
Department for Applied Statistics
Johannes Kepler University Linz

IFAS Research Paper Series
2012-59

On an integrated compound criterion

Elena Bukinaa and Milan Stehĺık
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Abstract

In this paper we introduce a class of integrated compound criteria. We
will show that for a specific choice the criterion can mimic well a behavior
of an integrated mean square prediction error (IMSPE). Such a method can
be algorithmized and thus gave an insight into the relation of Dα and IM-
SPE criterion. Theoretical and numerical aspects are discussed and examples
provided.

keywords: Compound Designs, Computer experiments, Correlated errors, Ex-
perimental design; Equidistant design; Parameterized covariance functions, Fred-
holm equation, reproducing kernel, regularization.

1 Introduction and Setup

Probably the main reason why optimum design principles are not frequently used
in spatial data analysis is that the observations are correlated. Consequently, the
corresponding optimal design questions must cope with the existence and detection
of an error correlation structure, problems largely unaccounted for by traditional
optimal design theory. In all of these situations there arise a number of issues,
which require special techniques - for a recent discussion see (Müller and Stehĺık
(2009)). The statistical model we consider in the paper is the so called random
field, given by

Y (x) = η(x, β) + εγ (x) (1)

with design points (coordinates of monitoring sites) ξn = {x1, ..., xn} taken from a
compact design space X = Xn, X = [a, b],−∞ < a < b <∞. The parameters β are
unknown and the variance-covariance structure of the errors depends on parameters
γ. However, one can, if one is willing to make distributional assumptions, employ
the ML-estimators. For the full parameter set {β, γ} the information matrix then
exhibits the block diagonal form(

Mβ(ξ) 0
0 Mγ(ξ)

)
.

Outputs from various environmental measurements are often approximated as
realizations of correlated random fields. Two approaches are considered to design
experiments for a correlated random field when the objective is to obtain precise
predictions over the whole experimental domain. The first one corresponds to a
compound Dα-optimality criterion for both the trend and covariance parameters
introduced by (Müller and Stehĺık (2010)). The second one relies on an approx-
imation of the mean squared prediction error already proposed in the literature.
In (Müller and Pronzato (2009)) was conjectured, and shown on an example, that
for some particular settings both approaches yield similar optimal designs, thereby
revealing a sort of equivalence theorem for random fields. For estimations of spatial
fields a classical criterion is the Empirical Kriging prediction error. Here we have to
minimize the so-called kriging variance V ar[Ŷ (x|ξ)] = E[(Ŷ (x|ξ) − Y (x))2] (Mean

Squared Prediction Error - MSPE), where Ŷ (x|ξ) denotes the best linear unbiased
predictor of Y (x) based on the design points in ξ. The EK-optimal design minimizes
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the criterion function ψ(ξ) = maxx∈X
̂

V ar[Ŷ (x|ξ)]. However, this criterion is diffi-
cult to compute. Much easier criterion is so-called Dα-optimality criterion ϕ(α, ξ)
introduced by (Müller and Stehĺık (2010)), which is defined in terms of the Fisher
Information matrix. The Dα-optimal design with a weighting factor α maximizes
the criterion function ϕ(α, ξ) = |Mβ(ξ)|α|Mγ(ξ)|1−α, 0 ≤ α ≤ 1, there Mβ(ξ)
and Mγ(ξ) are information matrices for the parameters β and γ. See (Kisělák and
Stehĺık (2008)) for the details on the structure of Mβ(ξ) and Mγ(ξ) in the case of
Ornstein-Uhlenbeck process.

Here we concentrate on IMSPE, instead of MSPE. The main aim of the kriging
technique consists in predicting output of the simulator on the experimental region,
and for any untried location x the estimation procedure is focused on the BLUP
Ŷ (x). Thus natural criteria will minimize suitable functionals of the MSPE. Since
often the prediction accuracy is related to the entire prediction region Xn, a very
practical design criterion is Integrated MSPE given by

∫
Xn σ

−2MSPE(Ŷ (ξ))dξ.
IMSPE was used in several papers (see (Sacks, Schiller and Welch (1989)) or (Crary
(2002))) for construction of optimal designs.

In this paper we introduce the integral variant of the compound criterion by
operator

(L h)(ξ) =

1∫
0

ϕ(α, ξ)h(α) dα, (2)

where h ∈ D, D being a space of functions. We study some of the properties of this
criterion. We show that having equation −IMSPE = (L h)(ξ) we can find such an
h ∈ L2(0, 1) (at least numerically).

Definition (2) is given by the direct integration of Dα criterion given by (Müller
and Stehĺık (2010)). There are several possibilities of its modification. One pos-
sible modification is related to region for α. There is no particular reason for re-
striction α ∈ [0, 1]. However, we assume in this paper that α belongs to a com-
pact interval and thus ’for the sake of simplicity’ we normed this interval to be
[0, 1]. Also an important question is the dimensionality of α. For designs with
large number of points, multivariate h(α1, ..., αm) may be more appropriate. Then
Lh =

∫
[0,1]m

|Mβ|α1 ..|Mβ|αm|Mr|1−α1 ..|Mr|1−αmh(α1, ..., αm)dα1...dαm
In (2) we integrate directly compound criterion ϕ(α, ξ) given by (Müller and

Stehĺık (2010)). Until now we do not have justification whether this choice is optimal,
i.e. other form of compounding, generally Fα(detMβ, detMr) for an appropriate

function F may give a better properties of integrated criterion
1∫
0

Fα(detMβ, detMr)h(α) dα.

As an alternative we may introduce ϕ2(α, ξ) = |Mβ(ξ)|−α/p|Mγ(ξ)|−(1−α)/q, 0 ≤
α ≤ 1, p = dim(β), q = dim(γ) and study Fredholm equation ψ = L2h, where opera-
tor L2 is given by kernel ϕ2. From numerical reasons (ill conditioned matrix) we use
also criterion Fα(detMβ, detMr) = α log |Mβ(ξ)|+(1−α) log |Mγ(ξ)|. Notice, that in
the latter case we obtain the criterion of the form A log |Mβ(ξ)|+(1−A) log |Mγ(ξ)|
where A =

∫ 1

0
αh(α)dα (from practical reason we later regularize by h > 0, ||h|| = 1).

Moreover, this approach relates to a general compound criterion treated in literature
(see e.g. (McGree et al. (1988))).
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The paper is organized as follows. In the next section we study some properties
of class of integrated compound criteria (2). In section 2 we provide (by means of
Fredholm integral operators) the theoretical backgrounds for existence of specific
criterions, related to IMSPE for a large class of stochastic processes. In sections 3
and 4 we illustrate by numerical experiments and theoretical arguments the need
for regularization of Fredholm equation. Discussion concludes the paper.

2 On some properties of a class of compound cri-

teria

In this section we reveal some properties of integrated compound criteria (2).

2.1 Integrated compound criteria mimics nugget effect

As was observed (see e.g. (Kisělák and Stehĺık (2008))) two point D-optimal design
{x1, x2} for a constant trend parameter η (and taking γ as parameter of interest)
is ”collapsing”, e.g. maximum of determinant of Fisher information is attained
for x1 = x2. As can be easily checked, this ”collapsing” employs also in the case
of compound criterion ϕ(α, ξ) for all α ∈ (0, 1). However a non-constant h may
regularize this ”collapsing” effect (see following Example 1), e.g. integrating of
ϕ(α, ξ) with non-constant h works similarly as ”nugget effect”.

Example 1 Let us consider OU process,2 point design, estimation also for a cor-
relation parameter

Mβ =
2

1 + e−γd
and Mγ =

d2e−2γd(1 + e−2γd)

(1− e−2γd)2
. (3)

F (d, α) = αM ′
βMγ + (1− α)MβM

′
γ. (4)

For the case γ = 1,

lim
d→∞

F (d, α) = lim
d→∞

∂

∂α
ϕ(d, α) = −1

2
+

3α

4
. (5)

For 0 < α < 1 maxϕ(d, α) is attained at d = 0 This means, that Dα optimal
design is attained for d = 0. We call this phenomenon ”collapsing effect”, it was
reported recently (see e.g. (Crary (2002)) and for recent discussion (Müller and
Stehĺık (2009))).

Let us consider

(Lh)(d) =

1∫
0

ϕ(d, α)h(α) dα,

then for h(α) = 1 the maximum max(Lh)(d) is at d = 0 (i.e. not improvement in
collapsing effect)..

However, for h(α) = α, α2, eα, sinα

argmax(Lh)(d) > 0.
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This means improvement, i.e. no more collapsing! That means, we have obtained
the regularization of collapsing by integral compound criteria. The other way of
regularizing of collapsing is to employ a nugget (see (Müller and Stehĺık (2009))).

If we know theoretically, that ψ = Lh is solvable in some class H of function,
then, instead of optimizing of ψ we may optimize Lh for h ∈ H. Notice, that
optimizing of Lh may be different than optimizing of its kernel ϕ (see Example 1,
where Lh has a different optimal designs for h = 1 and h(α) = α).

2.2 Integrated compound criteria mimics IMSPE

Next example illustrates the case of Ornstein Uhlenbeck process.

Example 2 Ornstein-Uhlenbeck model with constant trend
In this example we consider Ornstein-Uhlenbeck model with constant trend given

by ψ(ξ) = IMSPE. Let us have Gaussian random field Y (x) = µ+ϵγ(x), corr(ϵγ(x), ϵγ(y)) =
exp(−γ|x−y|). Then (see (Baldi-Antognini and Zagoraiou (2010))) ψ(ξ) = IMSPE =

1 − n−1
γ

+ 2A(ξ) + B(ξ)
C(ξ)

, where A(ξ) =
∑n−1

i=1 a(di), B(ξ) =
∑n−1

i=1 b(di), C(ξ) =∑n−1
i=1 c(di), and a(d) =

d
exp(2γd)−1

, b(d) = d+ exp(γd)−1
exp(γd)+1

, c(d) = d+3(1−exp(2γd))+2γd exp(γd)
γ(exp(γd)+1)2

And kernel has the form ϕ(α, ξ) = (1 +
∑n−1

i=1
eγdi−1
eγdi+1

)α(
∑n−1

i=1
d2i (e

2γdi+1)

(e2γdi−1)2
)1−α

Numerical experiments for this setup are given in Section 4.

Example 3 Inverse Problem
Computing h from Lh = y is indirect or inverse problem. Indirect problems

arise in numerous applications. The main difference to ”classical” inference is that
h cannot be computed directly. Such problems have been investigated intensively
(most of the work focused on the construction of estimators of h and determination
of convergence properties). In many areas the data are sampled using an uniform
design. (Biedermann et al. (2011)) constructs an optimal design minimizing IMSE
of indirect regression estimator, which is constructed by estimating the coefficients
in the singular value decomposition of the corresponding operator. They discuss two
regularization schemes (Tihhonoff and spectral cut-off regularization).

3 Fredholm operators and KWET

Under the suitable assumptions the integral operator L is a compact operator. The
dimension of the null space of operator acting on h equals to the co–dimension of its
range. The range is characterized as those ψ that are orthogonal to the null space
of the transpose of the operator, namely with the kernel K ′(α, x) = K(x, α). This
was proven by Fredholm for such operators, see e.g. (Lax (2002)).

Here we discuss the applicability of this approach for KWET and solvability
of the appropriate Fredholm equations. We may have a look on a ψ = Lh by
considering various spaces of h.

We can employ Fredholm approach by using an approximative approaches from
numerical analysis. In such a case the solution of Fredholm integral equations of
the first kind is considered in terms of a linear combination of eigenfunctions of
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the kernel. Practical and theoretical difficulties appear when any corresponding
eigenvalue is very small, and practical solutions are obtained which exclude the
small eigensolutions and which are exact for a slightly perturbed integral equation.
The problem is essentially ill posed, in the sense that there are many solutions
which satisfy exactly an integral equation slightly perturbed from the original, and
we might therefore seek a ”smooth” solution rather than an exact solution. For
more details on analytical properties see e.g. (Baker et al. (1964)). The practical
approach in numerics is well done by (Hansen (1992)). We have found practically
very important to choose a big weights for a large values of criterion ψ(ξ).

Now let us formulate theoretical conditions for solvability of Fredholm equation
in our setup. Let us consider h ∈ HR where HR is either L2[0, 1] or reproducing
kernel Hilbert space with reproducing kernel R(s, t), s, t ∈ [0, 1]. We assume that
the kernel given by

Q(ξ1, ξ2) =

{ ∫ 1

0
ϕ(ξ1, α)ϕ(ξ2, α)dα, if HR is L2[0, 1],∫ 1

0

∫ 1

0
ϕ(ξ1, u)ϕ(ξ2, v)R(u, v)dudv otherwise,

(6)

is continuous on [0, 1]2. Now we can formulate some results on solvability.

Lemma 1 Let us consider Fredholm equation Lh = ψ. Then ψ ∈ L(HR) if and only
if ψ(ξ) =

∑
v avqv(ξ) and

|||ψ|||2 :=
∑
s

ψ2
s

λ2v
<∞ (7)

where ψs =
∫
Xn ψ(ξ)qs(ξ)dξ and Q(ξ, ν) =

∑
s λvqs(ξ)qs(ν) is Mercer-Hilbert-Schmidt

expansion (see (Riesz and Nagy (1955))) of kernel Q.

The next lemma formulates sufficient conditions in terms of kernel ϕ (i.e. Dα-
criterion) for existence of solution to ψ = Lh.

Lemma 2 Let kernel ϕ has expansion ϕ(ξ, α) =
∑

i µiui(ξ)vi(α), ψ ∈ span {ui}
and |||ψ|||2ϕ :=

∑
i
ψ2
i

µ2i
< ∞, where ψi =

∫
Xn ψ(ξ)ui(ξ)dξ. Then there exists solution

of ψ = Lh

Proof of lemma 2 We integrate expansion equality ϕ(ξ, α) =
∑

i µiui(ξ)vi(α),

(this is possible since kernel ϕ ∈ L2) by
∫ 1

0
..vi(α)dα Thus we obtain

∑
i µi(vi, h)ui(ξ) =∑

i(ui, ψ)ui(ξ) From that we have (vi, h) = (ui, ψ)/µi; i = 1, .. And thus

h(α) =
∑
i

(ui, ψ)

µi
vi(α),

From which Picard condition is |||ψ|||2ϕ <∞. �

4 Numerical experiments and Regularization

The problem of solving numerically a Fredholm equation of the first kind is com-
plicated by the fact that the inversion operator is not in general continuous so that
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numerical stability is major problem. When observation is not given analytically,
any error in these values can completely invalidate the solution. This we have ob-
served in our numerical experiments, getting many eigenvalues close to 0 and other
one being relatively huge (≈ 105). A common approach is to find a regularized
solution by minimizing the functional ||Lh−ψ||2+λΩ(h) over a suitable set of func-
tions. Here, Ω, the stabilizing functional, is a non-negative functional chosen to be
small for h having desirable properties (typically smoothness). λ, the regularization
parameter, is set to give an appropriate balance (trade-off) between the value of
Ω(h) and the error ||Lh−ψ||2 (see e.g. (Tikhonov and Arsenin (1977)) for a seminal
paper). Regularization with

Ω(h) =

∫ m∑
i=0

ai|f (i)|2 (8)

(so called Tikhonov regularization) has been extensively studied. (Wahba (1977))
developed the method called generalized cross validation (GCV) to estimate λ di-
rectly from the data.

The following numerical experiments (see Section 4) illustrate that we need regu-
larization in our setup. One may wonder, why a need for regularization in discretized
setup? As (Hansen (1992)) states, even that for problems with finite rank, Pickard
condition (in Lemma 1,2) is always satisfied (from a purely mathematical point of
view), discrete problems always suffer from some combination of measurement er-
rors, discretization errors, and rounding errors and the solution is extremely sensitive
to these errors. Beside this argument, we have some reasons which solution h suits
well for our purposes (i.e.h > 0, etc.).

4.1 Construction of the minimization problem

In this section we reformulate the problem of equivalence of the two criteria of
optimality as a quadratic optimization problem. Then we present numerical methods
used to solve it.

Recall the equivalence conjecture: there exists such a function h⋆(α) that the

following holds ψ(ξ) ≃
1∫
0

Φ(ξ|α)h⋆(α) dα. Here ψ(ξ) denotes a criterion related to

prediction and Φ(ξ|α) denotes Dα-optimality criterion.
The problem is how to find such a function h(α), so that the two criteria are

equivalent. Given ψ(ξ) and Φ(ξ|α), we are interested in minimization of the following
function

fξ =

ψ(ξ)− 1∫
0

Φ(ξ|α)h(α) dα

2

, (9)

with respect to h(α). For the sake of simplicity, consider that h(α) is of the form
h(α) =

∑d
i=1wiδαi

, for some α = (α1, . . . , αd)
T , 0 ≤ αi ≤ 1. Then our problem can

be written as

f =

q∑
j=1

fξj =

q∑
j=1

[
ψ(ξj)−

d∑
i=1

wiΦ(ξj|αi)

]2
,

6



=

q∑
j=1

[
ψ(ξj)− ΦT (ξj|α)w

]2
,

=

q∑
j=1

ψ2(ξj) + wT

(
q∑
j=1

Φ(ξj|α)ΦT (ξj|α)

)
w − 2wT

q∑
j=1

ψ(ξj)Φ(ξj|α).

Thus the problem of minimization of the function f is equivalent to minimization
of the following function

f̃ =
1

2
wTAw − bTw + c, (10)

where

A =

q∑
j=1

Φ(ξj|α)ΦT (ξj|α), b =

q∑
j=1

ψ(ξj)Φ(ξj|α), c =
1

2

q∑
j=1

ψ2(ξj).

Hence, our aim is to find the optimum of a quadratic function f̃ . The Hessian A of
the objective function f̃ is a symmetric positive semi-definite matrix.

4.1.1 Constrained case

In the previous section we considered that there is no constraints on the function
h(α). However, it can be useful to require h(α) to have some certain properties. For
instance, we can impose the following constraint on h(α)∫ 1

0

h(α)dα = 1.

In this case our problem can be formulated as

minimize f̃ , such that

∫ 1

0

h(α)dα = 1. (11)

It corresponds to a constrained quadratic optimization problem. Since we assumed
that h(α) is in the form h(α) =

∑d
i=1wiδαi

, the constraint here can be simply

rewritten as
∑d

i=1wi = 1.
The usual trick when solving a constrained quadratic optimization problem is

penalty approach. It consists in introducing some penalty term σ to the original
function f̃ and then solving a corresponding (equivalent) unconstrained problem.

In our case first we rewrite the constraint
∑d

i=1wi = 1 in the form yTw = 1,

where y = (1, . . . , 1)T , and then we define fσ(x) = f̃+σ(yTw−1)2 = f̃+σ(wTyyTw−
2wTy + 1),
= 1

2
wTAw − wT b+ c+ σ(wTyyTw − 2wTy + 1)

= 1
2
wT (A + 2σyyT )w − wT (b + 2σy) + σ + c. Now we can solve this unconstrained

problem with some large penalty term σ instead of the original constrained problem
(11).
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4.1.2 Weighted case

We also can be interested in minimization of the weighted function (or function with
the scaling factor a)

faξ =

ψ(ξ) + a−
1∫

0

Φ(ξ|α)h(α) dα

2

, (12)

where a is some weight. First, for each fixed weight a we shall minimize
∑q

i=1 f
a
ξi

with respect to h(α), such that
∫ 1

0
h(α)dα = 1. Then we minimize the resulting

function with respect to the scaling factor a. Thus, we have

min
a

min
h(α):

∫ 1
0 h(α)dα=1

q∑
i=1

faξi = (13)

min
a

 min∫ 1
0 h(α)dα=1

q∑
i=1

ψ(ξi) + a−
1∫

0

Φ(ξi|α)h(α) dα

2
 . (14)

For each fixed weight a, we minimize the following function

fa =
∑q

i=1 f
a
ξi
=
∑q

j=1

[
ψ(ξj) + a−

∑d
i=1wiΦ(ξj|αi)

]2
=
∑q

j=1(ψ(ξj) + a)2 + wT
(∑q

j=1 Φ(ξj|α)ΦT (ξj|α)
)
w

− 2wT
∑q

j=1(ψ(ξj) + a)Φ(ξj|α),
subject to

∫ 1

0
h(α)dα = 1.

The problem of minimization of the function fa is equivalent to minimization of
the following function

f̃ =
1

2
wTAw − bTw + c, (15)

where

A =

q∑
j=1

Φ(ξj|α)ΦT (ξj|α), b =

q∑
j=1

(ψ(ξj) + a)Φ(ξj|α), c =
1

2

q∑
j=1

(ψ(ξj) + a)2.

To minimize with respect to a we use the MATLAB function fminbnd within the
interval [−10, 10]. To minimize fa for each fixed a we shall use some recent gradient
methods described in the next section.

4.2 Optimization methods

In this section we describe numerical methods we use to solve the optimization
problems described in the previous sections.

Gradient algorithms
Consider a problem of minimizing a quadratic function in the following form

f(x) =
1

2
xTAx− xT b , (16)
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where x ∈ Rd is an unknown vector, A is a d× d symmetric positive-definite matrix
such that

0 < m = inf
(z,z)=1

(Az, z) < M = sup
(z,z)=1

(Az, z) <∞

and b is a given vector in Rd. The gradient of the function (16) at point xk is
∇f(xk) = gk = Axk − b. Solution to the optimization problem (16) is x∗ = A−1b.
However, usually it is a very difficult computational task to compute the inverse
matrix A−1, especially when the dimension of the problem d is large. In this case
some numerical methods can be used to determine the solution x∗. A big class of
numerical optimization methods is the class of gradient algorithms.

The general gradient method for solving problem (16) corresponds to the follow-
ing iterative process

xk+1 = xk − γkgk , k = 0, 1, 2 . . . (17)

where x0 ∈ Rd is a starting vector and γk > 0, the step-size at iteration k, is
determined by some rule. The iterations (17) can also be rewritten in terms of
residuals (gradients) gk as

gk+1 = gk − γkAgk , (18)

with g0 = Ax0 − b ∈ Rd, the initial residual vector.
There exist numerous algorithm of gradient-type, the most famous of them being

the Steepest Descent (SD) method (also known as Gradient Descent). This method
was initially introduced by Cauchy in 1847 for solving systems of linear equations.
The step length for the SD algorithm is determined by

γk = argmin
γ
f(xk − γ∇f(xk)), (19)

and in the quadratic case is given by

γk =
(gk, gk)

(Agk, gk)
. (20)

However, nowadays it is regarded as an algorithm with poor rate of convergence.
Many other gradient methods were derived from SD and can be viewed as its adap-
tation, for example, the Barzilai and Borwein (BB) method introduced by (Barzilai
and J.M. Borwein (1988)). The BB step-length is exactly the step length of the
standard Steepest Descent but at the previous iteration

γk =
(gk−1, gk−1)

(Agk−1, gk−1)
. (21)

This method has much better convergence rate than that of SD, but convergence to
the solution is completely non-monotonic.

The actual speed of convergence of any gradient method depends on the condition
number ρ = M/m, i.e., the ratio of the largest and the smallest eigenvalues of the
matrix A. Larger the condition number is, worse the rate of convergence is.

An important characteristic of a numerical algorithm is its computational cost
and possibility to parallelize the computations. The above methods require one
matrix-vector multiplication per iteration and calculation of two inner products.
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This inner products create so-called synchronization points: all computations have
to wait till these calculations are done.

An efficient gradient algorithm with pre-defined step sizes
In (Bukina et al. (2009)) several methods to compute the step length for the

gradient algorithm (17) were proposed. These methods consist in constructing a
sequence of step sizes before the run of the main algorithm. Thus, the same sequence
can be used for different problems.

More precisely, for the gradient algorithm

xk+1 = xk − γkgk ,

the sequence of step lengths γk = 1/βk is constructed in advance using some pre-
defined sequence of numbers. First we construct these numbers and then we rescale
these points to the interval defined by the smallest and the largest eigenvalues of the
matrix A. To construct a sequence {βk} first we compute a sequence {zk} having the
arcsine density in [0, 1]. Then we scale {zk} from [0, 1] to [m,M ] using the formula

βk = m+ (M −m)zk, k = 0, 1, . . .

where m and M are the leading eigenvalues of A or their approximations.
Sequence of {zk} is constructed so that it has arcsine distribution with density

p(t) =
1

π
√
t(1− t)

, 0 ≤ t ≤ 1 , (22)

on [0, 1]. The sequence {uk} defined via

ui =
1

π
arccos(2zi − 1), for all i = 1, . . . , k,

uniformly distributed in [0, 1] when {zk} has the density (22). Figure 1 shows
frequencies of the sequence {zk}3990 generated using a dynamical system described
below and the corresponding arcsine density on [0, 1].

One of the most natural algorithms for computing points {zk} with density (22)
would be to generate independent random points with this density. This, however,
does not lead to reliable algorithms: the associated sequence of rates becomes too
erratic. The use of dynamical systems for generating {zk} leads to more stable and
efficient algorithms. A good example of a dynamical system used to generate points
with the asymptotic density (22) is presented below.

Sequence 1: Symmetric fractional parts of Golden Ratio.
For all k ≥ 0, define

uk = { { φ(k + 1)}, for k = 2j1− {φ(k + 1)}, for k = 2j + 1.

where
φ = (

√
5− 1)/2 ≃ 0.61803 . . .

is the Golden ratio and {a} denotes the fractional part of a. The sequence {zk} is
then defined via

zk =
1

2
+

1

2
cos(πuk), k = 0, 1, . . . (23)
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Figure 1: Frequencies of the sequence {zk}3990 and the corresponding arcsine density
on [0, 1]

Other sequences can be used to generate {zk}: for instance, Chebyshev points
(or Chebyshev nodes, the roots of Chebyshev polynomials of the fist kind), different
logistic maps, etc. The advantage of the presented dynamical system is the fact we
can construct as many step lengths as we want, we do not have to decide the number
of iterations to perform beforehand.

Also ordering of the sequence {zk} is quite important: some sequences can lead
to completely non-monotonic methods. Another advantage of this sequence is that
the numbers come in symmetric pairs, so that we can use a largest zk (and therefore
the largest βk) in each pair. For all j ≥ 0, define vj = {φ(j + 1)}, and u2j =
min{vj, 1 − vj}, u2j+1 = max{vj, 1 − vj}; the sequence (zk)k is still defined using
(23). We shall refer to the resulting sequence as Sequence 2. This special ordering
of the step sizes results in more monotonic convergence of the associated gradient
method.

The sequence {βk} is constructed from {zk} by scaling it to the interval [m,M ],
where m andM are the extreme eigenvalues of A or their approximations. However,
in most of the practical problems these eigenvalues are unknown, thus, they have to
be estimated. In order to do so we shall define

µαk =
(Aαgk, gk)

(gk, gk)
,

this value is called the moment of the order α. The first moment µ1
k turns out to be

the Rayleigh quotient (also known as the Rayleigh-Ritz ratio), which is commonly
used for the eigenvalue estimation. Also we have the following inequalities m

≤ µ
(k)
1 ≤

µ
(k)
2

µ
(k)
1

≤ µ
(k)
3

µ
(k)
2

≤ µ
(k)
4

µ
(k)
3

≤ · · · ≤M , see (Bukina et al. (2009)) for more details.

Moreover, we do not need to estimate the eigenvalues at every iteration: for
each sequence there exist pre-specified set of iterations (called sequence of record
moments) at which it is necessary to estimate. For any sequence z0, z1, z2, . . ., define
the sequences of record moments Lmin = {Lmin(j)}∞j=0 and Lmax = {Lmax(j)}∞j=0 as

11



follows: Lmin(0) = Lmax(0) = 0; Lmin(j + 1) = min{k > Lmin(j) : zk < zLmin(j)},
Lmax(j + 1) = min{k > Lmax(j) : zk > zLmax(j)} for j ≥ 0. The sequences of
record moments related to sequence 2 are Lmin = {0, 1, 3, 5, 9, 15, . . .} and Lmax =
{0, 2, 4, 8, 14, . . .} with Lmin(j+1) = Lmax(j)+1 for j = 0, 1, . . . See (Bukina et al.
(2009)) for more information.

For our numerical tests we shall use Algorithm 3 presented in (Bukina et al.
(2009)) and summarized in the scheme. The algorithm is initialized by using two
iterations of Minimum Residues algorithm with γk = (Agk, gk)/(Agk, Agk), k = 0, 1,

at which initial approximations to m and M , m̂k+1 and M̂k+1 respectively, are
computed. To construct the sequence {zk} we use the symmetric fractional parts of
Golden Ratio with largest zk first in each symmetric pair (this sequence is denoted
as Sequence 2 in (Bukina et al. (2009))).

Set j = 0 k = 2, 3, . . . 1. M̂k > M̂k−1 βk = M̂k βk = m̂k + (M̂k − m̂k)zj;
If j ∈ Lmax, then add k + 1 to Ik+1.
j ← j + 1 2. xk+1 = xk − 1

βk
gk 3. gk+1 = Axk+1 − b

4. If k ∈ Ik compute µ
(k)
1 = βk

(
1− (gk,gk+1)

(gk,gk)

)
and

µ
(k−1)
4

µ
(k−1)
3

= βk−1 + βk
(βk(gk+1−gk)+βk−1(gk−1−gk),gk+1−gk)
(βk(gk+1−gk)+βk−1(gk−1−gk),gk−1−gk)

,

update m̂k+1 = min{m̂k, µ
(k)
1 } and M̂k+1 = max{M̂k, µ

(k−1)
4 /µ

(k−1)
3 };

otherwise set m̂k+1 = m̂k and M̂k+1 = M̂k.
This method is much faster than the standard gradient methods such as Steepest

Descent and Minimal Residues and usually faster than the Barzilai-Borwein algo-
rithm. It also exhibits monotonic behavior almost at every iteration. Moreover, this
algorithm does not require computations with high accuracy and is advantageous in
terms of computational cost: to perform k iterations, only O(log k) inner products
need to be calculated versus 2k inner products for standard gradient methods. This
algorithm can be easily parallelized: the synchronization is required only at O(log k)
pre-specified iterations out of k iterations, as k →∞.

For more details on the construction of sequence of step lengths of this type and
the behavior of associated gradient methods see (Bukina et al. (2009)).

5 Numerical experiments

In this chapter we present several numerical examples to illustrate the proposed
approach.

5.1 Parameter setup

Using iterative gradient methods, we are trying to minimize the following objective
function

f̃ =
1

2
wTAw − bTw + c, (24)

where

A =

q∑
j=1

Φ(ξj|α)ΦT (ξj|α), b =

q∑
j=1

ψ(ξj)Φ(ξj|α), c =
1

2

q∑
j=1

ψ2(ξj).

12



Recall that α = (α1, . . . , αd), 0 ≤ α ≤ 1 and we are interested in a function h(α)
which is assumed to be in the form h(α) =

∑d
i=1wiδαi

. Here Φ(ξ|α) denotes Dα-
optimality criterion and ψ(ξ) denotes a criterion related to prediction. For our
numerical experiments we consider ψ(ξ) = −IMSPE.

When the criterion function forDα-optimality criterion is Φ(ξ|α) = |Mβ(ξ, γ)|α|Mγ(ξ, γ)|1−α,
0 ≤ α ≤ 1, the resulting matrix A is very ill-conditioned. This can lead to a slow
convergence of gradient methods. The speed of convergence depends strongly on
the spectrum of A, especially on the condition number - ratio of the smallest and
the largest eigenvalues of the matrix. In this case the smallest eigenvalue m is very
close to zero and the largest one M is usually of the form c ∗ 105, where c is some
positive constant. It is know that when the condition number is large, numerical
methods converge slowly.

When using other criterion function Φ(ξ|α) = α log |Mβ(ξ, γ)|+(1−α) log |Mγ(ξ, γ)|, 0 ≤
α ≤ 1, the condition number of A is still quite large, however, it is smaller than in
the previous case. Thus, for our tests we have used log-based criterion function.

For the examples below we choose the dimension of the partition α, which is also
the dimension of the problem, to be d = 100. Thus, matrix A is a symmetric d× d
matrix with the largest eigenvalue M and the smallest eigenvalue m very close to
zero. For the gradient algorithm the initial vector is w0 = (1, 1, . . . , 1) and stopping
criterion is ∥g∥2 ≤ tol with tol = 10−4. For each example we plot the resulting
function h(α), given by (4.1), and the two criteria as a function of d12 = |ξ2 − ξ1|.

We have used 2,3,4,5 and 6-point designs ξ in the following form ξj = [0, ξj2],
ξj = [0, ξj2, 1], ξj = [0, 1

2
ξj2, ξ

j
2, 1], ξj = [0, 1

3
ξj2,

2
3
ξj2, ξ

j
2, 1], ξj = [0, 1

4
ξj2,

1
2
ξj2,

3
4
ξj2, ξ

j
2, 0]

with 1 ≤ j ≤ 200, where ξ2 is a random vector. In each example parameter of the
covariance of the process r is equal to one.

5.2 Results: Unconstrained case

First, we do not impose any additional constraints on h(α), for the illustration see
Figures 2 and 3. We plot the resulting values of wi, i = 1, . . . , d, against α, and the
two criteria ψ(ξ) and Dα(ξ). In the figures Dα denotes

∫ 1

0
Φ(ξ|α)h(α) dα, where as

h(α) we use the optimal function that we have found. In this case, approximations
are successful: in each example Dα(ξ) is very close to ψ(ξ); the worst case corre-
sponds to the 2-point design and is presented in Figure 2, however, even here the
approximation is already quite good.

5.3 Results: Constrained case

Now we consider that the function h(α) is constrained so that∫ 1

0

h(α)dα = 1,

or simply
∑d

i=1wi = 1. In this case we apply the gradient method to minimize the
function fσ described in the previous chapter (see section 4.1.1 for more details),
with the penalty term σ = 10. See Figure 4 for illustration.

In the constrained case, we were not able to construct reasonable approximations
of ψ(ξ). Perhaps, this happened because of the constraints imposed on h(α). For
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Unconstrained case
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Figure 2: Values of wi, i = 1, . . . , d, against α = (α1, . . . , αd) (left) and ψ(ξ) and
Dα(ξ) as a function of d12 = |ξ2 − ξ1| (right) for 2-point designs.

the optimal h(α) which satisfies the constraints and minimizes the function fσ, the
relative distance (the value of fσ at the optimum h(α)) is not small enough to provide
a good fitting of the two criteria. This problem can be fixed by the introducing of a
scaling factor a as described in section 4.1.2. This approach is implemented in the
upcoming sections.

5.4 Results: Weighted and unconstrained case

In this section we present the results of the minimization of a function fa with
a scaling factor a, see section 4.1.2 for the explanation. First, we shall illustrate
weighted and unconstrained case. It corresponds to the case described in the section
4.1.2 but when the constraints on h(α) are omitted. See Figures 5 and 6 for the
results.

As in the unconstrained case we were able to obtain reasonable approximations
of ψ(ξ). Moreover, in this case minimization was also done with respect to the
scaling factor a, thus we have slightly better results than in the simple case.

This is due to the more complex computations and an additional minimization
with respect to the weight a. Of course, this minimization requires some extra
calculations. For each fixed a the corresponding unconstrained problem is solved
(from this point of view, our first example in the section 5.2 can be regarded as a
unconstrained problem that corresponds to the scaling factor a = 0). Then amongst
all tried weights, one weight a, for which fa is taking the minimum value, is chosen.
Thus, minimization with respect to a consists in sequential solution of unconstrained
problems and then choosing the best of them. As a result, the computational time
is increased but the precision of approximation is better.

It can be seen from the figures that for each optimal scaling factor (for the values
of optimal a’s see next section), the two criteria ψ(ξ) and Dα(ξ) are very close to
each other.
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Figure 3: Values of wi, i = 1, . . . , d, against α = (α1, . . . , αd) (left) and ψ(ξ) and
Dα(ξ) as a function of d12 = |ξ2 − ξ1| (right) for, from top to bottom, 3,4,5 and
6-point designs.
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Constrained case
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Figure 4: Values of wi, i = 1, . . . , d, against α = (α1, . . . , αd) (left) and ψ(ξ) and
Dα(ξ) as a function of d12 = |ξ2 − ξ1| (right) for, from top to bottom, 3,4,5 and
6-point designs.

Weighted case
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Figure 5: Values of wi, i = 1, . . . , d, against α = (α1, . . . , αd) (left) and ψ(ξ) and
Dα(ξ) as a function of d12 = |ξ2 − ξ1| (right) for 2-point designs.
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Weighted case
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Figure 6: Values of wi, i = 1, . . . , d, against α = (α1, . . . , αd) (left) and ψ(ξ) and
Dα(ξ) as a function of d12 = |ξ2 − ξ1| (right) for, from top to bottom, 3,4,5 and
6-point designs. 17



5.5 Results: Weighted and constrained case

Let us now illustrate the weighted and constrained case, see Figures 7 and 8.
Unlike in the simple constrained case, we were able to construct reasonable ap-

proximations when some weight was added to the objective function. Thus, our
experiments showed that scaling factor a = 0 is not always optimal. Table 1 sum-
marizes the optimal values of scaling factors for the different cases that we have
considered.

Thus, introduction of the weight allowed us to approximate ψ(ξ) even in the case
when some constraints on h(α) were imposed.

Designs ξ Unconstrained case Constrained case
2-point designs 0.6612 1.1438
3-point designs 1.6488 1.4385
4-point designs 1.5914 0.9933
5-point designs 0.8209 0.3862
6-point designs -0.1064 -0.3097

Table 1: Values of the optimal scaling factor a

Weighted and constrained case
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Figure 7: Values of wi, i = 1, . . . , d, against α = (α1, . . . , αd) (left) and ψ(ξ) and
Dα(ξ) as a function of d12 = |ξ2 − ξ1| (right) for 2-point designs.

The value of the minimized function at the optimum can be treated as a relative
distance between the two criteria, see Table 2. Smaller this distance is better the
approximation.

5.6 Results:Degenerated case

In all the previous examples the partition α = (α1, . . . , αd) was taking as a random
vector. However, even if we take a partition α in a very simple form, say α =
(0, . . . , 0, 1), we still can obtain reasonable approximation of the criterion ψ(ξ) =
−IMSPE. One of the possible explanations for this phenomenon is the relative
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Weighted and constrained case
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Figure 8: Values of wi, i = 1, . . . , d, against α = (α1, . . . , αd) (left) and ψ(ξ) and
Dα(ξ) as a function of d12 = |ξ2 − ξ1| (right) for, from top to bottom, 3,4,5 and
6-point designs.
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Designs ξ No constraints Weight Constraints and Weight
2-point designs 0.0377 1.5450e-004 0.02033
3-point designs 1.2204e-005 1.2750e-008 2.1008e-007
4-point designs 0.0013 1.3660e-006 1.8261e-004
5-point designs 2.0676e-004 4.7275e-006 6.1369e-005
6-point designs 6.8409e-006 3.5032e-006 1.5682e-005

Table 2: Distances between the two criteria

simplicity of the chosen criterion IMSPE. Perhaps, when using more sophisticated
criterion, say MSPE, a simple α will not be reliable. This aspect is left for further
investigation.

Degenerated case
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Figure 9: Values of wi, i = 1, . . . , d, against α = (α1, . . . , αd) (left) and ψ(ξ) and
Dα(ξ) as a function of d12 = |ξ2 − ξ1| (right) for 2-point designs.

6 Conclusions and Discussion

In this paper we suggested the operator approximation for learning about rela-
tionship of IMSPE and compound Dα criterion introduced in (Müller and Stehĺık
(2010)). First we introduce integral relation between IMSPE and compounding
kernel. We discuss a theoretical conditions for existence of solution for obtained
Fredholm equation of the 1st kind. Then we provide numerical implementation and
construct h(α). Several numerical examples illustrates the methods provided.

In general, it is a difficult task to make a link between two optimality criteria:
one based on prediction, another based on parameters estimation, especially in the
case of correlated processes. In the uncorrelated case it was done by (Kiefer and
Wolfowitz (1960)). The correlated case, however, is not fully investigated. The
first attempt to relate two criteria was done in (Müller and Pronzato (2009)). In
this paper we concentrate on the correlated case and reformulate the conjecture of
equivalence in an integral form.
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Degenerated case
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Figure 10: Values of wi, i = 1, . . . , d, against α = (α1, . . . , αd) (left) and ψ(ξ) and
Dα(ξ) as a function of d12 = |ξ2 − ξ1| (right) for, from top to bottom, 3,4,5 and
6-point designs.
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Initially, we reformulated the problem of equivalence as a quadratic optimization
problem. Then we solve this problem by using new gradient methods for quadratic
optimization. These methods are advantageous for several reasons: they are much
faster than standard gradient methods, have small computational cost, easily paral-
lelized and monotonic at almost every iteration. We tried the proposed approach on
several test problems and we present the obtained results in the paper. In terms of
required computational effort it is less expensive to generate parameters estimation
optimal designs rather than prediction optimal designs. Some particular structure
of the relation between two criteria would allow to substitute a costly computation
by much less costly one.

In this paper we concentrated on one dimensional case and as a prediction cri-
terion we used IMSPE, leaving MPSE criterion for the future work. The approach
also can be modified for the 2D case.

Also a thorough study of other regularizations will be of interest. As we have seen
in section 4 we need regularization of Lh = ψ, as it is usual for Fredholm equations
of the first kind. We have regularized by ||h|| = 1, h > 0. This is a natural form of
regularization, since we have h in the form of density. Regularization by maximum
entropy ((Amato and Hughes (1991))) and regularization by reproducing kernel
Hilbert space norm, (see e.g. (Wahba (1977))) would be worth further investigation.

In the present paper we considered the problem of solving Lh = ψ. The prob-
lem of solving (in h) maxLh = maxψ is also of interest. That means, we search
for h such that Lh and ψ have the same maximum. One idea is to employ the
continuity property of Lp norm, i.e. limp→∞ ||x||p = ||x||∞ = maxx(t). Thus we
may solve limp→∞ ||Lh||p = limp→∞ ||ψ||p, hoping, that under certain regularities,
we may approximate it by ||Lh||p = ||ψ||p, for particularly large p > 1. For ||ψ||p we
may use MC strategies to evaluate this norm. For ||Lh||p we may use that fact that

||Lh||pp =
∫ 1

0
||ϕ(., α)||pph(α)dα. This will be worth further research.
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