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Abstract

The aim of this paper is to provide guidelines for the statistically efficient estimation of parameters
of modified Arrhenius model for chemical kinetics. A modified Arrhenius model is used for instance
by modeling a flux of methane in troposphere or by chemical kinetics for reactions at membranes.
D-optimal and filling designs for the Generalized Exponential Model with correlated observations
are studied, considering the exponential covariance with or without nugget effect. Both equidistant
and exact designs for small samples are examined, studying the behavior of different types of filling
designs when a greater number of observations is preferred. Probably the main lesson we can learn
is that the D-optimal design is analytically peculiar and these designs can be practically obtained
only by numerical computation; however, specially two point locally D-optimal designs are very
interesting, since they may help us to find a reasonable range for filling designs. The latter ones are
probably the only applicable when seeking for a higher number of design points. It is an interesting
issue that very often the best designs do not use the whole design interval, but only a part of it;
this should be taken into account by practitioners when they design their experiments. The second
important observation is the large bias of the ML estimator of r. From the theoretical point of view
this is not surprising since σ2 and r are not simultaneously identifiable. We develop a bias reduction
method and illustrate its effectiveness. We also provide practical implications for chemometrics.

Keywords: Arrhenius model, bias reduction, correlated observations, exponential model, filling
designs, optimal design of experiments.

1. Introduction

The efficient estimation of the parameters of the modified Arrhenius model, quite popular in
chemical kinetics, is the objective of the present work. A modified Arrhenius model is used for
instance by modeling a flux of methane in troposphere Vaghjiani and Ravishankara (1991) or by
chemical kinetics for reactions at membranes. Since troposphere, extensively studied because of
greenhouse gas emission, provides a very exotic environment for kinetics of chemical reactions
normally studied at the Earth, it can be argued that correlation parameter and modified Arrhenius
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equation can play a crucial role by its modeling. The Generalized Exponential (GE) model can be
expressed as

Y = axme−βx + ǫ = η(x,m, β) + ǫ, (1)

where a, β ≥ 0, m are constants. Such a model has been studied for the case of uncorrelated errors
by Dette and Sperlich (1994) from a Bayesian point of view, and by Rodŕıguez-Dı́az and Santos-
Mart́ın (2009) for different efficiency functions, optimality criteria and restrictions on the design
space. This last paper is devoted to the Modified-Arrhenius (MA) model, which is equivalent to
the GE model through the change of variable X=1/T. The model has applications in experimental
sciences, specially in chemical kinetic. There appears as a good alternative (in fact a generalization)
to the widely used Arrhenius model to describe the influence of temperature on the rates of chemical
processes, specially when the temperature range is not so small Laidler (1984). The influence of
temperature on the rates of processes is usually given by terms of the Arrhenius equation for
which optimal designs are studied in Rodŕıguez-Aragón and López-Fidalgo (2005). However, in
some cases the Arrhenius model does not seem to be enough to describe the experiment, and the
Modified Arrhenius (or GE model) appears as the right choice (see for instance Gierczak et al,
1997). The GE model belongs to the so called class of partially nonlinear regression models (see
Hill, 1980). This particularly means that the D-optimal designs does not depend on the value of
a, which is the linear parameter of the trend. An exact design will be a collection of points of the
independent variable, {x1, . . . , xn}, where n is the size of the design.

Other applications of model (1) in chemistry are related to the transition state theory (TST) of
chemical reactions, IUPAC (2008). The Arrhenius like expressions appearing in TST take various
forms, e.g. k = KBT/h exp(−δG/(RT )), where δG is the Gibbs free energy of activation, KB is
the Boltzman’s constant and h is Planck’s constant.

In practical chemical kinetic assessment people work in two steps: first the rates k1 are estimated
(typically with symmetric estimated error) and then modified Arrhenius model is fitted to the rates,
k1 = a(1/T )me−β/T + ǫ. Statistically correct would be to assess both steps by one optimal exper-
imental planning. Throughout this paper we concentrate on the second phase: how to optimally
distribute temperatures in order to obtain statistically efficient estimators of trend parameters a,
β, m and correlation parameter r. Even the second step could be produced sequentially, at first
step fitting the range of temperatures, for which 2 (or more)-point designs can be employed, designs
that are studied in the following section. After fitting the minimum and maximum of our tempera-
ture range one can be interested in particular temperatures which shall be used for measurements.
Here filling design would be useful, and reader can concentrate on Section 3. Optimal designing
is typically studied by locally optimal designs, and thus is highly dependent on initial values of
parameters m, β and r; therefore care should be taken on their guessing. In chemical kinetics trend
parameters are the most important, but practitioners will rarely use 2- or 3-point designs. But
these small point situations can be taken at least for statistical learning issues or as a benchmarks
for locating the design interval.

In the present paper the case of correlated observations will be specially considered. Correlation
is the natural dependence measure fitting for elliptically symmetric distributions (e.g. Gaussian).
Two covariance structures will be studied:

Cov1) exponential covariance function C(T1, T2, r) = σ2 exp(−dr), r > 0 where r is the covari-
ance parameter and d = |T1 − T2| is the distance between temperatures.

Cov2) exponential with inverted arguments C(T1, T2, r) = σ2 exp(−| 1T1

− 1
T2

|r), r > 0.
The reason of using Cov2) is to avoid the ill conditioning of the covariance matrix for some

situations. In general, for temperature ranges [A,B] such that 0 <<< A < B we consider the

2
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classical covariance structure Cov1).
A deeper discussion on the identifiability of the covariance parameters can be found in Müller

and Stehĺık (2009), where the role of the nugget effect is also discussed. It is well known that
parameters r and σ2 are not individually identifiable, which is observed also by simulation studies
made in this work. The maximal likelihood estimators suffer from severe bias.

We center onD-optimality, which corresponds to the maximization of criterion function Φ(M) =
detM , the determinant of the Fisher information matrix. In our setup θ stands for the trend
parameters and r is the covariance parameter. Mθ(n) is the Fisher information matrix

(

∂η(x, θ)

∂θi

∂η(x, θ)

∂θj

)

i,j

while

Mr(n) =
1

2
tr

{

C−1 (r)
∂C (r)

∂r
C−1 (r)

∂C (r)

∂rT

}

(see Pázman, 2007). For both parameters of interest we have

M(n) (θ, r) =

(

Mθ(n) 0
0 Mr(n)

)

.

This method is ”plugged” from the widely developed uncorrelated setup and further development
is needed before it can be applied routinely in practice. Theoretical justifications for using the Fisher
information for D-optimal design in the correlated setup can be found in Abt and Welch (1998)
and Pázman (2007). For more references on the use of the Fisher information as design criterion in
the correlated setup see e.g. Stehĺık (2007), where the structure of the Fisher information matrices
for a stationary process is studied.

The aim of this paper is in first place to provide a thorough study of small sample and asymp-
totical comparisons of the efficiencies and the impact of the correlation in the design (Section 2).
We consider all possible combinations of parameters of interest, i.e. a plus β, {m,β}, {r, β}, and
{m,β, r}; and center on exact designs for small samples, both equidistant and non-equidistant.
There the analytical peculiarities of the exact design are studied, beginning with two-point designs,
which play a crucial role for finding the range for filling designs. The behavior of Mr(n) is studied
as well. The explicit solutions are typically not available and numerical techniques should be used
in order to obtain the D-optimal exact designs. However, some properties arise from the analysis
of implicit solutions, and we can learn that correlation parameters play more influential role than
trend parameters. This was also observed in the case of OU process (see Kisělák and Stehĺık, 2008)
in an even more dramatic way. The other interesting fact is that the properties are mainly depen-
dent through the quantity rd, e.g. the distance multiplied by the covariance parameter, what has
been observed also in Kisělák and Stehĺık (2008) and Stehĺık (2007). Practitioners usually prefer
to take observations in a greater number of points (more than three) and thus, from Section 3 on,
filling designs covering a chosen interval with several points are studied and their behavior com-
pared through convenient examples. It can be seen that the upper bounds of temperature intervals
are present in the support of optimal designs, which encompasses the natural fact that reaction
kinetics for higher temperatures are speeder. In Section 4 the atmospheric lifetime of methane is
taken as an example for studying the designs developed through the previous sections. Finally
Section 5 introduces the bias reduction method for parameter r. To maintain the continuity of the
explanation, proofs and technicalities are deferred to the Appendix.

3
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Figure 1: x and β for the maximum of det[M(2)(θ, r)]
for m = 1 and r = 1
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Figure 2: x and β for the maximum of det[M(2)(θ, r)]
for m = 1 and different values of r

2. Exact Designs

In this section exact designs with 2 or 3 support points, equidistant and non-equidistant, will
be studied considering the cases of m being known and unknown.

2.1. Assuming m known

Some authors (see the discussion in Héberger et al (1987) advise to consider m known; in this
case the only trend parameters are a and β. The non-correlated case has been already studied
in Rodŕıguez-Dı́az and Santos-Mart́ın (2009), where it has been proved that for approximated
designs a 2-point design is optimal. The covariance structure Cov1 corresponds to the Ornstein-
Uhlenbeck process, for which Mr(n) is known, (see Müller and Stehĺık (2010) and Zagoraiou and

Baldi-Antognini, 2009): Mr(n) =
∑n−1

i=1 d
2
i (e

2rdi + 1)/(e2rdi − 1)2, where di = |Ti+1 − Ti| are
distances between neighboring temperatures. For r→ 0+ we have Mr(n)→∞ which encompasses
the fact that neighboring points are important for efficient estimation of the correlation parameter
(see e.g. Kisělák and Stehĺık, 2008).

Now let us consider two-point designs with the covariance Cov2, i.e. let n = 2, and {x, x + d}
be the design. The following Theorem, obtained by direct algebra, provides guidelines about how
to compute two-point D-optimal designs.

Theorem 1. The exact two-point D-optimal design for the GE model assuming Cov2 is ξ2 =

{x, x+ d}, where x = (−βd+m+
√

β2d2 +m2)/(2β) and d is the zero of

β
2
(

42m+1
de

2dr
r + 16mdr + 24m+1 + e

4dr
(

16mdr − 24m+1 + 16m
√

β2d2 +m2
)

− 16m
√

β2d2 +m2
)

d
2

+m
(

m+
√

β2d2 +m2
)(

42m+1
de

2dr
r + 16mdr + 24m+1 + e

4dr (16mdr − 24m+1)
)

(2)

4
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Figure 3: x and β for the maximum of det[M(2)(θ, r)]
for r = 1 and different values of m
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Figure 4: Solutions d for r = 1 and different values of
m

For ξ2 we have d = 2x(m− xβ)/(2xβ −m); m,β, r > 0; m/2β < x < m/β. For all m and r the
unique solution of x depending on β is bounded by the asymptotes

assl =







1+4m−
√
1+4m

4β for βc ≤ β

m−Dβ+
√

m2+D2β2

2β for β ≤ βc
assu =

m

β
,

where βc = (1+4m−
√
1 + 4m)/(2D(

√
1 + 4m−1)) andD = 1.8006/r. The lower bound asymptote

assl is already a good approximation for the exact solution, and for small x-values is very similar
to the exact solution for the model with uncorrelated data analyzed in Rodŕıguez-Dı́az and Santos-
Mart́ın (2009), where x = (1 + 2m −

√
1 + 2m)/(2β). Furthermore we have limx→∞ d = D. On

the other hand, the design given by (d, x) = (2assl(m − asslβ)/(2asslβ −m), assl) guarantees a
minimum efficiency of 92% Rodŕıguez-Dı́az et al. (2009).

The case of 2-point optimal designs with covariance Cov2 when only a and β are parameters
of interest has been studied in Rodŕıguez-Dı́az et al. (2009). The results for 3-point designs with
correlation led to complicated expressions for both the general and even the equidistant cases.

Remark 1. It has already been proved that x ≤ m/β. It is not difficult to check that the second
point, x+ d, verifies x+ d ≥ m/β, the same property noted in Rodŕıguez-Dı́az and Santos-Mart́ın
(2009). Figure 1 shows the solution and the asymptotes for m = 1 and r = 1.

Changing the value of r only make the solutions (x, β) change slightly. The solution for x grows
with r as we fix m and β, what is shown in Figure 2. Solutions for x with r = 1 fixed and different
values of m and β can be seen in Figure 3.

Finally, in order to find the solutions for d we only need to plug in the solutions for x in
d = 2x(m − xβ)/(2xβ − m). Here we can observe that the solutions for d converge to the fixed
value D as x increases, this limit only depending on r, limx→∞ d = D = 1.8006/r. The convergence
rate grows with r and is also dependent on m as can be seen in Figure 4, and dr is bounded in the
interval (0, 1.8006).

The exact solution for the maximum of det[M(2)(θ, r)] can be found by solving the equation
∂ det[M(2)(θ, r)]/∂x = 0 for β, which produces β = m(d + 2x)/(2x(d + x)). Then replacing β in

5
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Figure 5: Efficiency of the approximation (assl, da)
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Figure 6: minimal efficiency for given m (log-scale)

0 = ∂ det[M(2)(θ, r)]/∂d with this solution we get

x(d,m, r) =
d

2

(√

1 +
4m

dr(tanh(dr) − 3 coth(dr)) + 4
− 1

)

β(d,m, r) =
1

2d
(dr(tanh(dr) − 3 coth(dr)) + 4)

√

1 +
4m

dr(tanh(dr) − 3 coth(dr)) + 4

So we have found a parametrization of (x, β) for the maximum of det[M(2)(θ, r)] with d, m and
r as parameters. However we would like to have (x(β,m, r), d(β,m, r)), which could be achieved
as follows: given β, m and r we can compute assl(β,m, r) as an approximation of x(β,m, r).
Substituting assl for x in d = 2x(m−xβ)/(2xβ−m) we get an approximation da of d(β,m, r). We
can then compute the exact values (xa(da,m, r), βa(da,m, r)) for the maximum of det[M(2)(θ, r)].
From this method we get the exact solution for βa, that does not differ very much from the given
β.

Very often the exact solution is not essential but a good approximation suffices in the majority
of cases. In our problem the quality of the approximation can be measured with the efficiency

Eff(x, d) =

(

det[M(2)(θ, r|x, d)]
det[M(2)(θ, r|x∗, d∗)]

)1/2

where x∗ and d∗ are the exact solutions for the D-optimal design. The efficiency Eff(assl, da) is
dependent on m and the ratio β/r as can be seen in Figure 5. The minimal efficiency for fixed
β/r is only dependent on m and is shown in Figure 6. It can be seen that the efficiency is always
greater than 92 % which should be enough for practical purposes.

For m = 0 it is already known Rodŕıguez-Dı́az and Santos-Mart́ın (2009) that the first design
point has to be the lower bound of the design space. This can be seen when computing

f(h) =
det[M(2)(β, r|x + h, d)]

det[M(2)(β, r|x, d)] ;

6
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if m = 0 the function is f(h) = e−4βh and hence for β 6= 0 we have f(h) < 1 when h > 0, and f(h)
decreasing in h. Thus the maximal det[M(2)(θ, r|x, d)] is obtained when taking the smallest x as
design point.

For m > 0

f(h) = e−4βh

(

(x+ h)(x+ h+ d)

x(x + d)

)2m

,

and ∂f(h)/∂h > 0 for h = 0.
Particularly, the interesting feature of this setup is that there exist a positive d⋆ that maximizes

det[M(2)(β, r)]. This behavior is different than the one observed by the OU process studied in
Kisělák and Stehĺık (2008), Theorem 2. Therein is observed that when both parameters {θ, r} need
to be estimated there exist D-optimal equidistant designs with finite d when the number of design
points n is greater than 3, but for n = 2, 3 the collapsing should be compensated by a so-called
nugget effect (see Stehĺık et al., 2007), which decreases the smoothness of the process. The other
differences are obtained by the evaluation of Φ3(M)/Φ2(M) under the equidistant designs, where
Φk(M) is the determinant of the Fisher information matrix for both parameters and the k-point
equidistant design. When r → 0, the correlation coefficient is e−rd = 1 and Φ3(M)/Φ2(M) → ∞.
If r →∞, the correlation coefficient is e−rd = 0 and limr→∞Φ3(M)/Φ2(M) > 2 .

In order to find the solutions for x and d it could be useful to studyMθ(2) alone, i.e. to maximize
det[Mθ(2)] for the correlated data. Assuming a = σ = 1 we have

det[Mθ(2)] =
d2 exp(2dr − 2(d+ 2x)β)x2m(x+ d)2m

exp(2dr)− 1

Also here when solving 0 = ∂ det[Mθ(2)]/∂x for d we get d = 2x(m − xβ)/(2xβ −m); m,β, r > 0
m/(2β) < x < m/β. Replacing d in 0 = ∂ det[Mθ(2)]/∂d we finally need to solve

[(xβ −m)(2(xβ −m)− 1)− xβ]
[

exp

(

4rx(xβ −m)

m− 2xβ

)

− 1

]

− 2rx(xβ −m) = 0

for x, solution that can be found numerically. In Figure 7 this solution is compared with solutions
for the maximum of det[M(2)(θ, r)]. It can be seen that the maximum of det[Mθ(2)] is far away
from the maximum of det[M(2)(θ, r)], it is even smaller than the lower bound for the maximum of
det[M(2)(θ, r)].

The case when only a and β are parameters of interest and m = 0 was studied for exact designs
and small number of points by Pepelyshev (2007). As is shown in Dette et al. (2008) Mβ(n) can
be expressed in the form XTV TV X where V is a 2-diagonal matrix given by vi,i = ti, vi,i−1 =
−si, t1 = 1, s1 = 0, XT = (f(x1), ..., f(xn)), f(x) = (∂η/∂a, ∂η/∂β)T and

ti = 1/
√

1− e−2r(xi−xi−1), si = e−r(xi−xi−1) · ti, i = 2, ..., n.

From the Cauchy-Binet formula we obtain form = 0 the following expression for the determinant
of the information matrix (see also Pepelyshev (2007), Dette et al., 2008)

detM(a, β, r) = a2
∑

1≤i<j≤n

e−2β(xi+xj)ψ2(xi, xi−1, xj , xj−1),

where

ψ(xi, xi−1, xj , xj−1) =
(1− e−(r−β)di)(tj − tj−1e

−(r−β)dj)− (1− e−(r−β)dj)(ti − ti−1e
−(r−β)di)

(1− e−2rdi)(1 − e−2rdj)

7
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Figure 7: x and β for the maximum of det[Mβ(2)]
for r = 2 and m = 0.5

Figure 8: Construction of Trigonometric Designs
when using the function f(x) = cos[s(x−π+ v)] + 1
for transformation of the initial points

with di = xi − xi−1.
Again using the Cauchy-Binet formula we obtain for m ≥ 0 the expression for the determinant

of the information matrix Mθ,:

detMθ(n) = a2
∑

1≤i<j≤n

e−2β(xi+xj)

(1− e−2rdi)(1 − e−2rdj)
ψ2(xi, xi−1, xj , xj−1),

where ψ(xi, xi−1, xj , xj−1) has the form

e(β−r)djxm
i xm

j−1(xj−1 − xi)− xm
i xm

j (xj − xi) + e(β−r)dixm
i−1x

m
j (xj − xi−1)− e(β−r)(di+dj)xm

i−1x
m
j−1(xj−1 − xi−1)

with di = ti − ti−1, x0 = 0 and d1 =∞
More details can be found in Rodŕıguez-Dı́az et al. (2009).

2.2. Case m Unknown

Let us now study the case with m unknown, that needs to be estimated as well. Thus we have
a three-parameter model.

2.2.1. Non-Correlated errors

The uncorrelated case will need at least three points for the design not being singular. Equidis-
tant and non-equidistant designs will be analyzed and compared with previous results.

Let n=3 and consider the equidistant design {x, x + d, x + 2d} when the parameters to be
estimated are a, β, m for the uncorrelated setup.

Proof. It is possible to obtain an expression for x as a function of d (or for d as a function of x)
by solving the equality formed with the right parts of these previous equations:

x =
3m− 3βd+ 1

3β

(

or d =
3m− 3βx+ 1

3β

)

.
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For the case x = (3m− 3βd+ 1)/(3β) the value of the determinant is maximized when d is the
solution of the equation

18β2d2 +
(

9β2d2(2m+ 1)− (3m+ 1)2
)

log

(

1− 9β2d2

(3m+ 1)2

)

= 0

with 0 < d < (1 + 3m)/(3β).
If we use d = (3m − 3βx + 1)/(3β), the x giving the maximum determinant is the solution of

the equation

2(3m−3βx+1)2+
(

2m(3m+ 1)2 + 9β2(2m+ 1)x2
− 6β(m(6m+ 5) + 1)x

)

log

(

3βx(6m− 3βx + 2)

(3m+ 1)2

)

= 0

with 0 < x < (2 + 6m)/(3β).

Example: If m = β = a = 1 the solutions are x = 0.20689 and d = 1.12644.
The case of non-equidistant designs is again troublesome. Details can be found in Rodŕıguez-

Dı́az et al. (2009).

2.2.2. Correlated Case

Now we will study the more complex case that assumes a non-trivial covariance structure. Let
us take n = 3 and the equidistant design {x, x + d, x + 2d} when the parameters to be estimated
are a, β, m. In this case the determinant of the information matrix will be

Dc = Ds
2d2e4dr(1 + e2dr)

(e2dr − 1)4
,

where Ds is the determinant which does not depend on r.
The factor f(d, r) = 2d2e4dr(1+e2dr)/(e2dr−1)4 verify f(d, r)→∞ when r → 0 and f(d, r)→ 0

when r →∞.
Thus, the determinant can be expressed as

Dc =
2a4d4e4dr−6β(d+x)

(

1 + e2dr
)

x2m(d+ x)2m(2d+ x)2m log2
(

x(2d+x)
(d+x)2

)

(−1 + e2dr)
4

After some algebra we get x as a function of d (and the rest):

x =
−3βe4drd+ 3βd− 5e2drrd− e4drrd− 2rd+ 2e4dr + 3e4drm− 3m− 2

3β (−1 + e4dr)
.

In order to obtain d we could proceed following one of the two ways:

• After knowing the initial values of β, m and r we get x as a function of d, and replacing
it in the determinant we have this one as a function of d. We could compute d by solving
0 = ∂Det/∂d

• Replacing the value of x in one of the previous equations we get one equation on d (after
replacing the inital values of β, m and r):

log

(

(

3m+ 5de2drr + 2dr + e4dr(−3m+ dr − 2) + 2
)2 − 9β2d2

(

−1 + e4dr
)2

(3m+ 5de2drr + 2dr + e4dr(−3m+ dr − 2) + 2)
2

)

=

9
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= 18β2d2
(

−1 + e4dr
)3
/
[

9β2d2
(

5de2drr + e4dr(−2m+ dr − 2) + 2(m+ dr + 1)
) (

−1 + e4dr
)2

+
(

−5de2drr − 2dr − e4dr(dr − 2)− 2
) (

3m+ 5de2drr + 2dr + e4dr(−3m+ dr − 2) + 2
)2
]

And after knowing d and the initial values of β, m and r we could get x.

Example 1. For a = β = m = 1 and r = 0.5 the solution is x = 0.205165 and d = 0.854672.

A general non-equidistant 3-point design will be {x, x + d1, x + d1 + d2}. Following the same
steps that in the previous sections, the determinant can be expressed as

Det =
a4e2r(d1+d2)−2β(3x+2d1+d2)x2m(x+ d1)

2m(x+ d1 + d2)
2m

(−1 + e2rd1)
3
(−1 + e2rd2)

3

[

(

1 + e2rd1

) (

−1 + e2rd2

)2
d21 +

(

−1 + e2rd1

)2 (
1 + e2rd2

)

d22

]

log2
[

xd2(x+ d1 + d2)
d1

(x+ d1)(d1+d2)

]

Making the derivative respect to x equal to 0 and getting rid of the non-zero factors we get a
very complicated expression which can be found, together further analysis, in Rodŕıguez-Dı́az et al.
(2009).

3. Filling Designs

The name filling designs refers to different types of designs that cover the design space with a spe-
cific number of points including both extremes. In previous works López-Fidalgo and Wong (2002)
study several alternatives with the name sequence designs for the Michaelis-Menten model, with
the distances between consecutive points increasing from the beginning of the interval. Later on,
Rodŕıguez-Aragón and López-Fidalgo (2005) use them for the Arrhenius model, with the distances
increasing from the center of the interval; and very recently Rodŕıguez-Dı́az and Santos-Mart́ın
(2009) follow this last approach for study the Modified Arrhenius model, introducing the name
filling designs. In the following, the main types of filling designs that appear in literature will be
examined, as well as their behavior with respect to some optimality criteria. Definition of each type
and formulae for the general case and for particular interval choices will be provided. The number
of points in the design can be as well an important matter for the computations.

Let n denote the number of points and T = [A,B] the design interval, with length l = B − A.
We will consider exact designs {t1, ..., tn} with the points being all different. The extreme points
of the interval will always be in the design, that is t1 = A and tn = B, thus for all the types the
two-point design will be {A,B}. The minimum distance between consecutive points will be denoted
by d. When n is odd, the center of the interval, c = (A + B)/2, will be in the design, but maybe
for the case of the Linear Inverse Design and the new types Parabolic and Trigonometric designs.
The basic types only need the interval and the number of points for their construction.

3.1. Uniform Designs

Uniform distributed design: the Uniform design has as spacing parameter a constant value d =
l/(n− 1) which is the distance between every pair of consecutive design points.

This is the simplest case. The i-th point will be given by

ai = A+ d(i − 1) = A+

(

i− 1

n− 1

)

l .

10
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3.2. Arithmetic Designs

Arithmetical distributed design: in arithmetical designs, the spacing parameter grows in an
arithmetical (id) progression as the distance from the center of the design interval T increases.

We will need to split the study in the cases of n being odd and even. Let b = [n/2], where [...]
denote the integer part. For n odd the design will be

{

c, c±
b
∑

i=1

i(i+ 1)

2
d

}

i=1,...,b

,

with d = l/(b+ b2), while for n even the points are given by

{

c±
b
∑

i=1

i2 + i− 1

2
d

}

i=1,...,b

,

being d = l/(b2 + b− 1)).

3.3. Geometric Designs

Geometrical distributed design: in geometrical designs the spacing parameter grows in a geo-

metrical (di) progression as the distance from the center of the design interval T increases.
Again we will study the cases of n odd and even separately. For n odd the design will be

{

c, c±
b
∑

i=1

d(dı − 1)

d− 1

}

i=1,...,b

,

with d the solution of the equation 2d(db − 1) = l(d− 1). For n even the points are given by

{

c±
(

b
∑

i=1

d(dı − 1)

d− 1
− d

2

) }

i=1,...,b

,

and in this case d is the solution of 2d(db − 1) = (l + d)(d− 1).

3.4. Linear Inverse Designs

Linear Inverse distributed design: in the linear inverse design, the interval [f(A), f(B)] (where

f(t) is the model, f(t) = at−me−β/t in this case) is uniformly divided and the corresponding points
in the design space T through the inverse regression function are taken as support points. The
main problem in this type of designs is that we need to know initial values for the parameters in
advance. Another additional issue is that in some cases the f function can be non-biunivoque in
the interval T , that is, the inverse could be not well defined.

For all these types of designs (uniform, arithmetic, geometric, lineal inverse) the samples are
either uniformly distributed (directly, or inversely through the model), or more dense around the
center of the interval. But maybe it would be preferred to concentrate samples near a point different
from the center. Following this idea, a new type of filling design is presented, in this case depending
on more parameters than the extremes of the interval and the number of points.

11
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3.5. Parabolic Designs

In this case a parabolic transformation is used to spread a uniformly distributed set of points,
adding more parameters in order to improve the existing types of filling designs. The procedure for
constructing such a design is described in Figure 9.

Figure 9: Construction of Parabolic Designs: first select a design in the x-axis and move it to the parabola (left),
then project the points in the parabola again on the x-axis (center). The spreading can be modified by the choice of
the projection point q, the parabola’s curvature k and a suitable movement v of the initial design (right). The final
step is the adaptation of these last points to the desired interval.

Let us take for instance a uniformly distributed initial design in [−1, 1], maybe moved by pa-
rameter v,

pi =
2(i− 1)

n− 1
− 1− v i = 1, ..., n;

then, using the parabola y = kx2 and the projection point Q = (0, q), the ’projected’ design will be

Pi =
piq

q − kp2i
i = 1, ..., n .

Finally let us adapt this last design to fit in the interval [A,B],

{

A+
Pi − P1

Pn − P1
l

}

i=1,...,n

. (3)

The parameters k and q regulate the dispersion of the points, and −1 ≤ v ≤ 1 controls the area
where the concentration of points is greater (-1→ near A, 1→ near B, 0→ center of the design
interval).

3.6. Trigonometric Designs

Parabolic designs offer the possibility of vary the place where the concentration of points is more
dense, but for other hand only one concentration area can be chosen while sometimes it would be
more convenient to have several ones. For this reason, a new type of filling design is introduced,
allowing a much more rich concentration structure with the same number of parameters. It is based
on the trigonometric functions and follows the same idea that the parabolic designs, that is, first
transform an initial set of points through a convenient function (in this case the cosine function

12
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has been chosen), then project from a specific point to get the desired dispersion, and finally make
these last points fit in the chosen interval. Figure 8 shows the transformation in this case.

Now the function f(x) = cos[s(x− π+ v)] + 1 is chosen for the transformation. Beginning with
a uniform design in [−π, π],

pi = π
2i− n− 1

n− 1
i = 1, ..., n;

the projected points from Q = (0, q) are

Pi =
piq

q − f(pi)
i = 1, ..., n .

The last step is the adaptation (3) to the interval [A,B]. In this case the parameter q > 2 regulates
the dispersion of the points, s > 1 decides the number of dense areas and 0 ≤ v ≤ π the situation
of these ones.

3.7. Comparison of filling designs: a real example

Let us focus on V G, the 62-point design in [195,420] obtained from data shown in Vaghjiani
and Ravishankara (1991) and Gierczak et al (1997) and assume independent observations. From
this last paper the initial values for the non-linear parameters of the model have been taken to be
m = −2.82 and β = 987 (the vales shown in the first paper are very similar). The initial value of
the linear parameter a has no influence in the D-optimal design and has been fixed to 1.85× 10−7

to avoid extreme values of determinants during computations. Now at least three points are needed
in the design, and it can be checked that the best three-point design is ξ3 = {281, 374, 420}, with
determinant 83.93 (approximate designs with equal weights will be considered in order to perform
comparisons). Optimal four-point design are obtained when repeating one of the observations,
getting a determinant value of 70.82 in every case. The determinant value does not increase when
taking more points, thus it seems that the globally optimal design is ξ3. When using the arithmetic
design and compute the best interval where to set the design we get t1 = 258, that is the interval
[258,420]. The determinant using this setup is 14.13. The optimal uniform design takes t1 = 261
and gets determinant 25.63. The optimal parabolic design has determinant 30.46 using t1 = 237,
k = 1.2, q = 9 and specially v = 1, meaning that the best design tries to concentrate the samples
mainly at the upper extreme of the interval. The design is shown in Figure 10. Finally, the optimal

200 250 300 350 400

Figure 10: Parabolic optimal design for Gierczak example in [195,420]

trigonometric design needs to take t1 = 272, v = π/2, s = 1.7 and q = 4.7, obtaining a determinant
value of 55.59. Explicitly, the design is
{272., 272.05, 272.62, 272.64, 273.53, 274.12, 274.6, 275.71, 276.52, 276.72, 279.84, 283.99, 288.81,
294.06, 299.53, 305., 310.3, 315.31, 319.96, 324.22, 328.1, 331.61, 334.79, 337.68, 340.32, 342.77,
345.06, 347.24, 349.35, 351.43, 353.53, 355.67, 357.91, 360.3, 362.86, 365.65, 368.71, 372.07, 375.76,
379.79, 384.14, 388.75, 393.53, 398.33, 402.98, 407.3, 411.09, 414.23, 416.64, 418.33, 418.4, 418.4,
418.6, 418.64, 418.93, 419.16, 419.33, 419.36, 419.68, 419.83, 419.9, 420.}
and it is shown in Figure 11. The main characteristic is the fact that it has three concentration
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280 300 320 340 360 380 400 420

Figure 11: Trigonometric D-optimal design for VG example in [195,420]

areas, near the extremes and the center of the interval [272, 420] and thus not far from ξ3, and with
the same shape.

Table 1 shows the behavior of the different types of filling designs for this example. practitioners.
It can be seen that the using of Trigonometric designs can lead to a great improvement in efficiency
with respect to other designs used in practice (20% of improvement respect to the Uniform or 30%
respect to the Arithmetic), it is not very far from the optimal 3-point design and uses 62 different
observations, which usually is preferred by practitioners. In any case, all of these designs improve
the figures obtained with the V G design, that produces a determinant of 9.09 and thus a efficiency
of 47.7%.

Arith Geom Unif L.Inv Parab Trigon Opt 3-point

t∗1 258 270 261 238 237 272 {281, 374, 420}
{v, k, q} {1, 1.2, 9} {π/2, 1.7, 4.7}

Determinant 14.13 15.21 25.63 29.96 30.46 55.59 83.93
Efficiency 0.55 0.57 0.67 0.71 0.71 0.87 1

Table 1: Comparison of different designs for V G example in [195,420] assuming independent observations

Note that the optimal point t∗1 does not depend (or the variation is minimum) on the number of
points that we want in the design. That is, when looking for instance for the best 30-point designs
in [195, 420], the optimal points for the first observation in each case are the same than those in
Table 1 for the 62-point design. Nearly the same is true for the parameters of the Parabolic and
Trigonometric designs. In this last one the maximum discrepancy was for the 10-point design, for
which t∗1 = 273 and the best parameters set is {π/2, 1.8, 4.3}, both first point and parameters very
close to the values shown in Table 1 for a much bigger design.

Another interesting fact is the following: within the same type of filling designs the determinant
(and so the efficiency) is very much depending on the number of points that we want in the design.
For instance, the best Trigonometric design in three points is {281, 374, 420}, exactly the optimal
3-point design, and thus it has maximum efficiency. However, the best 4-point Trigonometric design
is {275, 287, 374, 420} (using v = π/2, k=0.5 and q=2.3), losing 5.5% of efficiency. The decreasing
of efficiency keeps when increasing the number of points, although it is not that sharp from that
point on, neither is monotone. Figure 12 shows this behaviour.

Let us now study the case of non-independent observations, assuming the exponential covariance
function given by C(t1, t2, r) = σ2 exp(−r|t1− t2|), where r > 0 is the covariance parameter. In this
first approach r will be assumed known, and since is a non-linear parameter, nominal values of r
will be necessary for computations. The best intervals for constructing each type of Filling Design
in are computed for different values of r. The upper extreme is always the extreme of the design
interval, 420, and the first point is given in the first row of each case in Table 2, where the rest of
parameters for Parabolic and Trigonometric designs are shown as well.

Regarding the determinants, the values can vary greatly for the different values of r, but in

14



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

10 20 30 40 50 60

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Points

E
ff
ic
ie
n
c
y

Trigonometric Design

Figure 12: Decreasing of efficiency of Trigonometric
Designs when increasing the number of points
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Figure 13: Efficiency of designs Uniform (full line),
Arithmetic (dotted), Geometric (dashed) and Lineal
Inverse (Dot-Dashed) for the uncorrelated case using
the interval [195, 660] and taking t2 = 660, as func-
tions of t1

each case these values are similar in magnitude for all filling designs (see Table 3). In general,
Trigonometric or Parabolic Designs are the best ones, and the differences between the design types
are specially remarkable for greater values of r, that is, close to the independence between obser-
vations.

Optimal 3-point designs have been computed for the different values of r as well. For all the
cases, the upper extreme 420 is one of the points, as expected. However, in this case the values of
the determinants are extremely big (specially when r is small) when comparing with the ones of
the filling designs and thus this comparison has no sense. Table 4 shows the two points that jointly
with 420 form the design, as well as the value of the determinants obtained in the different cases.

The V G design has repeated measures. This means that the correlation matrix is singular
and the criterion function cannot be computed. To avoid this fact, a procedure consisting in the
addition of a random component with 0 mean to the repeated points could be employed. The
procedure allows the obtaining of the criterion values for designs “very close” to the ones with
repeated measures. The smaller the variance of the random component is, the closer will be the
design to the original one. However, there is a problem concerning the correlation matrix for this
case. To describe it let us focus for instance in the uncorrelated case. The case of independent
observations is approximately equivalent to the correlated case when the r parameter is “big”, let us
say greater than 10, because in this case the covariance C(t1, t2, r) = σ2 exp(−r|t1−t2|) is in general
very close to 0 for every pair of observations taken in the points {t1, t2}. But when employing the
procedure described previously there will be pairs {t, t+ δ}, where δ is the variance of the random
component, and when we choose δ small to get close to the repeated measures case the differences
|t1 − t2| = δ are small as well. In this situation we need to take a very big r for the covariance
to vanish. For instance, when δ follows a normal distribution with 0 mean and standard deviation
10−3, then r needs to be taken greater than 106 for approaching the uncorrelated case (see Table
5). From this discussions follows that the design V G cannot be compared with the filling designs
(which have non-repeated measures) for the correlated case.

Compound Designs
Finally, designs that use points of different types of filling designs are considered. The idea
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r Arith Geom Unif L.Inv Parab Trigon

0.001 195 195 195 195 195 {1,0.6,5.4} 195
{

3π
4 , 1.3, 5.7

}

195 195 195 195 195 {1,1,9} 195
{

π
2 , 1.3, 8.3

}

0.01 195 195 195 195 195 {1,0.9,8.4} 195
{

π
2 , 1.3, 8.8

}

195 195 195 195 195 {1,1.1,8.5} 195
{

3π
4 , 1.3, 5.4

}

0.1 195 195 195 199 195 {1.,0.6,15.6} 195
{

3π
4 , 1.3, 15.6

}

202 203 202 207 199 {1,1.2,11.5} 200
{−3π

4 , 1.3, 5.2
}

0.5 223 210 215 205 208 {1,0.5,10.4} 209
{

π
2 , 1.2, 12.6

}

245 250 246 230 237 {1,0.9,10} 240
{

π
2 , 1.4, 5.5

}

1 242 255 241 222 231 {1,0.5,8.9} 235
{

π
2 , 1.4, 11.4

}

267 277 286 270 237 {1,1.4,8.4} 255
{

π
2 , 1.9, 5.4

}

10 257 270 261 238 237 {1,1.2,9.} 261
{

π
2 , 1.5, 5.4

}

305 392 396 395 267 {1,2.4,10.1} 279
{

π
2 , 1.9, 4.6

}

Table 2: Best first point t∗1 and parameters (v, k, q) (when necessary) for filling designs and V G example (62 points)
in [195,420], as functions of r. In each case the second line shows the figures when r is a parameter as well

r Arith Geom Unif L.Inv Parab Trigon

0.001 4.185 4.174 4.205 4.201 4.209 4.209
0.01 0.03527 0.03520 0.03543 0.03540 0.03544 0.03544
0.1 0.1990 0.1973 0.2042 0.1852 0.2045 0.2044
0.5 4.637 4.323 7.013 4.990 7.235 7.251
1 9.116 9.909 18.00 14.45 18.94 19.35
10 13.96 15.21 25.63 29.96 30.46 43.75

Table 3: Determinants for best filling designs depending on r for Gierczak example in [195,420]

is to mix the main characteristics of different types of designs. Two groups can be distinguished:
Uniform, Arithmetic, Geometric and Lineal Inverse designs (Type I) select the points along the
whole interval, while Parabolic and Trigonometric designs (Type II) tend to concentrate them in
a specific number of areas. In general, the results show that the second approach is preferred, but
taking points from both types may lead us to improve the efficiency of the joint design. In the
construction of this last one the following characteristics have been taken into account:

• the designs will have the shape ξα = αTypeI + (1− α)TypeII, (0 ≤ α ≤ 1), when the aim is
to mix properties of filling designs of types TypeI and TypeII

• the parameter α represents the weight of the TypeI design in the global design ξα. When
using exact designs this weight applies to the number n of points of ξα, that is, approximately
αn points of ξα will be given by a design of type TypeI and the rest will be obtained from a
TypeII design. For instance, when α = 0.5 the 62-point design ξα will be obtained joining
the points of a TypeI and a TypeII designs, with 31 points each.

• a common interval [t1, 420] has been used for the two sub-designs. Since for all types of filling
designs the extremes of the interval are points of the design, at least these two points will be
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n \ r 0.001 0.01 0.1 0.5 1 10

3 {307,389} {293,386} {281,374} {281,374} {281,374} {281,374}
(7036.38) (180.02) (83.94) (83.93) (83.93) (83.93)

3 {308, 390} {300, 389} {293, 406} {296, 417} {297, 418} {297, 419}
4 {195, 297, 389} {295, 371, 400} {281, 374, 375} {281, 374, 375} {280, 281, 374} {280, 281, 374}

Table 4: Optimal n-point designs for Gierczak example in [195,420] depending on r. The upper extreme 420 (not
shown) appears in every design. The first row shows the figures for the case that r is not a parameter, with the
determinants between brackets. The last two rows are the results when r is consider a parameter

r 0.001 0.1 1 100 104 106

Det(V G) 3.22131 0.0761318 0.181639 0.269954 5.22305 9.09322

Table 5: Determinants for V G design in [195,420] depending on r. A random component with 0 mean and standard
deviation 10−3 has been added to the equal points in order avoid singular covariance matrix

repeated in ξα. For the correlated case, the procedure described previously adding a white
noise with small variance to the repeated points has been used.

Initially, the more representative types of both tendencies of filling designs have been chosen:
Uniform (homogeneous selection) and Trigonometric (concentration areas) designs. The compound
design ξUni−Trig,α = αUniform+(1−α)Trigonometric has been studied for the uncorrelated case.
The results show that there is a slight improvement for very small values of α: when α is between
0.025 and 0.1 the determinant of ξUni−Trig,α is 55.59 greater than that of the Trigonometric design,
taking the maximum value for the smallest of these α’s. Talking about number of points, the
design improves when between 2 and 6 points out of the 62 are selected with a uniform procedure,
with the maximum determinant 56.82 obtained for just 2 ’uniform’ points. And in fact this result
agrees with the impression given above that the concentration-areas designs are better, since the 2-
point Uniform design takes simply the extremes of the interval, that is, increases the concentration
that always exists at the extremes. However, the study for the correlated case does not show any
improvement when using compound designs.

r parameter
The last step of the study is the consideration of r as a parameter that needs to be estimated as

well. Thus now we deal with a four-parameter model and the information matrix is Pázman (2007)

Mθ,r(n) =

(

∂η′(θ)
∂θ C−1(r)∂η(θ)∂θ′ 0

0 1
2 tr
{

C−1(r)∂C(r)
∂r C−1(r)∂C(r)

∂rT

}

)

,

where η′ denotes the transpose of the model. Table 2 (second row of each case) shows the optimal
intervals for each type of design in this case. The biggest differences with the results in the first
rows (when r is not estimated) are for great values of r, and especially important for the first four
types (Type I designs). For r = 10 the best intervals for constructing the corresponding filling
designs is can be very small.

Since now we have four parameters, the best designs in three and four points have been computed
for different values of r. The procedure looks for observations with at least one-day gap between
every pair of them. The upper extreme, 420, appears in every design. The rest of the points are
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shown in Table 4 (last two rows), where it can be observed that for the highest values of r the
designs tend to reduce the number of support points, that is, try to repeat one of the observations.

Compound designs in this setup produce little improvements for most of the values of r. Small
values of α (between 0.04 and 0.12) are the best ones, with an only exception: the case r = 0.5,
that gets the best improvement (but anyway less than 2%) when using α = 0.81 and the set of
parameters t∗1 = 241, v = π/2, s = 1.5 and q = 5.1, that is, 50 points using the uniform design and
just 12 using the Trigonometric design.

As a conclusion about these results can be said that, respect to efficiency, filling designs appear
as a good option, and when the observations are independent they provide alternative intervals
for their construction that are included in the design interval and seems to be more efficient when
taking the observations inside them. However, for the case of correlated observations the whole
design interval is usually the best one for constructing the filling designs in, and the efficiency of
these ones is very poor when comparing with the optimal 3-point designs. Anyway, these kind of
designs (or close to them) are used by practitioners routinely. The designs that define concentration
areas are usually preferred to those which place the points along the whole interval, and this idea
is confirmed with the study of the compound design, that allows both approaches.

In the following, the basic types of Filling designs (Uniform, Arithmetic, Geometric and Linear
Inverse) will be the ones used for comparison since they only need the interval for their construction.

4. Case study: Methane

Methane (CH4) is an important greenhouse gas, whose concentration in the troposphere is
steadily increasing. To estimate the flux of methane into the atmosphere and its atmospheric life-
time, its rate of removal needs to be accurately determined. The main loss process for atmospheric
methane is the reaction with the hydroxyl radical, OH + CH4 → CH3 +H2O. This reaction has
been extensively studied, and it can be expressed in the Arrhenius form as

k(T ) = aT−mexp(−β/T ),

with a0 = 2.80×10−14, m0 = −0.667, and β0 = 1575. This three-parameter fit may be preferred for
lower stratosphere and upper troposphere calculations Jet Propulsion Laboratory Publication 06-2
(2006). The temperature dependence of this rate coefficient has been measured in different initial
intervals by Vaghjiani and Ravishankara (1991), 223-420 K, Dunlop and Tully (1993), above 298
K, Finlayson-Pitts et al (1992), 278-378 K, Mellouki et al (1994), 233-343 K, Bonard et al (2002),
295-660 K, and Gierczak et al (1997), 195-300 K.

Considering independent and normally distributed errors with mean 0 and constant variance
(σ2 = 1) and m known, the parameters to be estimated are a and β. The locally D-optimal designs
for the model are two-point designs given in Rodŕıguez-Dı́az and Santos-Mart́ın (2009).

4.1. Three-point designs

4.1.1. Uncorrelated case

Assuming the initial values m0, and β0 the designs depend on the upper bound of the design
interval. For three-point designs there is no difference between the uniform, the arithmetic and the
geometric designs, taking all of them the extreme points and the midpoint of the design interval.
The efficiency of a design ξ with respect to a specific optimality criterion Φ expresses the proportion
of observations of ξ that the Φ-optimal design needs to get estimators of the parameters with the
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”same variance” that ξ, measuring the variance with the optimality criterion Φ. The D-efficiency
of ξ is EffD(ξ) = (detM(ξ)/detM(ξ∗))1/2, where ξ∗ is the D-optimal design for the model. D-
optimal (two-point) designs using the different intervals that appear in the bibliography are shown
in Table 6, as well as the efficiencies of the 3-point filling designs when using the whole interval. The
last row shows the point t1 for which the equidistant 3-point design in [t1, tmax] gives the maximum
efficiency (over 89%). It can be seen that there are no differences between the filling designs respect
to the efficiency when the whole interval is used. However, from the last row it seems sensible not
to choose the whole interval but a part of it, avoiding the observations at the beginning of the
interval, that seems to be less informative.

Initial interval 195-300 233-343 278-378 223-420 295-660
D-opt {256, 300} {287.2, 343} {311.9, 378} {340.6, 420} {489.9, 660}

Eff(Uniform) 0.70 0.78 0.86 0.66 0.69
Eff(Lin.Inv.) 0.67 0.73 0.83 0.64 0.65

t1 246.85 275.97 298.84 325.38 461.74

Table 6: D-optimal designs, efficiencies of 3-point filling designs and initial point of the best 3-point equidistant
design for the reaction OH + CH4 → CH3 +H2O when using different intervals (uncorrelated case)

4.1.2. Correlated case

Let us now assume Cov1 and study in first place the equidistant design. Fixing tmax as the
interval upper bound, Table 7 shows the best lower bound t1 for different r, first when r is not
consider a parameter (upper row of each interval) and then taking r as a parameter (lower row).
For r greater than 0.5, the covariance matrix gets closer the identity matrix and thus we have nearly
the uncorrelated case. It can be seen that the differences between the two approaches increase with
r and they may be very important.

tmin − tmax r = 0.001 r = 0.005 r = 0.01 r = 0.05 r = 0.1 r > 0.5
195-300 199.04 258.11 258.02 239.37 241.87 246.85

200 264.47 265.72 264.54 273.15 296.10
233-343 233 290.93 286.9 266.86 271.92 275.97

233 298.63 298.66 300.60 313.46 339.05
278-378 278 315.78 308.56 289.22 295.73 298.84

278 325.41 324.48 330.73 346.76 374.05
223-420 238.88 343.75 332.54 315.96 323.31 325.38

241.55 356.43 354.39 367.78 387.16 416.03
295-660 295 471.26 445.49 458.61 461.70 461.74

295 514 511.91 591.82 622.65 655.99

Table 7: Best t1 fixing the upper extreme with correlation for different r (2-parameter model in first row of each
interval, 3-parameter model in second row) for the equidistant design

However, when considering a general 3-point design, the behavior is different. Table 8 shows
the design in three points that maximize the determinant of the information matrix Mθ(3) for the
example of Methane and different values of r; the upper extreme of the interval is always one of the
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points, and thus it is not shown. Now the case when r is a parameter produces similar figures, see
Rodŕıguez-Dı́az et al. (2009) for details. In both cases, when r is big (equivalent to the uncorrelated
case) we get the two support points of the D-optimal designs from Table 6, repeating one of the
points. As r decreases we get three different points, which become the two extremes and a middle
point for the smallest values of the parameter. Finally, let us note that the designs for the extreme
values r < 0.001 are the same in both tables, thus in these cases there is no difference between r
being estimated or not.

r 195-300 233-343 223-420 295-660
660
10 255.7, 256.5 286.7, 287.8 340.0, 341.1 489.3, 490.6
660
1 252.8, 259.2 283.6, 290.5 336.9, 344.3 485.7, 494.3

497.4, 660
0.1 242.1, 267.3 270.8, 299.4 323.3, 357.7 467.7, 513.5

525.8, 660
0.01 257.7, 281.3 287.6, 317.6 332.1, 378.9 445.7, 546.8

565.3, 660
0.001 195.0, 270.2 233.0, 306.7 223.0, 362.0 295.0, 523.3
660

Table 8: Optimal design assuming correlation when r is not a parameter

4.2. Designs with more than three points

Four is the lowest number of points for which Uniform, Arithmetic and Geometric designs are
different. For this reason four-point designs will be now studied in order to compare these three
types of designs.

The D-efficiency of the filling designs supported in four points for the uncorrelated model is
similar for the basic types (see Rodŕıguez-Dı́az et al., 2009). However, there are more differences
when looking for the best interval for constructing the designs in.

For instance, Figure 13 shows the respective plots of the efficiency, as function of t1, when the
initial interval [195, 660] is used and t2 fixed to be the upper limit, for β0, m0 and the designs
Uniform (full line), Arithmetic (dotted) and Geometric (dashed), in the uncorrelated case. It can
be seen that the differences are most important for the lowest values of t1, that is, when using
almost the whole interval. These differences can be observed as well in Table 9, that shows the
best t1 for Uniform, Arithmetic and Geometric designs, when t2 is fixed to be tmax and we assume
independent observations.

Table 10 shows the best t1 when fixing the upper extreme of the interval in the correlated case
for different r, for the Uniform (U), Arithmetic (A) and Geometric (G) designs, considering that r
is not a parameter. It can be observed that for small r the best efficiency is obtained when taking
the filling designs in the whole initial interval. However, for independent observations it is more
efficient to take the observations in part of the initial interval. The results when r is consider a
parameter are similar to these ones, and can be checked in Rodŕıguez-Dı́az et al. (2009).
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tmin − tmax Uniform Arithmetic Geometric
195-300 245.15 241.90 240.06
233-343 273.79 269.81 267.42
278-378 296.24 291.66 288.79
223-420 322.24 316.93 313.50
295-660 454.70 445.47 439.00

Table 9: Best t1 fixing the upper extreme (n=4)

r = 0.001 r = 0.005 r = 0.01 r = 0.05 r = 0.1 r > 0.5

U 195 195 251.38 228.88 232.70 245.15
195-300 A 195 204.35 253.27 229.90 231.68 241.61

G 197.67 250.31 256.08 235.87 237.59 238.81
U 233 233 279.05 254.24 262.04 273.80

233-343 A 233 233 281.05 254.60 259.81 269.70
G 233 287.49 284.75 262.68 266.80 266.09
U 278 278 299.28 274.98 285.63 296.24

278-378 A 278 305.28 301.47 274.81 282.23 291.62
G 278 312.8 306.16 284.56 289.77 287.44
U 223 329.73 321.21 300.07 313.38 322.23

223-420 A 227.61 334.01 323.64 299.09 308.49 316.91
G 237.20 340.91 329.81 310.71 316.1 312.16
U 295 450.56 418.99 440.33 453.60 454.70

295-660 A 295 454.28 421.88 431.85 442.67 445.47
G 295 467.55 440.61 448.89 443.99 438.22

Table 10: Best t1 for filling designs when fixing the upper extreme, for different r (not a parameter)

The case n > 4 does not produce special results. For instance, the comparison of D-efficiency
for n = 6 shows similar figures for the different types of filling designs, slightly worse than for n = 4
(see Rodŕıguez-Dı́az et al. (2009) for more details).

4.3. Goodness of estimators

From recent computations in Matlab, the ML estimator of r assuming Cov1 for the data in
Gierczak et al (1997) and Vaghjiani and Ravishankara (1991) is r̂ = 0.03643. The first attempts
to estimate the r-parameter suffered from numerical difficulties which shaped up to be caused by
the scaling of the k5 data. Transforming the data according to y = k5 · 1015 made the problems
disappear.

The ML estimator of r and σ2 simultaneously was computed as follows: taking the 18 different
temperatures t and the 62 according measurements of y (k5-values multiplied by 1015), the expec-
tation of y was modeled according to Gierczak et al (1997) and assuming an exponential covariance
function:

E(y|t) = 1.85 · 10−5t2.82 exp

(

−987

t

)
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200 250 300 350 400 450

t

Gierczak design

equally spaced design

Figure 14: Different designs

Cov(yi, yj |d, r) = σ2 · exp (−d · r) d = dij = |ti − tj |
The observation y was assumed to be normally distributed and the log-likelihood was maximized
with respect to r and σ2. Maximization succeeded numerically using a grid of points at which
the log-likelihood was evaluated and zooming in on the maximum of the log-likelihood. As final
estimates we got σ̂2

y = 0.2365 and r̂ = 0.03643. Actually, the numerical difficulties caused by the
repeated measurements of k1 at single temperatures were eliminated by employing a nugget effect
i.e. adding a constant α to the trace of the covariance matrix of y. Setting α = σ̂2 × 10−3 the log
likelihood stabilized sufficiently. The bias caused by adding the nugget α was negligible because
the ML estimate of r and σ2 may be considerably biased without nugget (see later), and the main
conclusion from these computations is that correlation plays an important role in this example.

Now, the design effect on the ML estimation ofm, β, r and σ2 will be analyzed. The 18 different
design points for k5 are not selected systematically. The question is whether different designs yield
more precise ML estimates (see Figure 14).

In a first approach we compared the Vaghjiani-Gierczak (VG) design with an 18- point equidis-
tant design on the interval [208.8; 420]. For both designs we simulated 1000 k5-samples and for each
of the simulated samples we computed the ML estimate of m, β, r and σ2 simultaneously. For the
simulations we set the parameter values to the ML estimates from the original 62 point sample.

We compared the empirical distributions of the ML-estimates of the two designs for each param-
eter. The results can be seen in Table 11 and Figures 15 to 18. As an estimate for the D-optimality
criterion we also computed the determinant of the inverted empirical covariance matrix of the
parameter estimates for each design: for the VG design we got detMV G = 2.3984 · 107, for the
equidistant design we got detMequidist = 6.3271 · 106.

Based on these simulations it seems that the two designs are roughly equivalent. We notice a re-
markable estimation bias - especially for r̂ML - which should be analyzed in more details. We should
also deliberate whether the simultaneous ML estimation of several parameters is advantageous or
not.

The empirical correlation between the ML-estimates for m and β is extremely high in both
designs (Rm,β = 0.98). In the VG design the correlation between r and σ2 is also remarkably high
(Rr,σ2 = −0.48) whereas in the equidistant design it is clearly smaller (Rr,σ2 = −0.26). So far this
is the most significant difference between the two designs inspected.
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Table 11: statistics of the ML estimates of the model parameters for gierczak design and equidistant design (18
points)

true Gierczak design equidistant design
value mean bias variance mean bias variance

m 2.82 2.829 .009056 8.592 · 10−5 2.829 .008723 8.094 · 10−5

β 987 1009 21.77 530.9 1008 21.17 493.1
σ2 .2365 .1904 -.04615 .01021 .1936 -.04285 .01610
r .03643 .06560 .02917 .003477 .07058 .03415 008176

2.8 2.81 2.82 2.83 2.84 2.85 2.86 2.87

true m = 2.82

Gierczak design

equally spaced design

Figure 15: Empirical distribution of m̂ for different
designs

940 960 980 1000 1020 1040 1060 1080 1100

true β = 987

Gierczak design

equidistant design

Figure 16: Empirical distribution of β̂ for different
designs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

true σ
2
 = .2365

Gierczak design

equidistant design

Figure 17: Empirical distribution of σ̂2 for different
designs

0 0.05 0.1 0.15 0.2 0.25 0.3

true r = .03643
Gierczak design

equidistant design

Figure 18: Empirical distribution of r̂ for different
designs
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5. Bias reduction methods

There are many issues related to the reduction of bias. One of special importance is how to
appropriately choose the nugget effect.

We may consider the following explanation of the ML estimator behavior. Let us consider the
semivariogram γ(t) = 0.5E(X(s+ t)−X(s))2. We have γ(t)→ cγ = c0 + cms; t→ 0 as considered
in Kim et al (2010). cγ is known as the nugget effect, c0 denotes the nugget effect of a micro scale
process and cms denotes the measurement error variance. These are two sources of variability: one
source derives from the spatial variability at a scale smaller than the minimum lag distance, and
the other source is experimental error. In such a model we may well explain the observed facts:

1) With a small number of design points we observe r̂ =∞ with relatively high frequency. This
may be understood as effort of the very smooth process to decrease the dimension of the process or
as an effort of observations to be independent. The reason is too rough measuring of the smooth
process. If we add a positive nugget effect to such a process, it slightly improves this behavior
(slightly lower frequency of observing r̂ = ∞), however, we obtain a relatively high frequency
of r̂ = 0. This may be understand as a ”deterministic” limit of our equations for ML estimates
with positive probability. By adding a negative nugget, we have found interestingly that we got
empirically almost never r̂ =∞ or r̂ = 0. However, it is not easy to make a theoretical explanation
of these results.

Bias is decreasing with n. In our model, after having n > 20, bias is practically negligible. The
bias reduction method using the nuggets is based on the following idea: we are measuring with the
finite set of nuggets τ1 < .. < τm (also negative ones), having τs = 0 for some 1 < s < m, and
computing rMLi, i = 1, ..,m; then we make a regression biasi = rMLi − τirMLn. We are plotting
cases n = 3, 5. Then the 0.5(rML1+rMLs) is less biased than rML. A interesting issue is the behavior
for m→∞.

5.1. Bayesian approach for bias reduction of the MLE

Here we compute the maximum likelihood estimate (MLE) of the parameter r of the Generalized
Exponential model (GE):

yi = a · tmi · exp
(

−β
ti

)

+ εi = ηi(ti,m, β) + εi i = 1, . . . , n

y =







y1
...
yn






∼ N(η(t,m, β); Σ(t, r)) η(t,m, β) =







η1(t1,m, β)
...

ηn(tn,m, β)







Σ(t, r) = (Covij)i,j=1,...,n Covij = Cov(ti, tj , r) = σ2 · exp(−|ti − tj | · r) r > 0

5.1.1. Standardized design interval

Let t = (t1, . . . , tn)
T be the n design points in the design interval, t ∈ [Tl;Tu]. Since Covij =

σ2 ·exp(−|ti−tj | ·r) we may always standardize our design interval to [0; 1]: the standardized design
points are si =

ti−Tl

L where L is the length of [Tl;Tu]. The parameter r in [Tl;Tu] corresponds to
L · r in the standardized interval [0; 1]. From now on we will assume a standardized design interval.
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Figure 19: Empirical distributions of ρ̂ for n = 3 (left panel) and n = 10 (right panel) for ρ = 0, .1, . . . , .9, .99, .999
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Figure 20: Empirical distributions of ρ̂ for n = 20 (left panel) and n = 100 (right panel) for ρ = 0, .1, . . . , .9, .99

5.1.2. Equidistant design

For the sake of simplicity let us assume all parameters known except r and use an equidistant
design with design points ti =

i−1
n−1 i = 1, . . . , n. Here we show only the results for n = 3, i.e. our

design is t1 = 0 t2 = 1
2 t3 = 1.

5.1.3. Empirical distribution of the MLE of ρ

Since we frequently get r̂ =∞ it is better to describe the empirical distribution of ρ̂ = ̂exp(−r).
In our simulations we set n = 3 and ρ = 0, 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, . . . , .8, .9, .99, .999, for each
simulated sample (sample size 1.000.000) we computed the MLE of ρ (see Rodŕıguez-Dı́az et al.
(2011) for the derivation of the MLE for r). In Figure 19 (left panel) we see the empirical distribu-
tions of ρ̂. In Table 12 we see the main statistics for each simulation.

From the simulations we see that the MLE ρ̂ performs poor for n = 3 especially with small ρ-
values. Though it may be noticed that with increasing n also the performance of ρ̂ improves very
fast, this can be seen in Figure 19 (right panel for n = 10) and in Figure 20 (n = 20 and n = 100).
From the simulations it is clear that the MLE of ρ is a consistent estimator.

Obviously the MLE of ρ is a biased estimator, the bias depending on the design size n and the
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ρ ♯ of ρ̂ = 0 mean(ρ̂) bias sd(ρ̂) MSE(ρ̂)
.0 420835 0.2563 0.25633 0.328909 0.173887
.01 376872 0.2770 0.26698 0.332783 0.182020
.03 343881 0.2953 0.26526 0.335783 0.183113
.05 319808 0.3101 0.26014 0.337787 0.181772
.1 277920 0.3399 0.23988 0.340417 0.173425
.2 217788 0.3937 0.19372 0.341890 0.154416
.3 170271 0.4476 0.14758 0.339010 0.136707
.4 129046 0.5052 0.10520 0.329928 0.119920
.5 93081 0.5678 0.06777 0.314233 0.103335
.6 59407 0.6384 0.03845 0.287537 0.084156
.7 30305 0.7181 0.01810 0.245092 0.060398
.8 8632 0.8068 0.00684 0.181106 0.032846
.9 227 0.9020 0.00199 0.094720 0.008976
.99 0 0.9900 2.727·10−5 0.009918 9.836·10−5

.999 0 0.9990 7.135·10−7 9.992·10−4 9.984·10−7

Table 12: Expectation, bias and MSE of the MLE for ρ and n = 3 (equidistant designs, 1.000.000 simulated samples
each)

true parameter ρ. We now confine ourselves to the case n = 3 (the case n = 2, where the MLE ρ̂ is
the most biased, is studied in Waldl, 2011). For n > 3 the following may be done analogously. In
Figure 21 we see the expectations E(ρ̂|ρ) (right panel) and the expected bias for different values of
ρ (left panel). From the left panel we also see, that the MLE performs quite well if ρ > 0.65.

For the bias reduction we choose a Bayesian approach: Since we have no information about ρ
we have to assume ρ to be distributed uniformly on (0; 1). Under this assumption we try to find
an unbiased estimate of ρ, i.e. we are looking for an estimate ρ̃ on the basis of the MLE ρ̂ with
E(ρ̃) = ρ via the expectation E(ρ|ρ̂).

From the simulations we know the empirical distributions of ρ̂ for a given sequence of discrete
ρ-values ρi, i.e. P(ρ̂|ρi). To get an approximation of the distribution of ρ for a given ρ̂ = ρ0 we
have to compute approximations of the pdf f(12 (ρi−1 + ρi)|ρ̂ = ρ0) first. This may be done by:

P̂ (ρ ∈ [ρi−1, ρi]|ρ̂ = ρ0) ∝
1

2
(P (ρ̂ ∈ [ρ0 ±∆]|ρi−1) + P (ρ̂ ∈ [ρ0 ±∆]|ρi)) · (ρi − ρi−1)

for ρ0 = 0 we may set ∆ = 0.

For the computation of the expectation E(ρ|ρ̂ = ρ0) the discrete approximation of
∫ 1

0 ρ ·f(ρ|ρ̂ =
ρ0) dρ will be used. By doing this e.g. for n = 3 and ρ0 = 0 we get: E(ρ|ρ̂ = 0) = 0.2493, i.e. if we
get the MLE ρ̂ = 0 and have no additional information about ρ, we expect ρ to be 0.2493. Figure
21 shows the expectation of P(ρ|ρ̂) when ρ is uniformly distributed on (0; 1). This conditional
expectation is bounded on the interval [0.24; 0.995] although ρ ∈ [0; 1], the reason for this is the big
dispersion of P(ρ̂|ρ).

Now an unbiased estimate ρ̃ may easily be defined:

ρ̃ := Ê(ρ|ρ̂)
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Figure 21: Expected bias of ρ̂ for n = 3 and different ρ-values (left panel). Expectations E(ρ̂|ρ) and E(ρ|ρ̂) with ρ

uniformly distributed for n = 3 (right panel)

5.1.4. Properties of ρ̃

To compare the characteristics of this unbiased estimator and the MLE, 10.000.000 uniformly
distributed ρ-values were simulated and for each of the ρ-values we simulated a sample of size
3 according to the GE model and computed the MLE for ρ and the unbiased ρ̃. The empirical
distributions of the biases of these estimates can be seen in Figure 22. From the boundedness of
ρ̃ it is clear that the bias of ρ̃ is also bounded on [1 − 0.24; .995] = [−.76; .995]. Besides we have
discontinuities in the empirical pdf of ρ̃ in 0.2493 and 0. The empirical pdf of the distribution of ρ̂
has a discontinuity in 0.

The mean bias of the MLE was E(ρ̂ − ρ) = 0.0953. The mean bias of the unbiased estimator
was E(ρ̃ − ρ) = 0.0014, the deviation from 0 is due to the inaccuracy of the approximations. The
mean square errors of the two estimates are:

MSE(ρ̂) = 0.0967 MSE(ρ̃) = 0.0535

So also from this point of view ρ̃ clearly improves ρ̂.
ρ̃ is also better than the trivial unbiased estimator ρ̆ = 0.5 (no matter what data are observed)

with MSE(ρ̆) = 0.0833. It is remarkable that for n = 3 the trivial estimate ρ̆ = 0.5 is better than
the MLE ρ̂.

6. Conclusions

Probably the main lesson we can learn is that the D-optimal design is analytically peculiar and
these designs can be practically obtained only by numerical computation. However, especially two
point locally D-optimal designs are of interest, since they may help us to find a reasonable range
for a bigger design, particularly for filling designs. The latter ones are probably the only applicable
when seeking for a higher number of design points.

It is an interesting issue that very often the best designs do not use the whole design interval,
but only a part of it. This idea should be taken into account by practitioners when designing
experiments. The best interval for taking the observations in depends on the initial interval we
are using and the value of the correlation parameter r. In general, it can be said that when the
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Figure 22: Empirical distributions of the biases of ρ̂ and ρ̃ for n = 3 and uniformly distributed ρ

correlation is high (small r) a good experiment should take samples within the whole interval, while
for independent observations the sensible choice would be concentrate the samples in a fraction of
it. The question whether to consider or not r as a parameter that needs to be estimated can also
be important for some cases (e.g. equidistant designs).

Another important observation is the large bias of the ML estimator of r. From the theoretical
point of view this is not surprising since σ2 and r are not simultaneously identifiable. Therefore we
developed bias reduction method which can help practitioners to obtain better locally D-optimal
designs.

Appendix

Proof of Proposition 1
The determinant of the information matrix will be in this case:

Ds = det(x, d) = a4d2e−6β(d+x)x2m(d+ x)2m(2d+ x)2m[log(x)− 2 log(d+ x) + log(2d+ x)]2

We obtain the critical points solving the following system of equations:

2a4d2e−6β(d+x)x2m−1(d+ x)2m−1(2d+ x)2m−1(log(x)− 2 log(d+ x) + log(2d+ x))

(

2d2 +
(

2(m− 3βx)d2 + 3x(2m− 3βx)d+ 3x2(m− βx)
)

(log(x)− 2 log(d+ x) + log(2d+ x))
)

= 0

−2a4de−6β(d+x)x2m(d+ x)2m−1(2d+ x)2m−1(log(x) − 2 log(d+ x) + log(2d+ x))
(

2d2 +
(

6βd3 + (−4m+ 9βx− 2)d2 + 3x(−m+ βx− 1)d− x
2) (log(x)− 2 log(d+ x) + log(2d + x))

)

= 0

The solutions x = 0, d = 0, x = −d or x = −2d do not maximize the determinant. The points
giving the maximum verify the equations:

−2d2 =
(

2(m− 3βx)d2 + 3x(2m− 3βx)d+ 3x2(m− βx)
)

(log(x)− 2 log(d+ x) + log(2d+ x))

28



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

−2d2 =
(

6βd3 + (−4m+ 9βx− 2)d2 + 3x(−m+ βx − 1)d− x2
)

(log(x)−2 log(d+x)+log(2d+x))

�

Proof of Theorem 1

We have X = (∇η(x, β)t,∇η(x + d, β)t) =

(

xme−βx −axm+1e−βx

(x+ d)me−β(x+d) −a(x+ d)m+1e−β(x+d)

)

Then Mβ(2) = XTC−1(r)X.

So for both parameters of interest we have M(2)(θ, r) =

(

Mθ(2) 0
0 Mr(2)

)

where Mr(2) =

d2 e2rd+1
(e2rd−1)2

(see Kisělák and Stehĺık, 2008), with determinant

det[M(2)(θ, r)] =
a2d4e2dr−2β(d+2x)

(

1 + e2dr
)

x2m(d+ x)2m

(−1 + e2dr)
3 (4)

or equivalently

det[M(2)(θ, r)] =
1

4
a2d4e−2β(d+2x)x2m(d+ x)2m coth(dr)csch2(dr)

When we fix x the value of the determinant is maximized for d = d∗x, the solution of the
non-linear equation

d =
−B +

√
B2 − 4AZ

2A

where
A = β

(

−1 + e4dr
)

+
(

1 + 4e2dr + e4dr
)

r ,

B = m− βx+ 4e2drrx+ rx + e4dr(−m+ βx + rx− 2) + 2 ,

Z = −2
(

−1 + e4dr
)

x .

However, a general solution can be found if, conversely, d is assumed initially fixed. In that case
det[M(2)] is a continuous function in x with two stationary points given by

−βd+m±
√

β2d2 +m2

2b
.

Since the smallest one is not positive, the value of x that maximizes the determinant for a specific
d is

x∗ =
−βd+m+

√

β2d2 +m2

2b
,

with a similar structure that the corresponding points in Rodŕıguez-Torreblanca and Rodŕıguez-
Dı́az (2007) or Rodŕıguez-Dı́az and Santos-Mart́ın (2009), Theorem 1. Replacing this expression in
(4) the optimal value of d, d∗, is the solution of the non-linear equation (2).
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López-Fidalgo J. and Wong W.K. 2002. Design Issues for the Michaelis-Menten Model. Journal of
Theoretical Biology 215, 1-11.
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