1 6 37%

10%

1.93 2 7 32%

8%

2.29 2 7 23%

7%

2.47 2 6 21%

Grubbs 0.66 1 2 51% 1.00 1 6 53% 1.57 1 8 51% 1.78 1 10 49% 2.00 1 12 47%

Dixon 0.56 1 2 48% 0.67 1 5 52% 1.16 1 7 53% 1.20 1 7 53% 1.26 1 8 52%

Nalimov U
n

co
n

d
it

io
na

l

0.89 1 3 52% 1.82 2 7 38% 3.19 3 11 18% 3.75 3 12 12% 4.17 4 14 9%

Boxplot 0.76 1 2 60% 1.09 1 4 60% 1.62 1 7 49% 1.88 2 9 45% 2.09 2 8 42%

Small

MDSRCC 0.00 0 0 0% 0.48 0 1 47% 1.00 1 3 70% 1.18 1 3 64% 1.35 1 4 57%

Grubbs 0.12 0 2 10% 0.24 0 3 20% 0.32 0 3 26% 0.33 0 3 27% 0.30 0 3 24%

Dixon 0.06 0 2 5% 0.16 0 4 13% 0.18 0 3 15% 0.20 0 3 16% 0.18 0 3 15%

Nalimov C
on

d
it

io
na

l

78%

0.40 0 3 24%

62%

1.02 1 7 29%

52%

2.39 2 14 20%

52%

3.01 3 14 16%

52%

3.62 3 22 13%

Grubbs 0.18 0 2 14% 0.29 0 4 22% 0.34 0 4 25% 0.35 0 5 24% 0.33 0 5 22%

Dixon 0.14 0 2 12% 0.24 0 4 18% 0.32 0 6 20% 0.31 0 5 20% 0.29 0 7 19%

Nalimov U
n

co
n

d
it

io
na

l

0.45 0 3 24% 1.05 1 7 24% 2.09 1 14 13% 2.63 2 17 10% 3.07 2 22 8%

Boxplot 0.49 0 2 26% 0.57 0 10 25% 0.62 0 20 25% 0.66 0 25 24% 0.63 0 30 22%

Large

MDSRCC 0.00 0 0 0% 0.48 0 1 45% 0.89 1 3 57% 1.07 1 3 53% 1.28 1 4 45%
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Table III. Results of the simulations with two outliers. MDSRCC denotes modified double-square-root control chart; Valid denotes the proportion of 
simulations that passed the Shapiro-Wilk normality test; Mean, Median and Max refer to the number of outliers found; Correct denotes the proportion of 

simulations in which the test identified two outliers.

Ratio n 5 10 20 25 30

type Test Valid Mean Median Max Correct Valid Mean Median Max Correct Valid Mean Median Max Correct Valid Mean Median Max Correct Valid Mean Median Max Correct

Grubbs 0.10 0 2 0% 0.15 0 3 1% 0.24 0 2 1% 0.20 0 2 0% 0.24 0 2 0%

Dixon 0.03 0 2 0% 0.03 0 2 0% 0.05 0 2 0% 0.06 0 2 0% 0.05 0 1 0%

Nalimov C
on

d
it

io
na

l

67%

0.42 0 3 8%

18%

1.00 1 6 13%

6%

2.07 2 7 21%

4%

2.44 2 7 16%

3%

2.63 2 7 18%

Grubbs 0.41 0 2 10% 1.13 1 6 33% 2.11 2 9 43% 2.46 2 11 43% 2.78 2 14 43%

Dixon 0.28 0 2 5% 0.57 0 4 17% 1.45 2 8 42% 1.54 2 9 43% 1.62 2 8 43%

Nalimov U
n

co
n

d
it

io
na

l

0.71 0 3 19% 2.19 2 7 34% 3.95 4 12 18% 4.48 4 12 13% 4.98 4 14 9%

Boxplot 0.43 0 2 0% 1.26 1 4 46% 2.21 2 6 49% 2.52 2 9 45% 2.75 2 8 43%

Small

MDSRCC 0.00 0 0 0% 0.32 0 1 0% 1.14 1 3 18% 1.40 1 4 29% 1.62 2 4 36%

Grubbs 0.02 0 2 0% 0.02 0 4 0% 0.04 0 4 0% 0.04 0 2 0% 0.04 0 3 0%

Dixon 0.15 0 2 0% 0.27 0 4 1% 0.05 0 3 0% 0.04 0 3 0% 0.04 0 3 0%

Nalimov C
on

d
it

io
na

l

72%

0.11 0 3 0%

58%

0.39 0 6 4%

45%

2.21 2 15 14%

43%

3.04 3 15 13%

45%

3.59 3 16 11%

Grubbs 0.03 0 2 0% 0.04 0 4 0% 0.06 0 4 1% 0.12 0 5 2% 0.14 0 4 2%

Dixon 0.16 0 2 0% 0.30 0 4 1% 0.21 0 6 2% 0.20 0 7 2% 0.19 0 5 2%

Nalimov U
n

co
n

d
it

io
na

l

0.16 0 3 0% 0.58 0 6 4% 2.16 1 15 11% 2.82 2 17 9% 3.26 3 20 8%

Boxplot 0.11 0 2 0% 0.61 0 10 15% 0.84 0 7 21% 0.89 0 9 20% 0.83 0 8 18%

Large

MDSRCC 0.00 0 0 0% 0.37 0 1 0% 1.11 1 3 25% 1.37 1 3 34% 1.59 2 4 37%


