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Exploratory Designs for
Assessing Spatial Dependence

1.1 Introduction

Efficient data acquisition as introduced in the first chapter requires some prior
understanding of the process to be observed, ideally in the form of a spatio-temporal
model or at least a narrow enough class of such models. If this is not the case as it
is frequently at the beginning of a study, the employed design must guarantee that
an appropriate model can be identified as data collection progresses. These designs,
usually called exploratory designs (cf. chapter 4 in Müller 2007), typically employ
minimum assumptions which make random sampling a reasonable choice.

However, random sampling can be awfully inefficient even for simple tasks that
arise in the beginning of a study. One of the simplest and most initial (albeit quite
important) tasks in a spatio-temporal context is the assessment of whether spatial or
temporal dependence is present or not and if yes of which intensity (and form). In
this chapter we would like to adress these questions and possible improvements over
random sampling in coping with them. As the treatment of the temporal dimension
usually involves straightforward regular observations or simple extensions from the
spatial case, we will in the following mainly concentrate on the latter.

At a first stage one should then attempt to detect whether there is any spatial
dependence in the data or not. Should they be spatially independent, the respective
statistical design and analysis usually reduces to the application of a classical and
well established toolbox. Thus, the decision of whether one can confine oneself to
this well understood body of knowledge or whether one has to resort to the rather
freshly developed methodologies of spatial design is a crucial element of any serious
spatial investigation. Spending some efforts in efficient designs for testing for spatial
dependence could save considerable overall efforts. If, for instance, one detects at an
early stage of an investigation that effectively no spatial correlation is present, one
can return to the classical, rather simple to construct optimal designs treated e.g. in
chapter 3 of Müller (2007). Therefore, in the next sections we will concentrate on the
question of how to optimally select coordinates / predictor values to detect the spatial
structure, if it is existent, and how to avoid to spuriously detect spatial dependence
if there is no such structure. Later we will also consider to evaluate the specific form



of this dependence.
In particular, this chapter deals with statistical modeling of areal data which are

observed on polygon entities with defined boundaries. Typical examples for such
areal spatial objects are areal entities like states or counties. The aim of the chapter
is to give a short overview of how to collect and analyze a data set containing
information on areal spatial objects with regard to the following questions:

• How can we define spatial neighbors?

• Which spatial weights should be assigned to the identified neighbor links?

• Are there any spatial dependencies in the data?

• Which statistical models are adequate to the data?

• How are the spatial modeling approaches related to each other, what are the
differences between them and what are the consequences on design?

To answer these questions an exemplary spatial data analysis is performed on a data
set concerning the grassland usage in Upper Austria (see section 1.2). The data are
analyzed using the statistical software R which provides a wide range of packages
and functions to work on spatial data; the used R packages and the R code are given
in appendix 1.8. For an extensive introduction to spatial data analysis in R see Bivand
et al. (2008). We will concentrate our exposition on the lattice type of data for two
reasons: the continuous regions can be covered by an arbitrarily fine grid and the
continous random field models can be well approximated by lattice based ones such
as Gaussian Markov random fields (cf. Rue and Held 2005).

1.2 The data set and its visualization
The data set contains information on the greenland usage in the 445 municipalities
of Upper Austria over the years 1995, 1999, 2003, 2005, 2007 and 2008. A
municipality’s greenland usage is measured by

log(area of arable land + 1)− log(area of grassland + 1),

i.e. the log ratio of these two areas, making it scale free (variables R95 to R08). The
value of this log ratio is positive if the area of arable land is larger than the area of
grassland and negative if the proportion of arable land compared to the grassland is
smaller. Other variables provided in the data set are: LBBGG (identification number
of municipality), BEZNR (identification number of the municipality’s district),
Longitude and Latitude (local coordinates of municipality), FLKM2 (area of the
municipality in square kilometers) and Altitude (height above sea level in meters).
For graphical display of the data a shape file of the boundaries of the municipalities
is available.

Before a spatial analysis can be started, both data and shape file must be imported
in R and combined to a SpatialPolygonsDataFrame object. To make a first
check on spatial correlation for the important variables in the data set it is reasonable
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to display them in a so-called Choropleth map (Waller and Gotway 2004). For color
filling of the maps the R package RColorBrewer is used which is based on the
web tool ColorBrewer (for the latest version see Brewer and Harrower 2010).
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Figure 1.1: Maps of the log ratios R95 to R08

One way to visualize the spatio-temporal development of the grassland usage in
Upper Austria is to create a slide show consisting of the series of maps of the log
ratios R95 to R08. Alternatively, the function spplot can be used to show all the
maps at once (Fig. 1.1). According to the maps it is evident to assume some spatial
dependencies in the data. Nearly all municipalities in the south of Upper Austria
seem to have more grassland than arable land, whereas municipalities in the central
east of Upper Austria and along the river Inn tend to have a higher percentage of
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arable land in relation to grassland. Examining the development of the log ratios,
nearly no change can be identified over the years. Just for a few municipalities the
sign of the log ratio switches between the years 1995 and 2008.
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Figure 1.2: Map of the variable Altitude

However, it seems to be obvious that the altitude of the municipalities influences
the log ratios and therefore also the observable structure in Fig. 1.1. A look at the
map of the altitudes (Fig. 1.2) shows that the higher elevated regions are in the
northeast and south of Upper Austria, whereas the less elevated and flatter areas can
be found in the center of Upper Austria and along the two largest rivers Danube and
Inn. These are also the regions where a concentration of more arable land in relation
to grassland is present. Possible reasons for this dependency are that it might be
easier to cultivate on lowlands than on the slopes of the hillier municipalities and
that there is a higher availability of water resources along the two rivers, as well.
Thus, the question remains if there are spatial dependencies in the data anyway or if
they are only resulting from the different elevations of the municipalities above sea
level.

1.3 Spatial links
The sampling design primarily affects the so called spatial link matrices (or spatial
weighting matrices), which represent the spatial relationships between observations
and are frequently employed in spatial econometrics (for a characterization of this

4



branch of statistics see Anselin 1988 or more recently Arbia 2006). In general,
spatial link matrices represent similarities, e.g. connectivity, neighbourhoods or
inverse distances. A spatial link matrix G is an n× n matrix (n is the number of
observations) with the following properties:

(i) gij = 0 for i = j;

(ii) gij > 0 if i and j are spatially connected.

Thus the key concept to analyze and model areal data is to define which sites in
the data set are connected and therefore so-called spatial neighbors. Subsequently,
spatial weights may be assigned to each of the identified neighbor links. Both steps
are essential issues for statistical modeling of areal data because the results of the
spatial analysis are crucially dependent on the decisions made in constructing the
spatial weights. Hence, the following sections 1.3.1 and 1.3.2 give a short overview
of the different approaches to define spatial neighbors and spatial weights. In
literature these topics are dealt with e.g. by Waller and Gotway (2004, pp. 223-225),
Fortin and Dale (2005, pp. 113-118), O’Sullivan and Unwin (2003), Schabenberger
and Gotway (2005, pp. 18-19) and Banerjee et al. (2004, pp. 70-71). Due to the
practical relevance for programming in R, the two sections are structured following
Bivand et al. (2008).

1.3.1 Spatial neighbors

Neighbor relationships between all objects are usually represented by a n× n binary
connectivity matrix C, where n is the number of observations (Fortin and Dale 2005,
pp. 113-118). The component cij of the connectivity matrix is defined as follows:

cij =

{
1, if there exists a neighbor relationship between two objects i and j
0, if two objects i and j are not in a neighbor relationship.

Each component cii is set to zero since no region is a neighbor to itself. Generally,
connectivity matrices can be symmetric or asymmetric, where asymmetry is present
when i is a neighbor of j but j is not a neighbor of i or vice versa.
When working with the package spdep in R (Bivand et al. 2010), neighbor
relationships are represented by a nb object (see Bivand et al. 2008, pp. 240). This
object consists of a list of length n, where for each observation i an integer vector
of index numbers of its neighbors is recorded. To objects without any neighbors
an integer zero is assigned. Additionally, the nb object gives information about
the symmetry, presence of no-neighbor observations, average number of links, link
number distribution and least/most connected regions.

To complete the definition of a connectivity matrix the term neighborhood has to
be specified more precisely: One of the most commonly used approaches in literature
to determine neighbor relationships is to create contiguity neighbors (R function
poly2nb). Two polygon areas i and j are contiguity neighbors if they share

• at least one point on their boundaries (=Queen-style) or
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• at least two points on their boundaries (=Rook-style).
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Figure 1.3: Distance-based neighbors within a radius of 10.076 m

To use other neighborhood criteria it is necessary to choose a point to represent
each polygon entity, which is often the polygon centroid. Once representative points
are available, neighbors can be determined e.g. by means of graph measures like
Delauney triangulation neighbors (R function tri2nb) or Gabriel graph neighbors
(R function graph2nb). Another method to create neighbors is to choose the k
nearest points as neighbors for each polygon (R function knearneigh). In many
cases this method leads to an asymmetric connectivity matrix (Banerjee et al. 2004,
p. 70), which can be made symmetrical in R using the function make.sym.nb.
Alternatively, distance-based neighbors can be established by connecting points
within an interpoint distance with fixed lower and upper distance bounds (R function
dnearneigh).

For our example this last method is used as basis for the connectivity matrix.
The lower and upper distance bounds are set to 0 and 10.076 m, which is the
minimum distance at which all areas have a distance-based neighbour. Thus, it can
be guaranteed that all areas in the data set are linked to at least one neighbor (see
Fig. 1.3). For more details on creating spatial neighbors in R see Bivand et al. (2008,
pp. 242-251).
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1.3.2 Spatial weights

After establishing the connectivity matrix C, spatial weights may be assigned to each
neighbor relationship. For this purpose a spatial weights matrix W can be computed.
The idea of spatial weights is to assign higher weights wij to connected areas i and
j if area j is (in some sense) closer to area i than other connected areas to i. The
definition of proximity may for example be based on:

• distance between two areas

• length of the shared border of two areas or

• relative sizes of the areas.

We could assume, for example, that the strength of neighbor relationships
decreases with distance. Therefore, we use the inverse distance between two entities
(1/dij) as weight to determine the component wij of matrix W. If area i is not a
neighbor of area j (i.e. if cij = 0), wij is set to zero. If objects i and j are adjacent
component wij in this example would then be defined as follows:

wij =
cij
dij

Another variant is the exponential weighting

wij = e−θdij − δij , (1.1)

where θ is some decay parameter and δij is the usual Kronecker δ. Note that this
scheme corresponds to a spatial process with a specific version of Matérn variogram
γM (h, θ).

However, if there is no reason to assume more than the existence and absence of
neighbor relationships, a spatial weights matrix W deviating noticeably from the
binary connectivity matrix C should be avoided. In this case the simplest way to
define the spatial weights matrix W would be to set W equal to the connectivity
matrix C (i.e. wij = cij).

Spatial weight matrices are often converted by using coding schemes to cope with
the heterogeneity which is induced by the different linkage degrees of the spatial
object. A widely used coding scheme is the row-sum standardized coding scheme
where the sum of each row of the standardized link matrix is equal to one (Waller
and Gotway 2004, p. 225; O’Sullivan and Unwin 2003, p. 42). We simply obtain the
components of this row standardized matrix Wstd by dividing each wij by the sum
of the neighbor weights for region i:

wstd,ij =
wij∑n
j=1 wij

(1.2)

This row standardization is used to take the different numbers of neighbors per
unit into account. Other coding-schemes are for instance the globally standardized,
and the variance stabilizing coding scheme (Tiefelsdorf 2000). For reasons of
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simplification, the spatial link matrix W is in the following always the row-
standardized version.

In R we use the function nb2listw to convert a nb object into a spatial weights
object listw. The argument glist of this function can be used to pass a list of
vectors of weights corresponding to the neighbor relationships. Additionally, there
are various different weight styles available to standardize the matrix. Conversion
style W is the default value and creates a row standardized weights matrix. Style B
retains a weight of unity for each link, in style C the complete set of weights sums to
the number of observed entities n and in style U all weights together sum to 1 (see
Bivand et al. 2008, pp. 251-255).

In our example we set the spatial weights matrix W equal to the binary
connectivity matrix C and use the row standardized matrix Wstd as in (1.2) for
further statistical analysis and modeling of the data. Extensions to the spatio-
temporal setting are straightforward and can e.g. be found in Dubé and Legros
(2011).

1.4 Measures of Spatial Dependence
Several measures for quantifying spatial dependence have been proposed in
literature. Generally, they can be classified into two groups: the first ones are based
on weighted covariance type expressions analogous to the Durbin-Watson statistic
for time series (prototypically the Moran’s I, see Moran 1950). The others are
based on weighted averages of squared differences - often called semivariances
(prototypically the Geary’s c, see Geary 1954). Most of the available software
tools applicable for spatial analysis provide a standard implementation of those
measures, see e.g. Rangel et al. (2010) or the many R-packages to be found on
http://cran.r-project.org/web/views/Spatial.html. To get an
overview concerning the relationships between those measures see Dale et al. (2002).

As a measure for the intensity of the spatial dependence and for detecting its
potential existence the probably most popular statistic, the Moran’s I, is used here.
Therefore, to test for the presence of spatial dependence we employ in this chapter
Moran’s I test as this is perhaps the most common global test for this kind of problem
(see e.g. Waller and Gotway 2004, pp. 227; Schabenberger and Gotway 2005, pp. 21;
Bivand et al. 2008, pp. 258). Moran’s I is calculated by dividing the product of the
variable of interest and its spatial lag with the cross-product of the variable of interest
and adjusting this term for the spatial weights:

I =
n∑n

i=1

∑n
j=1 wij

∑n
i=1

∑n
j=1 wij(yi − ȳ)(yj − ȳ)∑n
i=1(yi − ȳ)2

,

where yi is the ith observation of the variable of interest, ȳ is the mean of the variable
of interest and wij is the (standardized) spatial weight of the neighbor relationship
between two areas i and j. Moran’s I will be positive, if neighboring areas tend to
have similar values of the variable of interest, and negative, when they tend to have
different values. For the testing procedure the observed value is standardized by
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subtracting its expected value and dividing this difference by the standard deviation
under the null hypothesis of no spatial dependence. Usually, the test is one-sided,
testing whether the observed statistic is significantly greater than its expected value.
For details concerning the testing procedure see e.g. Schabenberger and Gotway
(2005, pp. 21). A different motivation and interpretation of I is provided in Dray
(2011).

In R the function moran.test implemented in the package spdep is used to
perform the test for spatial autocorrelation. Examining the log ratio of the year 2008
R08 in our example yields the following result:

Moran’s I test under normality

data: data$R08
weights: ooe_W1

Moran I statistic standard deviate = 36.231, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.795973350 -0.002252252 0.000485391

The test results seem to show a significant positive spatial autocorrelation in R08,
but the interpretation has to be done in a more careful manner:

First, we have to consider the test assumptions of constant mean and variance
of the yi and should be aware of spurious autocorrelation or ’misspecification’
(Schabenberger and Gotway 2005, pp. 22). Any autocorrelation in our data may
e.g. simply be due to the altitudes of the municipalities and not to any spatial pattern
in the log ratio of arable land vs. grassland. To overcome this issue we could for
example fit a mean model to the data including additional variables (see section
1.5) and performing the test for spatial autocorrelation again for the residuals of this
model using the function lm.morantest.

Second, we should keep in mind that the test outcome is also affected by the
choice of the spatial weights and the standardizing scheme used for the weights (see
the examples in Bivand et al. 2008, pp. 262).

In Fig. 1.4 two approaches to plot the spatial autocorrelation are shown
(see Bivand et al. 2008, p. 267). We can find the values of Moran’s I for
sixteen successive lag orders of contiguous neighbors on the left side (function
sp.correlogram) and for a sequence of distance band neighbors on the right
side (function correlog in package pgirmess). In our example, the first four
bands of 0-10 km, 10-20 km, 20-30 km and 30-40 km have significant values of
spatial autocorrelation (on the other hand the following significantly negative values
may indicate some kind of nonstationarity). Another graphical tool to examine the
data for spatial autocorrelation is the Moran scatterplot in Fig. 1.5. It shows the
relationship between the variable of interest (x-axis) and the spatially weighted
average of neighboring values, also called the spatially lagged values (y-axis).
Most of the points in our example appear in the low-low and high-high quadrants
representing a positive spatial dependency. Only a few locations can be found in
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Figure 1.4: Correlograms: values of Moran’s I for sixteen successive lag orders
(left); values of Moran’s I for a sequence of distance band neighbours (right)

the low-high and high-low quadrants refering to locations surrounded by dissimilar
valued neighbors. The slope of the regression line corresponds to Moran’s I and
represents the linear association between the observed values and the spatially lagged
values (see Anselin 1993, Anselin 1995). In R the function moran.plot is used
to visualize the data in a Moran scatterplot (Bivand et al. 2008, pp. 268).

As already noted several alternative measures to I exist that could equivalently
be employed for our purposes, most notably the so called contiguity ratio proposed
by Geary (1954). Recently, López et al. (2011) provide extensive simulations on
four candidate measures including I and demonstrate its comparative value in an
economic application.

1.5 Models for areal data
For simplification of exposition, we will in the rest of the section again assume
that the considered models are linear and the error processes being Gaussian,
with the obvious extensions to locally linearized models as in previous chapters.
The regression residuals from estimation of the model y = Xβ + ε under the
assumption ε i.i.d. will be used for the test of spatial dependence. The real data
generating process, the true but unknown status of the world, is assumed to be one
of the following:

H0: spaceless;

HA: spatial;

The distinction between these hypotheses will be made clear in the following
subsections. Depending on the two examined cases, one either wants to reject or
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Figure 1.5: Moran Scatterplot

not to reject the null hypothesis of spatial independence of Moran’s I test to make
a correct decision. For more on this issue see e.g. Anselin (1988). Further, one
wants to find an optimal or nearly optimal design for a test strategy to receive either
nonrejection or rejection of the null hypothesis for derivation of a model that matches
the real status of the world.

1.5.1 H0: a spaceless regression model

We start with the basic linear regression model, which reads:

y = Xβ + ε, (1.3)

where y is the outcome variable of interest, X a matrix of explanatory variables, β
the vector of parameters and ε an error term with errors assumed to be independently
distributed.

For a standard regression model it is crucial to know whether the residuals are
spatially dependent or not. If there is no spatial dependence in the residuals, one
can use standard estimation methods, like OLS, but if the residuals show spatial
dependence, one has to use special methods (cf. section 1.5.2). When the OLS
estimation method is applied instead, spatial autocorrelation in the error term leads
to biased estimates of the residual variance and inefficient estimates of the regression
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coefficients. For regression residuals Moran’s I is defined as scale invariant ratio of
quadratic forms in the normally distributed regression residuals ε̂ = (ε̂1, ..., ε̂n)′, i.e.

I =
ε̂′ 12 (W + W′)ε̂

ε̂′ε̂
(1.4)

where
∑n
i=1

∑n
j=1 wij = n, see e.g. Tiefelsdorf (2000).

The classical Moran’s I as the two-dimensional analog of a test for univariate
time series correlation is given in e.g. Cliff and Ord (1981). For a random variable
Y , measured in each of the n non-overlapping subareas of the whole study area,
Moran’s I is defined from the residuals of an intercept only regression, i.e. ε̂ = My
where y = (y1, . . . , yn)′, M = In − 1

n1n1′n, where In is an n× n identity matrix
and 1n is an n× 1 vector of ones. In this case, and if the spatial link matrix W
has full rank (i.e. there is no observation completely separated from all others), the
expected value of the test statistic I under independence is given by E[I|H0] =
− 1
n−1 , and the variance of I can be given in terms of the eigenvalues γi of matrix

K = M′ 1
2 (W + W′)M as Var[I|H0] = 2n

n2−1
∑n
i=1(γi − γ̄)2 = 2n

n2−1σ
2
γ . The test

statistic I is then asymptotically normally distributed.
The Moran’s I test is used for parametric hypotheses about the spatial autocor-

relation level ρ, i.e. H0 : ρ = 0 against HA : ρ > 0 for positive spatial autocorre-
lation; or H0 : ρ = 0 against HA : ρ < 0 for negative spatial autocorrelation. Tests
for positive correlation are much more relevant in practice, because negative spatial
autocorrelation very rarely appears in the real world. Thus, from now on ρ ≥ 0 will
be assumed. The z-transformed Moran’s I is, for normally distributed regression
residuals and well-behaved spatial link matrices under certain regularity conditions
(see e.g. Tiefelsdorf 2000), asymptotically standard normally distributed, i.e. z(I) is
defined as

z(I) =
I− E[I|H0]√

Var[I|H0]
∼ N(0, 1). (1.5)

The exact small sample distribution of Moran’s I was seemingly independently
obtained by Hepple (1998) and Tiefelsdorf and Boots (1995), but does not offer
advantages with respect to the design task as shown in Müller et al. (2012). The
behaviour under deviations from normality is investigated in Griffith (2010).

Note that it turns out that a special class of spatial objects is relevant especially for
design purposes. These are observations that belong to a design but are far apart from
all other objects, in the sense that they have no spatial links to other observations.
They have been termed far-off objects by Gumprecht (2007) and a discussion of their
role in Moran’s I tests and corresponding designs are given therein.

Conveniently, we also start in our example with estimating the basic linear
regression model to see which covariates contribute for explaining the variance in
the response variable R08. As the spatial autocorrelation that we detected with the
tests in section 1.4 could actually be caused by model misspecification we also check
if there still remains spatial autocorrelation in the residuals of the model. For this
purpose a map of the residuals like in section 1.2 can be plotted and a Moran’s I test
like in section 1.4 is performed for the residuals (in R: function lm.morantest).
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In a first attempt we include all explanatory variables in the linear regression
model except the variable FLKM2 (area of the municipality in square kilometers),
which wouldn’t make any sense in explaining the dependent variable R08. We call
the R function lm and obtain the following result:

Call:
lm(formula = data$R08 ˜ data$HEIGHT + data$R07 + data$R05 +

data$R03 + data$R99 + data$R95)

Residuals:
Min 1Q Median 3Q Max

-0.75505 -0.04410 -0.00830 0.04535 0.68314

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.602e-01 2.196e-02 7.292 1.44e-12 ***
data$HEIGHT -1.931e-04 4.556e-05 -4.238 2.75e-05 ***
data$R07 8.595e-02 1.463e-02 5.874 8.40e-09 ***
data$R05 4.727e-02 1.839e-02 2.570 0.0105 *
data$R03 8.107e-02 1.744e-02 4.650 4.41e-06 ***
data$R99 4.237e-01 5.116e-02 8.281 1.50e-15 ***
data$R95 3.669e-01 4.825e-02 7.604 1.77e-13 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1135 on 438 degrees of freedom
Multiple R-squared: 0.9834, Adjusted R-squared: 0.9832
F-statistic: 4324 on 6 and 438 DF, p-value: < 2.2e-16

All covariates seem to have a significant influence on the dependent variable and
the Moran’s I test decides in favor of the hypothesis that there is no more spatial
autocorrelation in the residuals (in fact it decides for negative spatial autocorrelation,
which indicates some kind of overcorrection):

Global Moran’s I for regression residuals

data:
model: lm(formula = data$R08 ˜ data$HEIGHT + data$R07 + data$R05 +
data$R03 + data$R99 + data$R95)
weights: ooe_W1

Moran I statistic standard deviate = -6.4293, p-value = 1
alternative hypothesis: greater
sample estimates:
Observed Moran’s I Expectation Variance

-0.1445027577 -0.0061184919 0.0004632761

However, if we analyze the explanatory variables in detail, we can find that
the ratios R07 to R95 are highly correlated (i.e. multicollinearity). According to
Fahrmeir et al. (2009, pp. 170), a multicollinearity problem can be identified by
computing the variance inflation factor (VIF) for each explanatory variable and a
multicollinearity problem is present for VIF > 10. This case arises for two of our

13



covariates, i.e. R95 (VIF=56.82) and R99 (VIF=62.75). Therefore, we drop these
two explanatory variables R95 and R99 in a second attempt and obtain the following
output:

Call:
lm(formula = data$R08 ˜ data$HEIGHT + data$R07 + data$R05

+ data$R03)

Residuals:
Min 1Q Median 3Q Max

-1.21197 -0.06322 0.00175 0.06983 1.29267

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.774e-01 4.060e-02 4.370 1.55e-05 ***
data$HEIGHT -2.892e-04 8.417e-05 -3.436 0.000646 ***
data$R07 3.292e-01 2.345e-02 14.036 < 2e-16 ***
data$R05 2.980e-01 3.050e-02 9.770 < 2e-16 ***
data$R03 2.633e-01 3.060e-02 8.604 < 2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.2109 on 440 degrees of freedom
Multiple R-squared: 0.9424, Adjusted R-squared: 0.9419
F-statistic: 1800 on 4 and 440 DF, p-value: < 2.2e-16

The regression coefficients of the remaining covariates are all significant again,
but the Moran’s I test for the residuals yields a significant result now, an effect
which also occurs for other choices of the spatial weights matrix W:

Global Moran’s I for regression residuals

data:
model: lm(formula = data$R08 ˜ data$HEIGHT + data$R07 + data$R05 +
data$R03)
weights: ooe_W1

Moran I statistic standard deviate = 3.7525, p-value = 8.752e-05
alternative hypothesis: greater
sample estimates:
Observed Moran’s I Expectation Variance

0.0755249376 -0.0057114017 0.0004686499

Usually in this case, we fit a spatial regression model instead of the linear
regression model to estimate the spatial effect as well. However, we should deal with
another possible problem first of all: If the dependent variable y and one or more
of the explanatory variables X are generated according to a spatial autoregressive
process with a positive autoregression parameter ρ (for details see section 1.5.2) and
y is regressed on X, there is a risk of spurious spatial regression (see e.g. Fingleton
1999, Lauridsen and Kosfeld 2006, Beenstock and Felsenstein 2008, Beenstock and
Felsenstein 2010). To check whether we have the case of spurious spatial regression,
it is necessary to test for spatial nonstationarity. Lauridsen and Kosfeld (2006) and
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Beenstock and Felsenstein (2008)/Beenstock and Felsenstein (2010) propose two
contrary procedures to test for spatial nonstationarity and it doesn’t seem obvious
for us up to now which one is the ’correct’ approach. Fact is, if we observe spatial
nonstationarity, this involves the risk of spurious spatial regression. Moreover, one
should also test for spatial cointegration in a second step. Spatial cointegration
concerns the case where two or more variables in the regression are nonstationary,
while the errors are stationary (see Lauridsen and Kosfeld 2006, p. 9). However, in
case all variables are stationary, we can estimate a spatial regression model like in
section 1.5.2.

1.5.2 HA: spatial regression models

As seen in the previous section, we can obviously not assume that the observations
(and model errors) are independent of each other when we work with geographically
referenced data and suppose correlations between neighboring areas (Gibbons and
Overman 2010; Bivand et al. 2008, pp. 273). Therefore in the literature one can
find several approaches to include spatial dependencies in the regression equation
(see e.g. Gibbons and Overman 2010, Kissling and Carl 2008). These models are
called spatial simultaneous autoregressive models and differ from each other in
the assumption where the spatial autoregressive process occurs. The following
paragraphs present the ideas of the different spatial regression models and try to
point out the connections between them.

In a first step the linear regression model (1.3) is extended by the term λWu so
that we get the regression equation in (1.6). It is assumed that the errors are no longer
independent, but involve the spatial autoregressive process. This model is denoted
as the simultaneous autoregressive (SAR) model (Bivand et al. 2008, pp. 277) or
– in the spatial econometrics context – the spatial error (SE) model (Gibbons and
Overman 2010, p. 5):

y = Xβ + u with u = λWu + ε, (1.6)

where X is again the matrix of explanatory variables and β the corresponding
parameter vector. u denotes the spatially dependent error term, W is the spatial
weights matrix as in section 1.3.2 and λ is the spatial autoregression parameter. ε
represents the vector of (spatially) independent residual errors which are normally
distributed with zero mean and diagonal covariance matrix Σε with elements σ2

εi ,
i = 1, . . . , n or often a joint variance σ2

εi = σ2
ε (Schabenberger and Gotway 2005,

pp. 335; Bivand et al. 2008, pp. 277). The model equation in (1.6) can be easily
rewritten in the following way:

y = Xβ + λWu + ε

= Xβ + λW(y −Xβ) + ε

= Xβ − λWXβ + λWy + ε (1.7)
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Some further manipulation of equation (1.7) yields equation (1.8):

y − λWy = Xβ − λWXβ + ε

(In − λW)y = (In − λW)Xβ + ε

y = Xβ + (In − λW)−1ε, (1.8)

assuming the invertibility of In − λW. Equations (1.7) and (1.8) clearly show
the similarity of the SE model to the linear regression model in equation (1.3)
(Schabenberger and Gotway 2005, p. 336). Instead of the uncorrelated errors ε
in (1.3), spatial autocorrelation is induced by introducing the error term (In −
λW)−1ε in (1.8). From the representation in equation (1.7) one can see the two
additional terms λWXβ and λWy in the regression model compared to model
(1.3). These terms are called the spatially lagged explanatory variables (λWXβ)
and the spatially lagged values of the response variable (λWy). According to
Kissling and Carl (2008, p. 3), the SE model is used if the analyst assumes that
the covariates X do not completely explain the spatial autocorrelation in the
data, denoting this case as ‘induced spatial dependence’. This case occurs e.g. if
important spatially influenced covariates are not included in the analysis. Another
motivating reason for this kind of model arises if spatial autocorrelation is an
inherent characteristic of the response variable y itself, denominating this case as
‘inherent spatial autocorrelation’.

Omitting the term−λWXβ in equation (1.7) yields the so-called spatial lag (SL)
model (Bivand et al. 2008, p. 291; Kissling and Carl 2008, p. 3) or – equivalently in
some other references – the spatial autoregressive model (Gibbons and Overman
2010, pp. 4; LeSage and Pace 2009, pp. 8). Apart from the influence of the
explanatory variables X, the response variable y also depends on its spatially lagged
values ρWy so that we obtain the regression equation in formula (1.9):

y = ρWy + Xβ + ε, (1.9)

where ρ is the spatial autoregression parameter, ε again represents the vector
of (spatially) independent residual errors and the other terms are as above. In
contrast to the SE model, the SL model assumes that there is only ‘inherent spatial
autocorrelation’ present in the data and therefore the spatial autoregressive process
is included in the response variable itself (Kissling and Carl 2008, p. 3). The term
ρWy describes the relation between the values of the dependent variable y and the
neighboring values to each observation of y (LeSage and Pace 2009, p. 9). Rewriting
the regression equation in (1.9) leads to the following alternative representation of
the SL model in equation (1.10):

y − ρWy = Xβ + ε

(In − ρW)y = Xβ + ε

y = (In − ρW)−1Xβ + (In − ρW)−1ε (1.10)
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The special case of the SL model (1.9), where the response variable y only
depends on its own spatial lag (ρWy) and where no covariates are included in the
regression equation, is called pure spatial lag (pure SL) model:

y = ρWy + ε (1.11)

Assuming that the response variable y does not depend on its own spatial lag Wy,
but on the spatial lags of the explanatory variables WX, yields the spatial lag of X
(SLX) model (Gibbons and Overman 2010, p. 5; LeSage and Pace 2009, p. 30):

y = Xβ + WXγ + ε (1.12)

Finally, the combination of SL (1.9) and SLX (1.12) model leads to the Spatial
Durbin (SD) model (Gibbons and Overman 2010, pp. 5; Kissling and Carl 2008,
p. 3):

y = ρWy + Xβ + WXγ + ε (1.13)

The SD model in (1.13) presumes that spatial autocorrelation affects both response
and explanatory variables, but drops the assumption of spatial dependence in the
error process. Apart from nesting the SL and the SLX model one can see that the
model equation in (1.13) is also linked to the model equation (1.7) of the SE model.

As the SD model in (1.13) incorporates some other spatial regression models,
this model is often estimated first and then tested against the more specific models.
Moreover, it is common to compare models with different specifications of the
spatial weights matrix and, of course, with different combinations of covariates
(Gibbons and Overman 2010, p. 7). A commonly used instrument for comparing
models is the Akaike Information Criterion (AIC), accounting both for model fit and
model complexity (Kissling and Carl 2008, p. 5).

Some other well-known spatial regression models such as the spatial conditional
autoregressive (CAR) model or the simultaneous/spatial moving average (SMA)
model are not presented in this book chapter. For details concering these models
see e.g. Schabenberger and Gotway (2005), Waller and Gotway (2004) and Haining
(1993). For a recent review of what is known as spatial econometrics see Anselin
(2007).

To fit spatial regression models in R the spdep package provides various
functions, some of them using different methods to estimate the parameters (see
Bivand et al. 2010 and Bivand et al. 2008, pp. 277-296):

• spautolm: maximum likelihood estimation for SE model (1.6), CAR
model and SMA model; model type can be chosen by the option
family=("SAR","CAR","SMA"); is based on the function errorsarlm

• lagsarlm: maximum likelihood estimation for the SL model (1.9) and the
SD model (1.13); the default setting of the option type="lag" is used for
the SL model, for the SD model set type="mixed"

17



• stsls: fits also a SL model (1.9) to the data using a two stage least squares
procedure in a simultaneous system of equations by using the spatial lags of
the covariates as instruments for the spatially lagged dependent variable

• errorsarlm: maximum likelihood estimation of the SE model (1.6)

• GMerrorsar: a generalized moments estimator for the autoregressive
parameter in a SE model (1.6)

For more details on the options of the different R functions please see the individual
help files of the routines.

Finally, we present the estimation outputs for some of these spatial regression
models. The first output shows the result of the ML estimation for the SE model
using the function spautolm or, equivalently, the function errorsarlm. The
regression coefficients estimated in this model are very similar to those estimated in
the linear regression model (similar values, same signs, all significant). The spatial
dependency in the data is estimated via the spatial autoregression parameter λ:

Call: spautolm(formula = data$R08 ˜ data$HEIGHT + data$R07 +
data$R05 + data$R03, data = data, listw = ooe_W1)

Residuals:
Min 1Q Median 3Q Max

-1.1343847 -0.0596381 0.0042328 0.0731940 1.2263243

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.9833e-01 4.6558e-02 4.2599 2.045e-05
data$HEIGHT -3.3582e-04 9.5809e-05 -3.5051 0.0004565
data$R07 3.1967e-01 2.3904e-02 13.3733 < 2.2e-16
data$R05 2.7082e-01 2.9918e-02 9.0521 < 2.2e-16
data$R03 2.7501e-01 3.0169e-02 9.1155 < 2.2e-16

Lambda: 0.23115 LR test value: 7.5206 p-value: 0.0060997

Log likelihood: 67.4818
ML residual variance (sigma squared): 0.042974, (sigma: 0.2073)
Number of observations: 445
Number of parameters estimated: 7
AIC: -120.96

If we fit a SL model using the function lagsarlm, we once again obtain similar
estimation results. However some parameter estimates of the SL model are only half
as large as their SE model counterparts, and standard errors are consistently 10-20%
smaller. Also, it is worth noting that the SL model fits much better than the SE model,
as determined by AIC.
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Call:lagsarlm(formula = data$R08 ˜ data$HEIGHT + data$R07 +
data$R05 + data$R03, data = data, listw = ooe_W1)

Residuals:
Min 1Q Median 3Q Max

-0.9296895 -0.0713094 0.0025575 0.0701690 1.1748631

Type: lag
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.0063e-01 3.6887e-02 2.7281 0.00637
data$HEIGHT -1.6103e-04 7.5936e-05 -2.1206 0.03395
data$R07 2.3497e-01 2.2523e-02 10.4324 < 2.2e-16
data$R05 2.2526e-01 2.7750e-02 8.1174 4.441e-16
data$R03 2.3171e-01 2.7484e-02 8.4307 < 2.2e-16

Rho: 0.28677, LR test value: 96.53, p-value: < 2.22e-16
Asymptotic standard error: 0.02701

z-value: 10.617, p-value: < 2.22e-16
Wald statistic: 112.72, p-value: < 2.22e-16

Log likelihood: 111.9866 for lag model
ML residual variance (sigma squared): 0.035063, (sigma: 0.18725)
Number of observations: 445
Number of parameters estimated: 7
AIC: -209.97, (AIC for lm: -115.44)
LM test for residual autocorrelation
test value: 1.1163, p-value: 0.29072

The SD model includes not only the covariates X and the spatial lag of the
dependent variable y, but also the spatial lags of the explanatory variables. If we
estimate such a model using the function lagsarlm (option type="mixed"),
we obtain the following output:

Call:lagsarlm(formula = data$R08 ˜ data$HEIGHT + data$R07 +
data$R05 + data$R03, data = data, listw = ooe_W1, type = "mixed")

Residuals:
Min 1Q Median 3Q Max

-0.9252634 -0.0698749 0.0014853 0.0638801 1.1744096

Type: mixed
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.07277795 0.04885996 1.4895 0.136350
data$HEIGHT -0.00035993 0.00013149 -2.7372 0.006196
data$R07 0.23172127 0.02345894 9.8777 < 2.2e-16
data$R05 0.22601075 0.02818171 8.0198 1.110e-15
data$R03 0.22843739 0.02740654 8.3351 < 2.2e-16
lag.data$HEIGHT 0.00025899 0.00017339 1.4937 0.135243
lag.data$R07 0.00923654 0.05165748 0.1788 0.858092
lag.data$R05 0.22267410 0.08011565 2.7794 0.005446
lag.data$R03 -0.23495689 0.08636231 -2.7206 0.006516

Rho: 0.29162, LR test value: 19.153, p-value: 1.2063e-05
Asymptotic standard error: 0.07763
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z-value: 3.7565, p-value: 0.00017229
Wald statistic: 14.112, p-value: 0.00017229

Log likelihood: 117.9214 for mixed model
ML residual variance (sigma squared): 0.034128, (sigma: 0.18474)
Number of observations: 445
Number of parameters estimated: 11
AIC: -213.84, (AIC for lm: -196.69)
LM test for residual autocorrelation
test value: 0.013289, p-value: 0.90822

The regression coefficients of the covariates and the spatial autoregressive
parameter are still very similar to the estimates of the previous models, while the
intercept and the spatial lags of the altitude and the ratio R07 do not have a significant
influence on the dependent variable. However, it is somewhat suspicious that the
spatially lagged ratio R03 has a negative effect on the dependent variable, which
should be analyzed more carefully.

Note that the assumed spatial model often not only determines the behaviour under
the alternative, but can also govern the choice of the spatial dependence measure.
Recently Li et al. (2007) have suggested the APLE statistics, given by

IAPLE =
ε̂′ 12 (W + W′)ε̂

ε̂′[W′W + tr(W2)In/n]ε̂
, (1.14)

for a better reflection of dependence under a SL alternative. Asymptotic and exact
distributions for the APLE (and its potential consequent use in the next chapter)
were provided by Reder and Müller (2009) and Li et al. (2010). Also for SL models
a theoretical comparison of I and Lagrange multiplier tests is given in Baltagi and
Yang (2010). A simple regression based formulation can be found in Born and
Breitung (2011).

1.6 Design considerations

Let us consider the first case (see section 1.5.1), where we estimate a model under the
assumption of spatial independence, and the true model is of the same form. The aim
is then not to reject the null hypothesis (spatial independence). For the approximate
test we require the moments of Moran’s I, which can be expressed in terms of
the eigenvalues of the matrix K (Tiefelsdorf 2000), with M = In −X(X′X)−1X′

denoting the general projection matrix. Since only the moments are of interest, the
evaluation of eigenvalues can be by-passed by making use of the trace operator tr. In
this case under the assumption of spatial independence, expected value and variance
of I are then given by

E[I | H0] =
tr(K)

n− k
=

tr{M 1
2 (W + W′)M}
n− k

=
tr(MW)

n− k
(1.15)
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and

Var[I | H0] =
tr(MWMW′) + tr(MW)2 + {tr(MW)}2

(n− k)(n− k + 2)
− {E[I | H0]}2

=
2{(n− k)tr(K2)− tr(K)2}

(n− k)2(n− k + 2)
(1.16)

respectively, see Henshaw (1966).
An application of the theoretical moments of Moran’s I is the approximation of

the exact distribution of Moran’s I by well-known simple distributions, that allow
fast assessment of the significance of an observed Moran’s I without numerical
evaluation of its exact probability. If the skewness and the kurtosis of Moran’s I (see
Tiefelsdorf 2000) do not differ substantially from their counterparts of the normal
distribution, the z-transformation of Moran’s I can be used to obtain the significance
of an observed Moran’s I. However, if there is a marked difference between
the skewness and the kurtosis of Moran’s I to those of the normal distribution,
alternative approximation strategies need to be employed.

The null case is the simpler one, there is no spatial effect in the data, data follow
an ordinary linear model, the correct model is estimated and the null hypothesis of
no spatial dependence should be retained. The intention is to find an optimal design
which gives the best locations for the observations in the sense that the rejection of
the null hypothesis is minimized.

Under the alternative, the (wrongly) estimated model is still: y = Xβ + ε and ε
i.i.d., but now the true assumed (but unknown) data generating process is e.g. a SAR
error process (1.6). The variance-covariance matrix Ω(ρ) of the error terms is

Ω(ρ) = E[uu′] = σ2[(In − ρW)′(In − ρW)]−1 (1.17)

To ensure that Ω(ρ) is positive definite, ρ is restricted to the interval ] 1
λmin

; 1
λmax

[,
where λmin and λmax denote the smallest and largest eigenvalues of W. Note that
we are using SAR without being restricted to it, being well aware of its peculiar
problems that might effect design considerations as described in Martellosio (2011).
In fact, it is only necessary to be able to compute Ω in the following. For the use of
a CAR alternative, see e.g. Müller and Waldl (2011).

The model is estimated via OLS and the residuals ε̂ = y −Xβ̂ are used for the
calculation of Moran’s I. If the real data generating process follows a SAR error
process, the aim is to reject the null hypothesis of no spatial dependence. The task
is to maximize the power of the test, i.e. the probability to reject the null hypothesis
given the alternative (spatial dependence). For the normal approximation again only
the conditional moments are needed. The conditional expectation of Moran’s I (cf.
Tiefelsdorf 2000) can be evaluated by the improper integral

E[I|HA] =

∫ ∞
0

n−k∏
i=1

(1 + 2λit)
− 1

2 ·
n−k∑
i=1

h∗ii
1 + 2λit

dt (1.18)
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where h∗ii are the diagonal elements of matrix H = P′AP with A = Ω′
1
2 M 1

2 (W +

W′)MΩ
1
2 and P is the matrix of the normalized eigenvectors of matrix B =

Ω′
1
2 MΩ

1
2 . The eigenvalues and their associated eigenvectors are re-sequenced so

that 0 < λ1 ≤ λ2 ≤ ... ≤ λn−k. The variance of I under the alternative is given by

Var[I|HA] = E[I2|HA]− E[I|HA]2 (1.19)

where

E[I2|HA] =

∫ ∞
0

[
n−k∏
i=1

(1 + 2λit)
− 1

2

]
·

n−k∑
i=1

n−k∑
j=1

h∗iih
∗
jj + 2(h∗ij)

2

(1 + 2λit)(1 + 2λjt)

 t dt
andE[I|HA] is given in equation (1.18). The upper truncation points for the integrals
can be approximated by a formula from De Gooijer (1980). Following this, we obtain
an approximation of the upper bound for the expected value (1.18) of[

(n− k)hmax

2λ
n−k

2
1

(
n− k

2
− 1

)
1

ε

] 1
n−k

2
−1

= τ1 (1.20)

where hmax is the biggest absolute value of the elements of the diagonal of matrix
H and ε is a given positive small number less than 1. An approximation of the upper
bound for E[I2|HA] is[

3(n− k)2h
(2)
max

(2λ1)
n−k

2

(
n− k

2
− 2

)
1

ε

] 1
n−k

2
−2

= τ2 (1.21)

with h
(2)
max denoting the biggest absolute value of the elements of matrix H.

Tiefelsdorf (2000) suggests to use 1
n−k

∑n−k
i=1 λi instead of λ1. For more details

and an implementation of the above in R see Bivand et al. (2009).

1.6.1 A Design Criterion

In both cases, where a linear regression model is estimated and the corresponding
residuals are used to calculate Moran’s I test, the test result, whether to reject or
not to reject the null hypothesis of no spatial autocorrelation in the error term,
depends on the true data generating process. As the true process is unknown, a
general design criterion J (which does not depend on the knowledge of the true
data generating process), is needed. The aim is to minimize the probability that,
given the alternative, the Moran’s I test does not reject the null hypothesis of no
spatial autocorrelation. The test statistic Z = I−E(I|H0)√Var(I|H0)

is asymptotically normally
distributed and therefore we minimize:

min
HA

P

(
I− E(I|H0)√

Var(I|H0)
≤ Φ−1(1− α)

)
,
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where Φ denotes the cdf of the standard normal distribution. This leads to

min
HA

P
(
I ≤ Φ−1(1− α)

√
Var(I|H0) + E(I|H0)

)
Using the z-transformation for I under the alternative gives I−E[I|HA]√

Var[I|HA]
, which

is also asymptotically standard normally distributed. The final criterion to be
maximized is therefore given by

JI(ξ) = 1− Φ

(
Φ−1(1− α)

√
Var[I|H0] + E[I|H0]− E[I|HA]√

Var[I|HA]

)
. (1.22)

The maximization of JI over Sξ ∈ X gives the final optimal locations for the
observation sites and thus maximizes the power of the Moran’s I test. To calculate
JI, the expected value (1.15) and the variance (1.16) of I under the null hypothesis,
and the expected value (1.18) and the variance (1.19) of I under the alternative
hypothesis are needed. Unfortunately, the given criterion is not convex and thus we
can not employ the sort of equivalence theorems from the well developed optimum
design theory (cf. Atkinson et al. 2007) but must resort to alternative algorithmic
approaches, as given below. This criterion was first suggested by Gumprecht et al.
(2009) and later extended by Müller et al. (2012) for the exact distribution. They
show that optimizing the design serves as a regulatory device for the validity of
the normal approximation, so it is sufficient to consider the approximation in what
follows.

Evidently, the global optimal design can be found by evaluating all possible
designs, i.e. in an m-point grid there are

(
m
r

)
possible r-point designs, r goes

from 4 + k + 1 to m, where k is the number of the regressors in the model. This
minimum number of points in a design follows from the approximation of the upper
truncation points for the integrals (1.20) and (1.21). The number of possible designs
increases very fast with the size of the grid. This leads to a high runtime, as the
numerical integration needs a considerable amount of time. From this point of view it
is worth to notice that not all possible designs are different in the sense that they have
different criterion values. Some of the r-point designs are only rotations, reflections
or translations of other r-point designs, and therefore give the same value of the
criterion JI; let us call the respective designs ‘symmetric’. To avoid calculating
JI for those designs which are known to be symmetric to others, an appropriate
symmetry check can be performed before the computation of JI (see Gumprecht et
al. 2009).

For our asymmetric setup, however, there is no hope for that because on our 445-
point lattice there are (440-k)! different potential designs and only very few, if any,
of them can be considered symmetric. Thus, the complete evaluation of all truly
different designs is mostly impractical and can only be performed for very small
designs.

Gumprecht et al. (2009) suggest a simple search algorithm for finding a ‘nearly’
optimal design. This algorithm is much faster than the full enumeration algorithm
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as for the r-point design the number of evaluated (r − 1)-point designs is r. This
algorithm can also be performed in an acceptable amount of time for relatively large
grids. The procedure is quite simple:

1. Start with an initial design ξ0 with Sξ0 = X , called ‘base’ design. Thus in the
first iteration the number of points r in ξ0 is m.

2. Delete each point, one at a time, to get (r − 1) designs ξe, and compute JIe.
The symmetries can be checked before the criterion is calculated.

3. Take the best (r − 1) design ξe, i.e. the design with the largest JIe, and put it
as new base design.

Go to step 2.

The algorithm stops if r = (4 + k + 1). The r-point design that gives the largest
JI is the ‘nearly’ optimal one. Note the similarities to the ‘coffee-house’ procedure
given in Müller (2007): the disadvantage of these algorithms is, that once a r-point
design is chosen, all smaller r − i point designs are restricted to this set of points. As
a result it can happen quite easily that the algorithm is trapped in a local maximum.
To avoid this one could alternatively employ methods of stochastic optimization such
as in Haines (1987) or more recently Ver Hoef (2011).

Computation of all designs in this section is again what is known as a NP-
hard problem and a rigorous search would be prohibitive. Besides, the criteria are
not convex and typically exhibit multiple local optima and therefore most of the
cited papers employ simulated annealing algorithms (cf. also van Groenigen and
Stein 1998). However, by using simple exchange type procedures (cf. Royle 2002)
considerable gains in the criteria can be achieved within a few steps, as can be seen
from the respective examples in the next section.

1.6.2 Example

In the example of the Upper-Austrian municipalities it would clearly be too
demanding to search through the whole 445 item grid of available locations. We
employ the spatial link matrix G implied by Figure 1.3. In the search- and exchange
algorithms the corresponding row-standardized spatial weight matrices W are used.
The regression model of the optimal design procedure is an intercept only model.
As an exemplary value of the spatial autoregressive parameter ρ = 0.28677 (as
estimated from the SL model) was used, which is needed for evaluating expressions
under the alternative hypothesis (other values give qualitatively similar results
though differing designs). Using this parameter and sequential elimination (simple
search) leads to the optimal criteria values (maximum power of the test) for the
respective n-point designs displayed in Figure 1.6. From this graph it can be seen
that the best is the 122-point design withJI = 0.996311. The strong decay for larger
numbers of observations is another instance of the power-trap described in Krämer
(2005) and Martellosio (2010). One should note the following aspects about the
optimization:
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• In the first part of the optimization procedure there seem to be a lot of problems
in the computations, obtaining several NaN’s and oscillations in powers.
Nobody can be sure that the selection of the nodes to remove is the optimal
one (another reason to say that the final design obtained is quasi-optimal).

• Only after reaching the 381-point design the power begins to increase steadily,
getting the maximum value for a 122-point design.

• The 108-point design has all the nodes connected in pairs. After reaching
this design, zero powers begin to appear when one of the nodes of a pair is
removed. From that point on, the results of selecting the best node to remove
are no longer very reliable (in most cases the first node of the remaining ones
is removed).

110 120 122 130 140
Nodes HnL

0.995

0.996

0.996311

Power

Figure 1.6: Maximum powers of Moran’s I test for various design sizes n.

Note that we assume here the number of sampling sites to be freely chosen;
some considerations on the effectiveness can be found in Griffith (2005) and Griffith
(2008). Thus a corresponding 122-point design can be selected exclusively on the
basis of the criterion, which is displayed in Figure 1.7. We can observe that this
design only consists of connected couples, triples and at maximum quadruples.

1.7 Discussion
To conclude we have to admit that there are several different methods to fit a
regression model to areal data, but it is not obvious up to now which one of the
presented methods is optimal for the given data set, nor are the implications on a
proper design procedure straightforward. Some questions – which go beyond the
scope of this chapter – still remain unsettled:
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• Should we prefer the linear regression model, where we face the problem of
collinearity, but eliminate the spatial effect in the data?

• Do we have the case of spurious spatial regression in the given data? How can
we test for spatial nonstationarity?

• If it is feasible to fit a spatial regression model, which one should we use in
this context?

To answer these questions further work has to be done and the mentioned topics
must be examined in detail.

Note that the techniques given in this section have also some impact on
methods for spatial filtering, where the main idea is to separate the regional
interdependencies by partitioning the original variable into a filtered non-spatial (so
called ‘spaceless’) variable and a residual spatial variable. Afterwards conventional
statistical techniques that are based on the assumption of spatially uncorrelated errors
can be used for the filtered part. One of the most common filters is based on an
eigenfunction decomposition related to Moran’s I (cf. Getis and Griffith 2002), and
thus may be improved by appropriately selecting supporting sites.

Once spatial dependence in the data is detected the so-called variogram plays
a central role in the analysis of spatial data. A valid variogram model is selected
and the parameters of this model are estimated before kriging (spatial prediction)
is performed. These inference procedures are generally based on the examination
of the empirical variogram, which consists of average squared differences of data
taken at sites lagged the same distance apart in the same direction. The ability
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Figure 1.7: A quasi-optimum design for detecting spatial dependence.
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of an investigator to estimate the parameters of a variogram model efficiently is
again significantly affected by the sampling design, i.e. the locations of the sites
x1, . . . , xn ∈ X where data y are observed. For the relationship of variograms to
g-ratios and its implications see Bellehumeur and Legendre (1998).
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Figure 1.8: Variogram for the greenland data set.

In Müller and Zimmerman (1999) several practical approaches for constructing
sampling designs for estimation of the variogram were compared by Monte-Carlo
simulations. Those designs could be adopted at the early stages of a sampling
program until the variogram is sufficiently well-estimated, after which one could
shift to an existing approach that emphasizes prediction. Alternatively, the two
objectives could be combined in a compound design, as suggested in Müller and
Stehlı́k (2010).

Instead of directly going after the variograms a number of alternative methods
were suggested which allow to ignore correlations. A two stage strategy for instance
was suggested by Müller and Zimmerman (1995):

(a) Find the optimal configuration of distances ξ∗L in the space spanned by all
possible point pair distances (the so-called lag space L),

(b) and map this configuration into the original site space X (find a site space
design).

Finding the solution of (b) was also the purpose of Warrick and Myers (1987).
The usefulness of such a distance algorithm can only be assessed in two ways: via
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simulation, or by comparing it to a technique that directly employs ideas for optimum
designs for correlated observations. First results in this direction can be found in
Müller and Zimmerman (1999). They conclude that algorithms based on ignoring
correlations are much quicker but marginally less efficient with respect to a design
criterion than the augmentation procedures from the previous section.

It is traditional practice that the covariance/variogram parameters are estimated in
a separate stage. However, if one is willing to make distributional assumptions, it is
natural to employ likelihood based estimation techniques. In the following we will
thus assume that the errors in our spatial model follow a stationary Gaussian process.

In particular one could now assume that the trend is known and fixed and
maximize the log likelihood

2L(θ) = −n log(2π)− log det C(θ)− y′C−1(θ)y. (1.23)

It is now natural to base a design criterion on the information matrix associated
with the corresponding estimate of the parameter θ, which is given by (note that it
depends upon a design ξ via C)

M′′(ξ,θ)jj′ =
1

2
tr
{

C−1(θ)
∂C(θ)

∂θj
C−1(θ)

∂C(θ)

∂θj′

}
, (1.24)

where the ∂C(θ)
∂θj

are n× n matrices with entries ∂c(x,x′;θ)
∂θj

, x,x′ ∈ ξ.
Designs maximizing the determinant of M′′ have been suggested by Zhu

and Stein (2006) (they also employ a minimax and Bayesian criterion to avoid
undesirable effects due to the linearizations) and Zimmerman (2006), who calls them
CP (covariance parameter) optimal. Both demonstrate the behaviour of the criteria
for numerous artificial and real examples. A related discussion in this volume is
given by Zimmerman (2012); for a Bayesian adaptive approach see Marchant and
Lark (2006).

1.8 Appendix: R Code
# Packages
require(maptools)
require(maps)
require(spdep)
require(RColorBrewer)
require(pgirmess)
require(HH)
require(lmtest)
require(sandwich)

# Map of Upper Austria
data=data.frame(read.csv("greenlandmunratio_cs.csv",header=TRUE,
sep=";",dec=".")[,1:12])
years=names(data[,7:12])
row.names(data)=data[,3]
getinfo.shape("ooegemeinden.shp")
ooe <- readShapePoly("ooegemeinden.shp", IDvar="LBBGG")
plot(ooe, border="blue", axes=TRUE, las=1)
Greenland=SpatialPolygonsDataFrame(ooe,data=data)

28



# Video
dir.create("movieGreenland")
max(data[,7:12])
min(data[,7:12])
at_green=pretty(as.vector(unlist(data[,7:12])),n=10)
cols_green=colorRampPalette(rev(brewer.pal(10,"RdYlBu")))
(length(at_green)-1) # rev() re-sorts
for(i in years){

png(file=paste("movieGreenland/pic",i,".png",sep=""),
width=960,height=600)
print(spplot(Greenland,i,col.regions=cols_green,
at=at_green, main=paste("log Ratio: area of arable
land and area of greenland",i,sep=" ")))
dev.off()

}

# Plot of log ratios R95 to R08
pdf("Plots.pdf")
at_green=pretty(as.vector(unlist(data[,7:12])),n=9)
cols_green=colorRampPalette(brewer.pal(9,"Greens"))(length(at_green)-1)
spplot(Greenland,years,col.regions=cols_green,at=at_green,as.table=T)
dev.off()

# Influence of Altitude
pdf("Altitude.pdf")
at_altitude=pretty(as.vector(unlist(data[,6])),n=11)
cols_altitude=colorRampPalette(brewer.pal(9,"YlOrBr"))(length(at_altitude)-1)
altitude=names(data[6])
spplot(Greenland,altitude,col.regions=cols_altitude,at=at_altitude,as.table=T)
dev.off()

# Creating Neighbours

pdf("Neighbours.pdf")
par(mfrow=c(1,2))
ooe_nb1=poly2nb(Greenland) # Queen-style contiguities
plot(Greenland,border="grey60")
plot(ooe_nb1,coordinates(Greenland),pch=19,cex=0.6,add=TRUE)
title(main="Queen-style contiguities")

ooe_nb2=poly2nb(Greenland, queen=FALSE) # Rook-style contiguities
plot(Greenland,border="grey60")
plot(ooe_nb2,coordinates(Greenland),pch=19,cex=0.6,add=TRUE)
title(main="Rook-style contiguities")

coords=coordinates(Greenland)
IDs=row.names(as(Greenland,"data.frame"))
ooe_nb3=tri2nb(coords,row.names=IDs) # Delauney triangulation
plot(Greenland,border="grey60")
plot(ooe_nb3,coordinates(Greenland),pch=19,cex=0.6,add=TRUE)
title(main="Delauney triangulation neighbours")

ooe_nb4=graph2nb(gabrielneigh(coords),row.names=IDs) # Gabriel graph
plot(Greenland,border="grey60")
plot(ooe_nb4,coordinates(Greenland),pch=19,cex=0.6,add=TRUE)
title(main="Gabriel graph neighbours")

ooe_nb5=knn2nb(knearneigh(coords,k=1),row.names=IDs) # k=1 neighbors
plot(Greenland,border="grey60")
plot(ooe_nb5,coordinates(Greenland),pch=19,cex=0.6,add=TRUE)
title(main="All areas k=1 neighbours")
dev.off()
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pdf("Distbased.pdf")
dists=unlist(nbdists(ooe_nb5,coords))
summary(dists)
max_dist=max(dists)
# Distance based neighbors within 1*max_dist
ooe_nb6=dnearneigh(coords,d1=0,d2=1*max_dist,row.names=IDs)
is.symmetric.nb(ooe_nb6)
summary(ooe_nb6)
plot(Greenland,border="grey60")
plot(ooe_nb6,coordinates(Greenland),pch=19,cex=0.6,add=TRUE)
#title(main="Distance based neighbours within 1*max_dist")
dev.off()

# Spatial Weights

# available styles: W, B, C, U
# error when given an nb argument with areas with no neighbors = default

# row standardized weights matrix --> sums of weights in each row = 1
ooe_W1=nb2listw(ooe_nb6,style="W")

# weight of unity for each neighbor relationship
ooe_W2=nb2listw(ooe_nb6,style="B")

# equal weights for all links --> complete set of weights sums to number
of areas

ooe_W3=nb2listw(ooe_nb6,style="C")

# equal weights for all links --> complete set of weights sums to 1
ooe_W4=nb2listw(ooe_nb6,style="U")

# Connectivity Matrix/Spatial Lag Matrix
W1=listw2mat(ooe_W1)
W2=listw2mat(ooe_W2)
W3=listw2mat(ooe_W3)
W4=listw2mat(ooe_W4)

# Spatial autocorrelation tests

# Moran’s I
moran=moran.test(data$R08,listw=ooe_W1) # randomisation=F
moran
moran1=moran.test(data$R08,listw=ooe_W1,randomisation=T)
moran1

# Spatial Correlogram
correlo=sp.correlogram(neighbours=ooe_nb6,var=data$R08,order=16,method="I",

style="W",zero.policy=TRUE)
correlo
dist_correlo=correlog(coords,data$R08,method="Moran")
dist_correlo

pdf("Correlogram R08.pdf")
plot(correlo)
plot(dist_correlo)
# Moran Scatterplot (different for different spatial weight styles)
moran.plot(data$R08,listw=ooe_W1)
title(main="Moran Scatterplot")
dev.off()
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# Linear Regression Models

# Scatterplot-Matrix (covariates)
pairs(data[,5:11])
cor(data[,5:11])

# Linear regression model
linreg=lm(data$R08˜data$HEIGHT+data$R07+data$R05+data$R03+data$R99+data$R95)
linreg=lm(data$R08˜data$HEIGHT+data$R07+data$R05+data$R03)
summary(linreg)

# Collinearity - Variance inflation factor
vif(linreg)
# Plot of the residuals
Greenland$lmresid=residuals(linreg)
at_res=pretty(as.vector(unlist(Greenland$lmresid)),n=9)
cols_res=colorRampPalette(brewer.pal(9,"Greens"))(length(at_res)-1)
spplot(Greenland,"lmresid",col.regions=cols_res,at=at_res,as.table=T)

# Moran’s I test for residuals
moran_res=moran.test(Greenland$lmresid,listw=ooe_W1,randomisation=F)
# under randomisation/under normality --> randomisation=T/F
moran_res

lm.morantest(linreg,ooe_W1)

# Spatial regression models

# SAR
sar=spautolm(data$R08˜data$HEIGHT+data$R07+data$R05+data$R03,

data=data,listw=ooe_W1)
summary(sar)

# CAR
car=spautolm(data$R08˜data$HEIGHT+data$R07+data$R05+data$R03,

data=data,family="CAR",listw=ooe_W1)
summary(car)

# SMA
sma=spautolm(data$R08˜data$HEIGHT+data$R07+data$R05+data$R03,

data=data,family="SMA",listw=ooe_W1)
summary(sma)

# Spatial lag model
lag=lagsarlm(data$R08˜data$HEIGHT+data$R07+data$R05+data$R03,

data=data,listw=ooe_W1)
summary(lag)

# Plot of the residuals
Greenland$lagresid=residuals(lag)
at_res1=pretty(as.vector(unlist(Greenland$lagresid)),n=9)
cols_res1=colorRampPalette(brewer.pal(9,"Greens"))(length(at_res1)-1)
spplot(Greenland,"lmresid",col.regions=cols_res1,at=at_res1,as.table=T)

# Spatial Durbin model (spatially lagged explanatory variables)
mix=lagsarlm(data$R08˜data$HEIGHT+data$R07+data$R05+data$R03,

data=data,listw=ooe_W1,type="mixed")
summary(mix)
anova(lag,mix) # AIC

# Spatial error model
er=errorsarlm(data$R08˜data$HEIGHT+data$R07+data$R05+data$R03,

data=data,listw=ooe_W1)
summary(er)
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# Alternatives
# two stage least squares procedure
stsls=stsls(data$R08˜data$HEIGHT+data$R07+data$R05+data$R03,data=data,

listw=ooe_W1)
summary(stsls)
stslsR=stsls(data$R08˜data$HEIGHT+data$R07+data$R05+data$R03,data=data,

listw=ooe_W1,robust=TRUE)
summary(stslsR)
#Generalized Moments estimator
GMerr=GMerrorsar(data$R08˜data$HEIGHT+data$R07+data$R05+data$R03,data=data,

listw=ooe_W1)
summary(GMerr)
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