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1 Introduction
There is a continuously increasing demand by the public for access to microdata files
from surveys conducted by the official statistics- or other institutions or agencies in all
kinds of fields such as education, employment, or public health. Because such data may
contain sensitive information on natural or legal persons, such as information on poverty,
alcoholism, tax morality, or bank rating, the release of such files is subject to the laws of
data protection. Disclosure happens, if the release of data allows an intruder to connect
the surveyed information to certain population units. To protect the survey units against
disclosure it might not suffice to delete the variables, which are directly linked to entities,
such as name, address or an artificial identification number like the social security number.
Some of the units might still be identifiable by the rest of their records if the individuals
own rare values of certain variables such as a very large income for instance, or other
rare combinations of variables. For this reason, methods of statistical disclosure control
(SDC), that make impossible linking sensitive information to individuals with certainty
have to be applied before data can be handed out to the public. The purpose of these SDC
methods is to manipulate variables in a way that enhances privacy protection and it is still
possible to estimate the unknown parameters of interest. In the literature, several such
methods are discussed (cf. for instance, Winkler 2004, or Matthews and Harel 2011).

One of these techniques artificially introduces “missings” instead of sensitive variable-
values into the complete data file. In the relevant literature, this approach is called sup-
pression of data (cf. for instance, Willenborg and de Waal 1996, p.77ff). After suppress-
ing data in this way, the estimation of the parameters under study (like population or
stratum means) from the available cases is as problematic as it would be in the presence
of “real” nonresponse, where the missing data mechanism is not “completely at random”
(cf. Little and Rubin 2002, p.12).

In Section 2 of this paper, a family of methods for SDC is defined and embedded in
the existing SDC terminology, combining SDC with the ideas of data imputation from
the field of analysing missing data. In Section 3, three examples of methods, all of them
belonging to this “blended family” of techniques, are discussed showing how different
procedures belonging to this family can be.

2 A Family of SDC Methods
A whole family of methods for SDC “masks” a sensitive or identifying variable y in a
data file. These methods consist of three consecutive steps: At the first one, the C-step, an
additional variable is created by “cloning” the original variable y. Then, in the S-step, the
idea of data suppression is applied locally or even globally to the y-clone. This means that
the values of the cloned variable are set to missing for a group of, or for all survey units.
In the concluding I-step, a data imputation method is applied to these artificial missings.
For this purpose, in addition to information on available auxiliary variables x the original
sensitive variable y can also be used for the imputations in contrast to a real nonresponse
case. After the missing values have been replaced by imputed values, ŷ, variable y can be
deleted. Henceforward, its masked substitute z has to serve as the basis for the estimation
of the parameters of the sensitive variable y in the publishable data file.

For instance, let
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t =
∑

U
yk, (1)

the total of variable y in population U be the parameter of interest. With the original
variable y the unbiased Horvitz-Thompson estimator of t in any probability sample s
with sample size n

t̂HT =
∑

s
yk · dk, (2)

where the design weight dk is the reciprocal of the sample inclusion probability of a survey
unit k (k = 1, 2, ..., n). When the “cloning-suppression-imputation” (CSI) procedure
described above is applied as the SDC technique, after the C-step within the S-step the
sample s is partitioned into an artificial “response set” r ⊂ s of size nr and an artificial
“missing set” m = s − r of size nm (s = r ∪m, r ∩m = ∅, n = nr + nm). Then, after
the I-step, the estimation of t has to be done by

t̂ =
∑

s
zk · dk, (3)

with

zk =

{
yk if unit k ∈ r,
ŷk otherwise.

Hence, t̂ can be decomposed into

t̂ =
∑

r
yk · dk +

∑
m
ŷk · dk. (4)

In this masking process, both the quality of the estimation and the degree of data
protection do – although inversely – depend on the imputation method applied in the I-
step and the size of the missing set m. In principle, all imputation methods known from
the missing data literature (see for instance, Little and Rubin 2002, p.59ff) can be used in
this context. Multivariate relationships between surveyed variables may be maintained in
most cases, when an efficient masking process can simultaneously be applied to different
variables.

When it comes to statistical disclosure control, some variants of the described CSI
method are already in use. As an example, randomly interchanging the values of the
sensitive variable of two different groups of the same size is called data swapping (cf.
Dalenius and Reiss 1982). Within the CSI framework, the basic version of this method
can be described in the following way: After the cloning process, the data of two different
groups are suppressed. For both groups a random imputation of data from the other
group without replacement is applied at the I-step. This preserves the privacy of the units
belonging to these groups. So the real data remain in the data set, but some of them
assigned to other survey units. This does not affect the estimation quality of statistics
for the distribution of y unless s is a “non-self-weighting sample” (cf. for instance, Lohr
2010, p.287f).

The term micro-aggregation of data (cf. Defays and Anwar 1998) refers to a strat-
egy where sensitive values of a quantitative variable are – generally spoken – substituted
by aggregates such as means, medians, modes, or some other measures. Within the CSI
framework the imputation methods used after the suppression step are, for instance, over-
all or (with the help of the auxiliary variables x and y) class mean, median, or mode
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imputation. After the micro-aggregation simple univariate statistics of y such as its total
may still be calculated from z, but the estimation of the variance will understate the true
variance of the estimator. Compared to overall aggregate imputation the imputation of
aggregates within classes (of x and/or y) will surely help in increasing the quality of the
estimation of such parameters on the basis of the new variable z.

The addition of noise (cf. Fuller 1993) is another example of a SDC procedure belong-
ing to our family of methods. Herein, in the imputation step, random errors are added to y
to create the publishable variable z. This I-step can be seen as an application of stochastic
regression imputation. The estimation of univariate parameters is without a problem, if
the suppression mechanism is completely at random. If it is only “at random” (cf. Little
and Rubin 2022, p.12), conditional stochastic regression imputation can be applied. How-
ever, variance estimates calculated from z instead of y may be too small unless the number
of suppressed values is negligible since they do not account for imputation uncertainty.
Here, multiple imputation may be helpful (cf. for instance, Rubin 1987).

As another example of techniques of that family global recoding and top and/or bot-
tom coding can be mentioned (see for instance, Willenborg and de Waal 2001, p.27f).
Herein, the cloned data are globally or locally suppressed. The concluding I-step of the
CSI procedure uses only the original variable y as auxiliary information and transforms
its values, on the one hand, into large(r) intervals and, on the other hand, it limits the ex-
treme values of y to an upper and/or lower bound. This means a loss of information (and
efficiency), which does not affect the estimation of parameters when robust estimators
with respect to outliers are calculated such as the median.

Rubin (1993) proposed the use of multiple imputation in the SDC context. When it
is applied as an imputation method within the I-step of the CSI framework to replace all
or a certain part of the y-clone, so called “partially synthetic datasets” are generated (cf.
Drechsler et al. 2008, p.1007). All stochastic imputation methods may be applied. For the
estimation of the interesting parameters the multiple imputation framework can be used
(cf. Rubin 1987, p.76) with a modification for the estimation of the variance because the
“nonresponse mechanism” is not stochastic in our case (cf. Reiter 2003, p.5f).

Evidently, no matter what method is applied, the recipient of the data has to pay for the
survey units’ privacy protection by a loss of accuracy. But when reasonable imputation
procedures are used it may work better than just to suppress data.

3 Three Examples of the CSI method
In this section, three special cases of the CSI method are presented to show how different
methods belonging to this family can be. The first one is carried out by the respondents
rather than the agency during the survey, whereas the second one uses a randomization
device as the imputation algorithm after the data collection. In the third example, hot
deck imputation with replacement is used at the I-step of the masking process to reduce
the respondents’ disclosure risk.

3.1 Techniques of Randomized Response
Techniques of randomized response were originally presented as methods to reduce non-
response and untruthful answering when sensitive questions such as on drug use, domes-
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tic violence or tax evasion are asked in a survey. Warner (1965) published the pioneering
work in this field for the estimation of the relative size of subpopulations having the sen-
sitive attributes. Since then, various randomized response techniques with different ran-
domization devices have been proposed for qualitative as well as quantitative variables
(for a review, see for instance, Tracy and Mangat 1996; for standardization of different
techniques, see, Quatember 2009). Some of them use different random devices for the
question selection depending on the respondent’s possession or nonpossession of a cer-
tain attribute (cf. Singh and Chen 2009).

The central element of all of these methods is that survey units do not have to answer
with certainty the sensitive question but can choose the one to be answered randomly from
two or more questions. This does not enable the data collector to identify the question, on
which the respondents have given the answer, although the given answers do still allow
estimating the univariate parameter under study. In this way, the idea is to reduce the
individual’s fear of an embarrassing “outing” to make sure that the responding person is
willing to cooperate.

Warner (1971) was also the first to indicate that these techniques are applicable as
methods of SDC applied during the data collection (cf. ibd., p.887). In this case, the
survey units already perform the masking process on their own at the survey’s design
stage. At the I-step of the CSI strategy described in section 2, the value yk of the original
variable y of a sampling unit k is replaced by the respondent’s answer on the randomly
selected question. Within the randomization device, the original variable value yk may
serve as auxiliary information. Anyhow, the user of the microdata file has to be informed
about the details of the masking and the estimation process.

3.2 A Post Randomization Method
Procedures, where a randomization mechanism is applied on a variable after the data
collection in order to reduce the risk of disclosure, are called post randomization methods
(see: Gouweleeuw et al. 1998). In this section, the method is applied to a dichotomous
variable to estimate πA, the relative size of a subgroup A of U (A ⊆ U ). Its theory
is extended to any probability sampling design and, additionally, it allows individually
differing privacy protection levels for the sample units k.

For this purpose, in the context of the CSI method after global suppression let the
imputed value ŷk, conditioned on the original variable value yk as auxiliary information,
be

ŷk|(yk = 1) =

{
1 with probability pk

0 with probability 1− pk

(0 ≤ pk ≤ 1) and

ŷk|(yk = 0) =

{
1 with probability 1− qk

0 with probability qk

(0 ≤ qk ≤ 1). Besides information on y itself, also other auxiliary variables x can
be incorporated in the I-step of the masking process. For instance, this can be done
by assigning different probabilities pk and/or qk to men and women. Therefore, these
conditional probabilities pk and qk can be seen as the individual masking parameters for
sample unit k in this scheme. A data protector such as a national statistical agency should
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be able to decide reasonably on these parameters with regard to the privacy protection
needed for a survey unit k.

Without loss of generality, let us furthermore assume, that the two categories of y
are coded in a way, that the variable value yk = 1 is at least as worthy of protection as
yk = 0. If variable y is absolutely nonsensitive for a survey unit k, no privacy protection
is needed. Therefore, in this case both the masking parameters pk and qk should equal 1
(or 0 respectively, which we ignore subsequently). For a variable, of which only yk = 1
is sensitive but not yk = 0, for the masking parameters pk = 1 and 0 < qk < 1 applies.
Moreover, if both possible values of y are sensitive (not necessarily equally sensitive)
0 < qk ≤ pk < 1 applies.

After the deletion of the original variable y under study at the end of the CSI pro-
cess, the publishable variable z has to serve as the basis for the estimation of πA: The
probability of zk = 1 is given by

P (zk = 1|yk) = pk · yk + (1− qk) · (1− yk) = (pk + qk − 1) · yk + 1− qk. (5)

Hence, the following theorem applies.
Theorem:
(a) For any probability sampling design with design weights dk

π̂A =
1

N
·
∑

s
ŷk · dk =

1

N
·
∑

s

zk + qk − 1

pk + qk − 1
· dk (6)

(pk ̸= 1 − qk ∀ k ∈ s = m) is an unbiased moment estimator of parameter πA of a
dichotomous variable y based on the masked variable z.
(b) The variance of π̂A is given by

V (π̂A) =
1

N2
·
(
V
(∑

s
yk · dk

)
+
∑

U

qk · (1− qk)

(pk + qk − 1)2
· dk+

+
∑

U

qk − pk
pk + qk − 1

· yk · dk
)
. (7)

(c) V (π̂A) is unbiasedly estimated by

V̂ (π̂A) =
1

N2
·
(
V̂
(∑

s
yk · dk

)
+
∑

U

qk · (1− qk)

(pk + qk − 1)2
· dk+

+
∑

s

qk − pk
pk + qk − 1

· zk + qk − 1

pk + qk − 1
· d2k

)
. (8)

For the proofs, see Appendix. V (
∑

s yk · dk) refers to the variance of the Horvitz-
Thompson estimator for the true total t for any probability sampling design. V̂ (

∑
s yk ·dk)

is an unbiased estimator of this variance. In V̂ (
∑

s yk ·dk) estimator π̂A is inserted, where
an estimator of πA is needed (see, the example below). The other two summands within
the outer brackets of (7) and (8) can be seen as the price that has to be paid by the recipient
of the data for the data protection provided by this masking scheme and an estimator of
this price. Note, the moment estimator π̂A may result in a value smaller than 0 or larger
than 1. For instance, a negative estimator for πA may occur, if πA and n are small. In such
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cases, the ML estimator of πA is simply 0. Compared to the moment estimator the ML es-
timator is slightly biased, but its MSE is smaller than the variance of π̂A (cf. Gouweleeuw
et al. 1998, p.470).

Formulae (6) to (8) have to be supplied along with the data file in order to enable
the recipient to calculate point estimators or confidence intervals and to carry out tests
of hypothesis. As an example, let population U be partitioned into H strata Uh of sizes
Nh (h = 1, 2, ..., H;

∑
Nh = N ). For a stratified simple random sample (STSI) of

the population, a simple random sample sh of size nh is selected from each stratum Uh

without replacement using design weights dk = Nh/nh ∀ k ∈ Uh (
∑

nh = n). If the
masking parameters are chosen constant for all survey units in sample sh from stratum h
(pk = ph and qk = qh ∀ k ∈ sh), estimator (6) is given by

π̂A,STSI =
∑

h

Nh

N
· 1

nh

·
∑

sh

zk + qh − 1

ph + qh − 1︸ ︷︷ ︸
≡π̂A,h

, (9)

where π̂A,h is the unbiased estimator of the proportion πA,h of elements belonging to
group A in the h-th stratum.

The theoretical variance of (9) is given by

V (π̂A,STSI) =
∑

h

(
Nh

N

)2

·
[
πA,h · (1− πA,h)

nh

· Nh − nh

Nh − 1
+

+
1

nh

·
(

qh · (1− qh)

(ph + qh − 1)2
+

qh − ph
ph + qh − 1

· πA,h

)]
. (10)

The term ∑
h

(
Nh

N

)2

· 1

nh

·
(

qh · (1− qh)

(ph + qh − 1)2
+

qh − ph
ph + qh − 1

· πA,h

)
is the additional uncertainty caused by the masking of variable y to protect the respon-
dents’ privacy. (10) is unbiasedly estimated by

V̂ (π̂A,STSI) =
∑

h

(
Nh

N

)2

·
[
π̂A,h · (1− π̂A,h)

nh − 1
· Nh − nh

Nh

+

+
1

nh

·
(

qh · (1− qh)

(ph + qh − 1)2
+

qh − ph
ph + qh − 1

· π̂A,h

)]
. (11)

3.3 Hot Deck Random Imputation with Replacement
Another CSI method to reduce the risk of disclosure for survey units when data are handed
out to a third party can be described in the following way. After the cloning of the original
variable y in a dataset conducted by a probability sampling design P, a subset m with nm

elements is randomly set to missing. This mimics the nonresponse mechanism “missing
completely at random” (cf. Little and Rubin 2002, p.12). Hence, the proportion nm/n,
which can be called the artificial nonresponse rate of this procedure, determines the level
of privacy protection that is incorporated in the data for the sensitive variable y. Let the
I-step of this method replace the artificial missings by hot deck random imputation with
replacement (HD) of values taken randomly from the nr remaining values in the response
set r. If the total t of y in the population is the parameter under study, then the estimation
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is done by (4). For a general probability sampling design P and for a imputation method
I, the statistical properties of t̂ can be derived from

E(t̂) = EP [EI(t̂|r)] (12)

and

V (t̂) = VP [EI(t̂|r)] + EP [VI(t̂|r)]. (13)

(cf. Little and Rubin 2002, p.67). EP and VP denote expected value and variance over the
probability sampling design P, whereas EI and VI denote the respective measures over
the imputation method I.

In a non-self-weighting sample s selected from the population U by an unequal prob-
ability sampling design P with design weights dk not being equal for all survey units of
U for imputation method HD the expectation E(t̂) does not equal t, because EHD(t̂|r) ̸=
t̂HT . But for self-weighting samples with dk = d for all survey units the expectation over
the imputation method HD is given by

EHD(t̂|r) = d ·
[∑

r
yk + E

(∑
m
ŷk

)]
= t̂. (14)

This yields EP (t̂) = t. For the variance V (t̂) to be calculated according to (13) –
as an example – let’s think of a stratified simple random sample (STSI) with hot deck
imputation with replacement (HD,h) applied as imputation method at the I-step of the
process within each stratum h (h = 1, 2, ..., H). Then, according to (13) the variance
of the unbiased estimator t̂h of the total th within the h-th of H strata is derived in the
following way:

VHD,h(t̂h|rh) =

(
Nh

nh

)2

· VHD,h(nr · yrh + (n− nrh) · ŷmh
)

=

(
Nh

nh

)2

· (nh − nrh)
2 · VHD,h(ŷmh

)

with rh, the response set in stratum h with nrh elements. Furthermore, yrh denotes the
mean value of y in rh and ŷmh

the mean value of the imputed values ŷ in the missing set
mh of stratum h. The variance of the nmh

imputed values is given by

VHD,h(ŷmh
|rh) =

S2
rh

nh − nrh

· nrh − 1

nrh

,

where
S2
rh

=
1

nrh−1

·
∑

rh
(yk − yrh)

2.

Hence,

VHD,h(t̂h|rh) = N2
h ·

(
1− nrh

nh

)
· nrh − 1

nrh

·
S2
rh

nh

and

ESTSI(VHD,h(t̂h|rh)) =
∑

h
N2

h ·
(
1− nrh

nh

)
· nrh − 1

nrh

·
S2
rh

nh

.
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From

VSTSI(EHD(t̂|r)) =
∑

h
N2

h ·
(
1− nrh

Nh

)
· S

2
h

nrh

with
S2
h =

1

Nh − 1
·
∑

Uh

(yk − yUh
)2.

it can be derived that

V (t̂) =
∑

h
N2

h ·
(
1− nh

Nh

)
· S

2
h

nh

+
∑

h
N2

h ·
(
nh − 1

nrh

− nrh − 1

nh

)
· S

2
h

nh

. (15)

In (15) the first component of the two summands is the sample variance of the original
data, whereas the second can be interpreted as the price that has to be paid for the reduc-
tion of disclosure risk in terms of accuracy. This increase in variance is only negligible
for nrh close to nh.

4 Summary
On the one hand, data providers like national statistical offices try hard to achieve high
data quality in sample- or population surveys. On the other hand, the laws of data pro-
tection make it necessary to apply techniques of statistical disclosure control (SDC) to
distort surveyed information before it can be delivered to secondary analysts outside the
agency.

A three-step process characterizes a whole family of masking schemes. The three
consecutive steps consist of the cloning of the sensitive variable (C-step), data suppression
within the clone (S-step) and the use of imputation methods to fill in for the artificially
generated missings (I-step). Well-known methods like data swapping, micro-aggregation
of data or addition of noise do belong to this family. The idea of the definition of the
CSI family is to incorporate the wide field of imputation methods for SDC. In the paper,
three examples of members of this family have been presented. These show how different
such methods, following the CSI strategy, can be. All techniques of randomized response
belong to the family as well as well as post randomization methods. The third example
uses the simplest imputation technique at the I-step.

5 Appendix: Proof of the Theorem
Proof of Theorem (a):

For a sampling design P and a post randomization mechanism R determining the
masking parameters pk and qk for all sampled units we have

E(π̂A) =
1

N
· EP

[
ER

(∑
s

(
zk + qk − 1

pk + qk − 1
· dk

)∣∣∣∣ s)]
=

1

N
· EP

(∑
s
dk · ER

(
zk + qk − 1

pk + qk − 1

∣∣∣∣ s))
=

1

N
· EP

(∑
s
yk · dk

)
=

1

N
·
∑

U
yk = πA.
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Proof of Theorem (b):
For sampling design P and post randomization mechanism R the variance of estimator

π̂A (6) is given by
V (π̂A) = VP (ER(π̂A|s)) + EP (VR(π̂A|s)).

Then
VP (ER(π̂A|s)) =

1

N2
· VP

(∑
s
yk · dk

)
.

Let the sample inclusion indicator be

Ik =

{
1 if unit k ∈ s,
0 otherwise.

The covariance CR(
zk+qk−1
pk+qk−1

, zl+ql−1
pl+ql−1

∣∣∣ s) is equal to 0 (∀ k ̸= l). Because EP (I
2
k) =

EP (Ik) = 1/dk applies, the second summand of V (π̂A) is given by

EP (VR(π̂A|s)) = EP

[
1

N2
· VR

(∑
U
Ik ·

zk + qk − 1

pk + qk − 1
· dk

∣∣∣∣ s)]
= EP

[
1

N2
·
∑

U
I2k · d2k · VR

(
zk + qk − 1

pk + qk − 1

)]
=

1

N2
·
∑

U
VR

(
zk + qk − 1

pk + qk − 1

)
· dk.

Thus,

VR

(
zk + qk − 1

pk + qk − 1

)
=

1

(pk + qk − 1)2
· VR(zk)

and because of y2k = yk it follows

VR(zk) = 1− qk + (pk + qk − 1) · yk − (1− qk + (pk + qk − 1) · yk)2

= (1− qk + (pk + qk − 1) · yk) · (qk − (pk + qk − 1) · yk)
= (1− qk) · qk + (pk + qk − 1) · (qk − pk) · yk.

Furthermore this yields

EP (VR(π̂A|s)) =
1

N2
·
(∑

U

(1− qk) · qk
(pk − qk − 1)2

· dk +

+
∑

U

qk − pk
pk + qk − 1

· yk · dk
)
,

which completes the proof.

Proof of Theorem (c):
Per definitionem V̂P (

∑
s yk · dk) is an unbiased estimator of VP (

∑
s yk · dk). Further-

more ∑
s

qk − pk
pk + qk − 1

· zk + qk − 1

pk + qk − 1
· d2k

is an unbiased estimator of ∑
U

qk − pk
pk + qk − 1

· yk · dk.

Therefore (8) is an unbiased estimator of (7).
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