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Abstract:
Gjestvang and Singh (2007) presented a “forced randomized response model” for the es-
timation of a population mean of a sensitive variable, which was found to perform better
than the model of Bar-Lev et al. (2004). Odumade and Singh (2008) extended the discus-
sion of the statistical properties of the proposed estimator to general probability sampling
designs. In this paper, this generalization is based on the estimation of the true value of the
study variable for each sampling unit. These individual estimators build the basis for two
different estimators of the variance of the generalized Gjestvang and Singh model. For the
model’s practical applicability, the variance estimation is as important as its generaliza-
tion to all probability sampling methods. A simulation study compares the performance
of the proposed “simple” and the “bootstrap estimator” for different situations leading to
recommendations for its practical use.
Key words: Randomized Response Technique; Statistical Disclosure Control; Complex
Sampling Design; General Probability Sampling; Variance Estimation; Bootstrap
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1 Introduction
Nonresponse and untruthful answering are very common in survey sampling. This is true
especially when the variables asked are sensitive. For such situations, Warner (1965)
presented the pioneering work in the field of randomized response questioning designs.
Since then, various such techniques with different randomization devices have been pro-
posed for all types of variables (cf. for a review for instance, Tracy and Mangat 1996;
or a standardization of a group of strategies in Quatember 2009). All these strategies use
a questioning design, which does not enable the data collector to identify the randomly
selected question or instruction on which the respondent has given the answer. This shall
reduce the individuals’ fear of answering on a sensitive question. However, the strat-
egy does still allow the estimation of the parameter under study because the probability
mechanism of the randomization device is known.

Warner (1971) was the first to note that these techniques are also applicable in the
field of statistical disclosure control as methods of masking confidential micro-data sets
to allow their release for public use (cf. ibd., p.887). Such micro-data sets may con-
tain variables with sensitive information on an individual. For the randomized response
techniques to be applied in this field, either the survey units already perform the random-
ization of their answers at the survey’s design stage or the statistical agency applies the
probability mechanism of the technique on the micro-data file after the data collection
before its release (cf. for instance, Gouweleeuw et al. 1998, or van den Hout and van der
Heijden 2002).

For the estimation of a mean value µx of a sensitive quantitative variable x, Eichhorn
and Hayre (1983) suggested that the answer given by the respondent k should not be the
true value xk but yk = zk · xk. Herein, variable z is the “scrambling” variable, of which,
the distribution is known. Its expectation and standard deviation are denoted by µz and
σz, respectively.

Bar-Lev et al. (2004) added a second possibility to this scrambled response. The
answer yk of survey unit k is

yk =

{
xk with probability p1,
zk · xk with probability p2 = 1− p1

(0 ≤ p1 ≤ 1). By rotating a spinner, drawing cards, throwing the dice, or using some other
randomization instrument (for the use of house numbers or dates of birth see Diekmann
2011), the respondent then is instructed to report his or her true value of the variable under
study with probability p1 or to answer according to the Eichhorn and Hayre model with
the remaining probability.

In the paper of Gjestvang and Singh (2007), this randomization device is modified
again by adding a third possibility to the Bar-Lev et al. process. The randomized response
of the survey unit k is

yk =





xk with probability p1,
zk · xk with probability p2,
F with probability p3

(p1 +p2 +p3 = 1; 0 ≤ pi ≤ 1, i = 1, 2, 3). Therein, survey unit k randomly has to answer
either truthfully, or in the manner suggested by Eichhorn and Hayre, or with a fixed value
F predetermined by the agency.
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In section 2 of this paper, the extension of the discussion of the statistical properties
(i.e. the estimator and the variance of the estimator of the mean value µx) of the Gjestvang
and Singh model by Odumade and Singh (2008) to general probability sampling designs
is presented. This extension, being of greatest importance for the practical application of
the procedure, is derived herein using unbiased estimators x̂k calculated for this reason
for each xk obtained in the sample s (k ∈ s). Based on these estimated values, in the sub-
sequent section two estimators of the estimator’s variance are proposed. For the practical
application, this estimation problem is considered to be as important as the generaliza-
tion of the model to any probability sample. In the concluding section 4, a simulation
study compares the quality of these proposed estimators in different situations leading to
recommendations for its practical use.

2 Estimating the Survey Units’ True Values of the Sensi-
tive Variable

Odumade and Singh (2008) generalized the discussion of the estimator and the variance
of the model by Gjestvang and Singh (2007) to general probability sampling. In the
following, these statistical properties of the generalized model are presented in a different
way. This will serve as the basis for two proposed estimators of the model’s variance in
the next session.

In the Gjestvang and Singh model, the expectation of yk with respect to the random-
ization R is given by

ER(yk) = p1 · xk + p2 · xk · µz + p3 · F
= xk · b + a

with a ≡ p3 · F and b ≡ p1 + p2 · µz. Hence, the term

x̂k =
yk − a

b
(1)

(b 6= 0) is unbiased for the true value xk.
The extension of the theory of the Gjestvang and Singh model to a sample s drawn

from a finite population U with N elements by a general probability sampling design P
can make use of these “substitutes” for the unknown xk’s. Assuming full cooperation
of the survey units because of the higher privacy protection offered by the questioning
design, the following theorems apply (compare the results in Odumade and Singh 2008,
p.246):

Theorem 1: Applying the randomization device by Gjestvang and Singh (2007) and
using (1), for a probability sampling design P, the population mean µx of study variable x
is unbiasedly estimated by

µ̂P =
1

N
·
∑

s
x̂k · dk. (2)

In (2), the sample weights dk are the reciprocals of the first order sample inclusion prob-
abilities of the n sample units k (k = 1, 2, ..., n).
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Proof The subsequent calculation proofs that µ̂P is without bias:

E(µ̂P ) =
1

N
· EP

(
ER

(∑
s
x̂k · dk|s

))
=

1

N
· EP

(∑
s
xk · dk

)

=
1

N
·
∑

U
xk = µx

Herein, EP and ER denote the expectations over two random processes, the probability
sampling design P and the randomization of responses R, respectively.

Theorem 2: For a probability sampling design P, the variance of µ̂P is given by

V (µ̂P ) =
1

N2
· VP

(∑
s
xk · dk

)
+

+
1

N2b2
·
[
(p1 + (σ2

z + µ2
z) · p2 − b2) ·

∑
U

x2
k · dk−

−2 · a · b ·
∑

U
xk · dk + a · (F − a) ·

∑
U

dk

]
. (3)

The first summand of variance (3) refers to the variance of the Horvitz-Thompson estima-
tor for the total of variable x for a given probability sampling design P, when the question
on variable x is asked directly. Then, the second summand in (3) can be seen as the
price to be paid in terms of accuracy for the privacy protection offered by the questioning
design.
Proof Let VP and VR denote the variances over P and R. The variance of µ̂P is given by

V (µ̂P ) = VP (ER(µ̂P |s)) + EP (VR(µ̂P |s)). (4)

The first of the two summands on the right-hand side of (4) yields

VP (ER(µ̂P |s)) =
1

N2
· VP

(∑
s
xk · dk

)
. (5)

Let Ik indicate the sample inclusion of survey unit k (k = 1, 2, ..., N ). Because the
conditional covariance CR of the two substitutes x̂k and x̂l (k 6= l) over the randomization
R is CR(x̂k, x̂l|s) = 0 and EP (I2

k) = EP (Ik) = 1/dk, the variance of µ̂P over the
randomization R conditioned on sample s yields:

VR(µ̂P |s) =
1

N2
· VR

(∑
U

Ik · x̂k · dk|s
)

=
1

N2
·
∑

U
I2
k · d2

k · VR(x̂k).

Hence, for the second summand on the right-hand side of (4)

EP (VR(µ̂P |s)) =
1

N2
·
∑

U
VR(x̂k) · dk

applies, where

VR(x̂k) =
1

b2
· VR(yk).

Moreover, VR(yk) = ER(y2
k)− E2

R(yk). The first expectation over R yields

ER(y2
k) = x2

k · p1 + ER(x2
k · z2

k) · p2 + F 2 · p3

= x2
k · (p1 + (σ2

z + µ2
z) · p2) + F · a.
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Furthermore, ER(yk) = xk · b + a. Altogether, the second summand on the right-hand
side of equation (4) results in

EP (VR(µ̂P |s)) =
1

N2b2
·
[
(p1 + (σ2

z + µ2
z) · p2 − b2) ·

∑
U

x2
k · dk−

−2 · a · b ·
∑

U
xk · dk + a · (F − a) ·

∑
U

dk

]
. (6)

Summing up (5) and (6) proves Theorem 2.
For the sampling design P, the design probabilities p1 to p3, and the distribution of z

all given, in our presentation, the variance minimizing value of F results in

F =
b ·∑U xk · dk

(1− p3) ·
∑

U dk

. (7)

In (7), the sum
∑

U dk is known. Applying the Gjestvang and Singh model as method of
statistical disclosure control after the data collection, the sum

∑
U xk ·dk can be estimated

by the sum
∑

s xk ·d2
k. In other cases, observations from past surveys may help to estimate

the sum needed in the enumerator of (7).

3 The Variance Estimators Proposed
With the estimators x̂k for the true values xk presented in section 2, two differing solutions
for the problem of estimating variance (3) can be proposed (k ∈ s).

For a closed form estimator of variance V (µ̂P ), on the right hand side of formula
(3) three terms have to be estimated from the data obtained in the sample. The first
one, VP (

∑
s xk · dk), refers to the variance of the Horvitz-Thompson estimator for the

total of variable x. It is estimated by the usual unbiased estimator V̂P (
∑

s xk · dk) (cf.
for instance, Särndal et al. 1992, p.43). Using the estimators x̂k from (1), the term∑

U xk · dk depending on both random processes, P and R, is estimated unbiasedly by∑
s x̂k · d2

k because EP [ER(
∑

s x̂k · d2
k|s)] =

∑
U xk · dk applies. But, the third term to

be estimated in (3),
∑

U x2
k · dk, cannot be estimated unbiasedly by

∑
s x̂2

k · d2
k, because

ER(x̂2
k) = VR(x̂k) + x2

k ≥ x2
k when there is a true randomization (p1 < 1). This means

that the “simple estimator”

V̂simple =
1

N2
· V̂P

(∑
s
xk · dk

)
+

+
1

N2b2
·
[
(p1 + (σ2

z + µ2
z) · p2 − b2) ·

∑
s
x̂2

k · d2
k−

−2 · a · b ·
∑

s
x̂k · d2

k + a · (F − a) ·
∑

U
dk

]
. (8)

overestimates the true variance of µ̂P if VR(x̂k) > 0. The overestimation of V (µ̂P ) in-
creases with increasing VR(x̂k) (see also section 4).

A second possibility for the estimation of the variance applies the bootstrap method.
The bootstrap method was originally designed by Efron (1979) to estimate the sampling
distribution of a statistic on the basis of data observed under i.i.d. conditions. For this pur-
pose, the empirical distribution of the variable under study can be regarded as a set-valued
Maximum-Likelihood-estimator of its unknown true probability distribution. Adapting
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the bootstrap method to complex sampling, the finite population U with N elements plays
the role of the unknown probability distribution, for which a set-valued estimator U∗ has
to be generated from the sample data according to the Maximum-Likelihood-principle (cf.
Chao and Lo 1994). Its basic idea is to replicate each observed xk dk-times (k ∈ s) (cf.
Gross 1980, or for complex samples, Sitter 1992). Then, resamples are drawn from the
“bootstrap population” U∗ by the same sampling method P by which the original sample
was drawn from the true population U . These resamples build the basis for the estimation
of the sampling distribution of the statistic under study. To implement data imputation for
missing values into the bootstrap procedure, Shao and Sitter (1996) proposed re-imputing
in each bootstrap sample in exactly the same way as in the original sample.

In our case, we generate a bootstrap population U∗ replicating the estimators x̂k in-
stead of the unknown true values xk. The sample weights dk of the sampling design P
are the replication factors applied on the x̂k’s of the original sample. In the next step, b
resamples are drawn from U∗ applying the same sampling method P as in the original
sample. In each of the b bootstrap samples, the randomization process R used in the orig-
inal sample is applied (“re-randomization”) and the estimator µ̂P

(.) is calculated yielding
µ̂P

(1), µ̂
P
(2), ..., µ̂

P
(b). The variance of µ̂P can be estimated by the “bootstrap estimator”

V̂boot =
1

b− 1
·
∑b

i=1
(µ̂P

(i) − µ̂P
(.))

2 (9)

with
µ̂P

(.) =
1

b
·
∑b

i=1
µ̂P

(i).

The estimator V̂boot overestimates the true variance V (µ̂P ) as a rule, because V (x̂k) >
V (xk) applies, if there is a real randomization process used in the Gjestvang and Singh
model. The bias increases with increasing V (x̂k). In the next section, a simulation study
compares the two proposed estimators with respect to efficiency.

4 A Simulation Study
A simulation study was carried out to investigate the performance of the two variance
estimators, Ŷsimple and Ŷboot, proposed in section 3. For this purpose, a population U of
N = 1, 000 elements was generated from a normal distribution with a mean of 1,000 and
a standard deviation of 200. The population parameters of these 1, 000 values for variable
x were µx = 995.739 and σx = 197.657.

Since the estimation of the sampling variance of an estimator of the mean value is
well-known given the sampling method P, the simulations were concentrated solely on
the uncertainty added through the randomization process R. Therefore, a Gjestvang and
Singh model with

yk =





xk with probability p1 = 0.8,
zk · xk with probability p2 = 0.16 and z = N(1, σz),
µx with probability p3 = 0.04

was applied 10,000-times directly to U . In practice, F can be fixed at its variance-
minimizing value µx when the method is used as masking method for statistical disclosure
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Figure 1: The 10,000 simulated estimators of µx for different σz (M1: σz = 0.1, M2:
σz = 0.2 and so on)

control after the data collection. The distribution of the 10,000 simulated mean estimators
calculated according to (3) is shown in Figure 1 for different σz’s.

On the one hand, in each of the 10,000 simulations, after the population was “masked”
with the described randomization process, the simple variance estimator V̂simple according
to (8) and a usual confidence interval at the approximate confidence level 1 − α = 0.95
assuming approximate normality was calculated. Then, the rate of intervals covering
the true mean value µx = 995.739 was observed. On the other hand, in each of the
10,000 masked populations U∗, b bootstrap data sets were generated by “re-randomizing”
in the same way as the original data set was randomized. These 10,000 data sets built the
basis for the calculation of the 10,000 bootstrap variance estimators V̂boot (9) and 10,000
approximate confidence intervals. Also for these confidence intervals the coverage rate
was calculated.

Table 1 shows the simulation results for the performance of the simple and bootstrap
variance estimator (respectively standard deviation estimators) for differing values of σz.
The standard deviation of the scrambling variable z, σz was used to vary V (x̂k). As
indicated in section 3, the results show that both variance estimation methods proposed
do overestimate in average the true standard deviation. This overestimation increases
absolutely as well as relatively with increasing V (x̂k) (Figure 2 shows the box-plots for
the simulated simple and bootstrap estimators of the theoretical standard deviation of
µ̂P ). Both methods of variance estimation perform quite well with respect to the coverage
rate of approximate 95%-confidence intervals. But, the more σz increases the more does
the coverage rate “overachieve” the targeted rate. The main difference in the quality of
the two variance (respectively standard deviation) estimators is their differing inherent
variability (see Figure 2 and columns SŜ1

and SŜ2
in Table 1). The simple estimators have
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Parameter Ŝ1 ≡ V̂ 0.5
simple Ŝ2 ≡ Ŝboot

σz S(µ̂P ) xŜ1
Coverage SŜ1

xŜ2
Coverage SŜ2

0.1 1.8481 1.8877 0.9545 0.0095 1.8857 0.9519 0.1338
0.2 2.9636 3.0346 0.9556 0.0160 3.0278 0.9537 0.2175
0.3 4.2105 4.3292 0.9562 0.0269 4.3225 0.9540 0.3109
0.4 5.5002 5.6876 0.9567 0.0428 5.6796 0.9542 0.4014

Table 1: The simple and bootstrap estimator of the standard deviation of µ̂P for different
σz (x•, S• ... the mean value and the standard deviation of the results of 10,000 simulations
with b = 100)

S1 B1 S2 B2 S3 B3 S4 B4

2
3

4
5

6
7

Figure 2: The simple and bootstrap estimators of the standard deviation for different σz

(S1 and B1 for σz = 0.1, S2 and B2 for σz = 0.2 and so on)
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Ŝ2 ≡ V̂ 0.5
boot

b xŜ2
Coverage SŜ2

10 2.9496 0.9256 0.7034
50 3.0209 0.9492 0.3095

100 3.0278 0.9537 0.2175
500 3.0321 0.9545 0.0971

1000 3.0356 0.9548 0.0716

Table 2: The bootstrap estimator of the standard deviation of µ̂P for different numbers of
bootstrap samples b (xŜ2

, SŜ2
... the mean value and the standard deviation of the results

of 10,000 simulations with σz = 0.2)

b=10 b=50 b=100 b=500 b=1000

1
2

3
4

5
6

Figure 3: The bootstrap estimators of the standard deviation for different b

a much smaller inherent dispersion than the estimators based on the bootstrap.
The performance of the bootstrap estimator can be improved by raising the number b

of bootstrap samples. For a constant σz = 0.2 (see the second row in Table 1) we addi-
tionally varied the number b of bootstrap samples. The results are presented in Table 2 and
Figure 3, respectively. These results show, how the standard deviation of the bootstrap
standard deviation estimator can be reduced by increasing the number b of bootstrap sam-
ples. The process is not too time-consuming. A single generation of 1,000 re-randomized
bootstrap populations, as needed for the simulations, took only about 30 seconds.

Anyhow, the simple variance estimators, V̂simple, did perform better than the bootstrap
based ones, V̂boot. Yet, in cases where the distribution of the statistic µ̂P is not approx-
imately normal, for example in samples drawn from a highly skewed distribution of the
variable of interest, x, the desired coverage level of the usual approximate confidence
interval will not be valid. In such cases, the bootstrap procedure offers the “percentile
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method” as an alternative, because the bootstrap distribution estimates the sampling dis-
tribution of µ̂P (cf. Efron 1981, ch.4). Therefore, instead of calculating a variance es-
timate, V̂boot, for an approximate 95%-confidence interval assuming normality, such an
interval can be obtained directly from the distribution of the µ̂P

(.)’s by taking its 2.5 and
97.5 percentile.

5 Summary
Gjestvang and Singh (2007) presented a standardization of different techniques of ran-
domized response for the estimation of the mean value of a sensitive quantitative vari-
able. Odumade and Singh (2008) extended the theory of the Gjestvang and Singh model
to general probability sampling, which is very necessary for its applicability in practice.
The subject of the current paper was the unresolved question of the variance estimation
for the estimator of the mean value, which is another important question to be answered
for the model to be applicable in practice.

Two methods are proposed, a “simple” and a “bootstrap estimator”. Both estima-
tors are biased with an increasing bias when the variance of the randomized responses
of an individual is increased. But, as this variance is under control of the agency the
amount of bias is under control. By and large, both estimators work fairly well with
respect to the coverage rates of approximate confidence intervals. For approximately nor-
mal distributed mean estimators the simple estimator can be recommended as it is less
dispersed compared to the bootstrap method. The bootstrap estimator has its merits when
the distribution of the mean estimator is not approximately normal. Then, alternatively
the bootstrap’s “percentile method” can be applied to calculate valid confidence intervals.
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