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Abstract

The aim of this paper is to provide guidelines for the statistically efficient estimation of the methane
emission in the sedge-grass marsh, South Bohemia, Czech Republic. Such a study is important for
better understanding of the rate and dynamics of methane emissions from wetland ecosystem and
in particular to build up a model of local methane flux. We model a time series of the data by
an infinite moving average process with Pareto tails of the exceedances. To insure the consistency
of such an estimator, we use both Hill and t-Hill estimators. We provide the proof of the weak
consistency of t-Hill estimator for the case of dependent data. This estimator has a simple form
and it provides a nice trade-off between efficiency and robustness. Finally we present a discussion
on its robustness.

Keywords: Environmental Chemistry, Pareto tails, t-Hill estimator, Hill estimator, weak
consistency, moving average process, Methane emission model, robust statistics, wetland
ecosystem, sedge-grass marsh, fen

1. Introduction

Several studies revealed central importance of understanding of methane emission recently (see
e.g. [17] for the case of methane emissions from natural wetlands and references therein). Methane
is recognized as one of the most important greenhouse gases (see e.g. [27]). It is in natural
ecosystems product of anaerobic decomposition processes of organic matter. These processes require
the synergy of anaerobic bacteria and methanogenic archaea. Organic matter is firstly hydrolyzed
and fermented, and formed products are compounds that are used for methanogenesis (see [16]).
Bacteria which are capable produced methane gas are strictly anaerobic (see [12]). Anaerobic
conditions suitable for methane production are in water saturated soils during long time period.
This conditions and soils we can find in wetland ecosystems where is enough of organic matter
from primary production and water level is in or above soil surface. Measured methane emissions
from the wetlands are the results of the biogeochemical process: (a) methane production and (b)
methane consumption by the methanotrophic bacteria. Resulted methane emissions are important
in relation to the global climatic changes.
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Besides an importance of the optimal design (see recent work of [24]) it is very important to
learn the nature of extremes in methane emission. This is the main motif of this paper. Emission
of methane in several parts of atmosphere are of interest (see e.g. for the case of troposphere [28]
or [13]). Since troposphere, extensively studied because of greenhouse gas emission, provides a
very exotic environment for kinetics of chemical reactions normally studied at the Earth, it can be
argued that correlation parameter and modified Arrhenius equation can play a crucial role by its
modeling. It was applied to the study of the methane removal in the atmosphere [24].

However, models of methane emission in a given ecosystems are much more complicated, involv-
ing several explanatory variables and they are not completely understood. In particular, they are
not developed for all countries and this vacancy harms a proper harmonizations of obtained results.
The model we use here is infinite Moving Average (MA) with heavy tailed distribution function of
exceedances of the error terms which can be expressed as Xn =

∑∞
j=0 cjZn−j , supposing that at

least one of the real numbers cj is positive and there exist a majorization constant δ ∈ (0, 1), δ < α
such that

∑∞
j=0 |cj |δ < ∞. If the model underlying the data, is a regularly varying function with

index −1/α it is usually supposed that the top scaled order statistics are Pareto distributed. [15]
derived a procedure of Pareto tail estimation by the MLE. Later on, many authors tried to robustify
the Hill estimator, but they still rely on maximum likelihood. However, the influence function of
Hill estimator is slowly increasing, but unbounded. Hill procedure is thus no robust and many
authors tried to make the original Hill robust (see [2] and references therein). In [8] a new method
of score moment estimators has been proposed. It appeared that these score moment estimators
are robust for heavy tailed distributions (see [25]). For the case of Pareto distribution, the t-Hill
estimator procedure with the score moment estimator has been investigated in [26] for optimal
testing for normality against Pareto tail.

The paper is organized as follows. The case study on Methane emission from the sedge-grass
marsh motivates the statistical techniques developed in Section 2. In the real data example we
observed that the exceedances of the trend component are not normal (as we have checked e.g.
by pp-plot) however they can be well modeled by Pareto tails. We fit two practical modes: In
subsection 2.1 only time is regressor, while in subsection 2.2 regressors are water level and time
and in subsection 2.3 also two soil temperatures are added to regressors. Simulation from the
established models demonstrates the goodness of fit of the initial data. We also show that for such
a type of data both Hill and t-Hill estimators are behaving well. Remarkable is also the simplicity
of deterministic part of the model, in comparison with the estimable trend of the corresponding
response surface model. The result of weak consistency for t-Hill estimator is proven for the case
of dependent data.

In Section 3 the simulation study of robustness and rate of convergence for the Hill and the
t-Hill estimators is given. We have observed that the t-Hill is more robust with respect to the right
outliers and more sensitive to the center of the distribution. On the other hand the Hill estimator is
more efficient under the assumption of Pareto tails. The trade off between efficiency and robustness
depends mainly on the tail index α. Finally Section 4 concludes and in particular discusses the
obtained results from both methodological and practical point of view. To maintain the continuity
of the explanation proofs and technicalities are deferred to the Appendix.

2. Case study: Sedge-grass marsh as the source of methane

Methane (CH4) is an important greenhouse gas, whose concentration in the troposphere is
steadily increasing. To estimate the flux of methane into the atmosphere and its atmospheric life-
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time, its rate of removal needs to be accurately determined. The main loss process for atmospheric
methane is the reaction with the hydroxyl radical, OH + CH4 → CH3 + H2O. This reaction has
been extensively studied, and it can be expressed in the modified Arrhenius form as

k(t) = a · 1

tm
exp(−β

t
)

i.e. we have Generalized Exponential model with correlated errors, studied in [24]. Therein the
filling designs (see [22]) for correlated version of modified Arrhenius model has been employed (for
independent case see [23]). However, models of methane emission in a given ecosystem on the Earth
are much more complicated, involving several explanatory variables and they are not completely
understood. And for a model-based design one needs to have first the model so that the optimal
designs could be established.

In this study were used data of the methane emission from the natural wetland ecosystem in the
South Bohemia region, Czech Republic. The sedge-grass marsh is part of a wetland complex Mokré
Louky (the Wet Meadows), situated near the town of Trebon, South Bohemia, Czech Republic. The
marsh is a flat depression with an area of 450 ha, situated in the inundation area of a large human-
made lake (Rožmberk fishpond, 5 km2). Water level is fairly stable and fluctuating usually from 0.2
to +0.1 m relative to soil surface. The minimum water levels is about 0.3 m. During floods the water
level culminates as high as 2 m above the soil surface (see [6]). We may expect by ecological reasons
that the methane emission depends substantially on water level and soil temperature. Emissions of
methane are not having a daily periodicity (in comparison of emissions of CO2 (respiration of soil
and vegetation), but there is a significant seasonality in the data.

Methods of the emission measurements
For measurement emissions of CH4 non-transparent closed chambers were used (non-steady-

state through-flow system). This system was developed at the Department of Matter and Energy
Fluxes (Global Change Research Center AS Czech Republic, v.v.i.). The chamber system is assem-
bled from three larger chambers, computer unit responsible for chamber closing and data processing
and greenhouse gas concentration analyzer of CO2 and CH4 (DLT-100 model: 908-0007, Los Gatos
Research Inc., USA The chamber body has cylindrical shape with dimensions 1 m in diameter and
1 m in height. Internal volume of chamber is 785 L. Chamber closes/opens vertically upwards to
a height of 1.2 m above soil surface to the bottom chamber corner. For sealing between chamber
body and soil surface, sealing collar was inserted in soil. Dimensions of this collar were 1 m in
diameter and 0.3m in height and 0.15 m from the collar height was inserted to soil. On the top of
collar was fixed the circumferential slot. In this slot the bottom corner of chamber body was seals
by water and neoprene sealing. Measurements were carried out automatically at 2-hours intervals
during whole day. Each single measurement spent about 20 minutes (closing time of the chamber).
During this time actually concentration of CH4 continuously recorded in second intervals and after
following format transformation stored in database. After the measurement minute averages are
calculated from the stored second data. Minute data (20 average values) are used for gasses flux
calculation. Additional measurements to chamber measurements were soil temperature profile at
5-levels 0, 5, 10, 20 and 30 cm (Pt-100, EMS Brno, Czech Republic), air temperature inside chamber
and air pressure (sensor-TMAG 518 N4H, Cressto, Czech Republic).

In this section we discuss modeling of the methane data by infinite moving average time series
with Pareto like positive(negative) part of the innovations. Such a time series in a various statistical
considerations has been studied in previous works (c.f. [20] for the consistency of the estimation
procedure under the dependence or [4] for general issues). The novelty of this paper is consideration
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of t-Hill estimator for the tail index, which is consistent also for some cases of dependent data, as
stated in the following Theorem 1.

Further on we suppose that X1,X2, ...,Xn are r.v’s with distribution function (d.f.) F and
upper order statistics

X(n,n) ≤ X(n−1,n) ≤ ... ≤ X(1,n).

We consider the t-Hill estimator of α−1

1

α̂k,n
=

{
1

k

k∑
i=1

X(k+1,n)

X(i,n)

}−1
− 1, k = 1, 2, ..., n. (1)

Let

µX,k(n),n(·) :=
1

k(n)

n∑
i=1

ε

{
Xi

b( n
k(n) )

∈ (·)

}
be a random element in the space E+ of non-negative Radon measures on (0,∞] endowed with the
vague topology. Here

b(t) := F←(1− 1

t
) =

(
1

F

)←
(t) (2)

is the quantile function of F .
The following three conditions are substantial for the consistency.
First, 1− F is regularly varying with exponent −α, α > 0, briefly

1− F ∈ RV−α. (3)

The second is the following Mason’s condition

k(n)

n
→ 0, k(n)→∞, n→∞ (4)

(i.e. k(n) is an intermediate sequence).
The third concerns the following vague convergence (see [21])

µX,k(n),n =⇒ µ, n→∞, (5)

where µ : σ((0,∞])→ [0,∞) and µ(x;∞] = x−α, x > 0.

Theorem 1. Let conditions (3,4,5) hold. Then 1
α̂k,n

is an weakly consistent estimator for 1
α .

Further we apply the obtained results for a particular case of infinite moving average sequence.
Corollary. Suppose that at least one of the real numbers cj , j = 0, 1, ... is positive and there

exists δ ∈ (0, 1), δ < α such that
∞∑
j=0

|cj |δ <∞. (6)

Consider the moving average sequence

Xn =

∞∑
j=0

cjZn−j , −∞ < n <∞, (7)

where Zi,−∞ < i < ∞, are non-negative independent identically distributed(i.i.d.) innovations
with d.f. G, such that G ∈ RV−α, α > 0. If the Mason’s condition (4) holds then α̂−1k,n is weakly

consistent estimator for α−1.
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Figure 1: The initial data after 480-th observation (time
in ”in 2 hours”).

Figure 2: The plot of Em without polynomial(2) trend.

2.1. Infinite moving average model: only time is regressor

In this section we apply the infinite moving average model to the methane data. First we made
the time intervals regular. Then we consider the model from the data after 480-th observation
because of there were too many missing data in the first part. The initial data of methane emissions
are plotted on Figure 1.

We denote the data from the sample at moment t > 0 by Em(t), where Em stands for abbre-
viation of ”emissions”. In this section we consider quadratic model with time as entire regressor,

Em(t) = a+ bt+ ct2 +X(t) + Z(t)− Z−(t) + ε(t).I[−c1,c2](ε(t)), t ≥ 0, (8)

where a ∈ R, b ∈ R, c ∈ R, X(t) is a moving average process, ε(t) ∼ N(0, σ2), Z(t) ∼ Pareto(α1)
and Z−(t) ∼ Pareto(α2). The processes X, ε, Z and Z− are homogeneous in time and independent.
I[−c1,c2] is the identificator function of the set [−c1, c2], c2 is the left-end point of Z(1) and c1 is the
left-end point of Z−(1). The process ε is a Wienner process. Z and Z− have independent additive
increments.

Notice that the process X inherit the dependent structure of the process Em without its deter-
ministic trend. We are using the exceedances over given threshold. Here Z stand for the positive
exceedances of the error term over c2 and Z− is for the exceedances of the minus error term above
c1. We suppose that between −c1 and c2 the errors are truncated N(0, σ2) distributed.

The deterministic part of Em was modeled by least-square line Êm(t) = a + bt + ct2. We
obtained it by lm function in software R 2.15.00 ([R Development Core Team]).

Êm(t) = 0, 009606− 0, 000001389.t− 0, 000000001488.t2,

where the residual standard error is 0.001487. The plot of Em− Êm is given on Figure 2.
The partial autocorrelation function of Em− Êm is plotted on Figure 3. The estimated param-

eter of the autoregression is 12. Further we modeled X by causal AR(12). We use the Yule-Walker
estimators (see e.g. [4]), implemented in software R 2.15.00 for the coefficients of the model.

Coefficients:

ar1 ar2 ar3 ar4 ar5 ar6 ar7

0.4537 0.0011 0.0910 0.0694 0.0797 -0.0246 -0.0498

ar8 ar9 ar10 ar11 ar12 intercept

-0.0017 0.0473 0.0333 0.0176 0.1136 0e+00
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Figure 3: Partial ACF of Em− Êm. Figure 4: The plot of Em− Êm− X̂.

Figure 5: Partial ACF of the residuals Em− Êm− X̂.

sigma^2 estimated as 1.334e-06: log likelihood = 10646.28, aic = -21264.56

The errors of Em − Êm − X̂ are plotted on Figure 4. Their partial autocorrelation function,
given on Figure 5, shows that these residuals are almost independent. Their histogram (Figure 6)

and the mean-excess plots of the positive and negative parts of Em− Êm− X̂ (Figure 7 and Figure
8) show that the observed random variables have Pareto like distribution. Change of the slot of the
ME-plot determines the appropriate number of upper order statistics (see [7], p. 355.)

We estimate the parameters of these Pareto distributions by Hill and t-Hill estimators.
The Hill plot consists of points with coordinates

(k,
1

k

k∑
i=1

ln
X(i,n)

X(k+1,n)
), k = 1, 2, ..., n.

For the positive and the negative parts of Em− Êm− X̂ they are given on Figure 9 and 11.
The t-Hill plot is defined as the set of points with coordinates

(k,
1

α̂k,n
), k = 1, 2, ..., n,

For positive and negative parts of Em − Êm − X̂ they are given correspondingly on Figure 10
and Figure 12. Note that the Hill and tHill plots have similar behavior. In order to obtain weak
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Figure 6: The histogram of Em− Êm− X̂.

Figure 7: The mean excess plot of the positive parts of

Em− Êm− X̂.

Figure 8: The mean excess plot of the negative parts of

Em− Êm− X̂.

Figure 9: The Hill plot of the positive parts of Em −
Êm− X̂.

Figure 10: The t-Hill plot of the positive parts of Em−
Êm− X̂
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Figure 11: The Hill plot of the negative parts of Em−
Êm− X̂

Figure 12: The t-Hill plot of the negative parts of Em−
Êm− X̂

Figure 13: GPD fit of the exceedances of Em− Êm− X̂ over 0.0005
threshold.

consistent estimators we need conditions of the corollary to be meet. Therefore these estimators
are good only for very large samples and k should satisfy the Mason’s condition (4).

We made the generalized Pareto fit of the exceedancess of Em − Êm − X̂ over c2 = 0.0005
threshold and obtained that the observed random variable is Pareto distributed, with α1 = 2 (see

Figure 13). Analogously the generalized Pareto fit of the exceedances of −(Em − Êm − X̂) over
c1 = 0.0005 threshold shows that it is Pareto(3.33) distributed (see Figure 14).

According to [5]’s theoretical result the tail indexes of the innovation distribution functions are
the same as the corresponding tail indexes of the distribution function of the exceedances of X.

2.1.1. Empirical check of the model

In this paragraph we check by simulation study that our model (8) can produce similar behavior
as the initial methane emission data. In this simulation study we used symmetric thresholds c1 =
c2 = 0.0005. However, Z ′s are not symmetric, we use α1 = 2 and α2 = 3.33, as obtained in the
above study. The Figure 15 shows the obtained simulated emission from this model after 480 data.
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Figure 14: GPD fit of the exceedances of −(Em−Êm−X̂) over 0.0005
threshold.

Figure 15: Empirical check of the model
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Figure 16: The plot of Em− Êm.

Figure 17: ACF of the process Em− Êm.

2.2. Infinite moving average model, regressors: time, water level

In this section, analogously to the previous one, we estimate a regression model with determin-
istic part

Êm(t) = a+ b.t+ c.t2 + d.w + e.w2 + f.t.w,

i.e.

Em(t) = Êm(t) +X(t) + Z(t)− Z−(t) + ε(t).I[−c1,c2](ε(t)), (9)

where t ≥ 0 stands for time, w is the water level and a, b, c, d, e, f are coefficients of the response
surface model. The processes X, Z, Z− and ε are as in the model (8).

First we have regularized time, than enlarged time intervals, omitted first 480 periods (because
of the huge part of missing data there) and finally obtained 1716 observations. then we received

the coefficients in Êm(t) by OLS procedure lm in R software.

Coefficients:

Intercept t t^2 w w^2 t:w

9.528e-03 -1.558e-06 -1.366e-09 9.870e-06 1.822e-06 -4.168e-08

The residual standard error is 0.001464 and the plot of Em− Êm is given on Figure 16.
The partial autocorrelation function of X is plotted on Figure 17.
We use the Yule-Walker estimators (see e.g. [4]) for the coefficients of X and modeled it X

causal AR(12) process.
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Figure 18: The plot of Em− Êm− X̂. Figure 19: Partial ACF of the residuals Em− Êm− X̂.

Figure 20: The histogram of the positive parts of Em−
Êm− X̂.

Coefficients:

ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8

0.4489 -0.0009 0.0904 0.0699 0.0799 -0.0222 -0.0491 -0.0010

s.e. 0.0223 0.0245 0.0245 0.0245 0.0246 0.0246 0.0246 0.0246

ar9 ar10 ar11 ar12 intercept

0.0457 0.0319 0.0144 0.1112 0e+00

s.e. 0.0245 0.0244 0.0244 0.0223 1e-04

sigma^2 estimated as 1.328e-06: log likelihood = 10650.56, aic = -21273.12

The errors of Em− Êm− X̂ are plotted on Figure 18. Their partial autocorrelation function is
given on Figure 19. It shows that these residuals are almost independent. Their histogram (Figure

20) and the mean-excess plots of the positive and negative parts of Em− Êm− X̂ (Figure 21 and
Figure 22) show that the observed random variables have Pareto like distribution.

The Hill plots for the positive and the negative parts of Em− Êm− X̂ are given on Figure 23
and 25. Corresponding t-Hill plots are given on Figure 24 and Figure 26.

We made the generalized Pareto fit of the exceedancess of Em − Êm − X̂ over c2 = 0.0005
threshold and obtained that the observed random variable is Pareto distributed, with α1 = 1.91
(see Figure 27). Analogously the generalized Pareto fit of the exceedances of −(Em − Êm − X̂)
over c1 = 0.0005 threshold shows that it is Pareto(3.03) distributed (see Figure 28).
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Figure 21: The mean excess plot of the positive parts

of Em− Êm− X̂.

Figure 22: The mean excess plot of the negative parts

of Em− Êm− X̂.

Figure 23: The Hill plot of the positive parts of Em −
Êm− X̂.

Figure 24: The t-Hill plot of the positive parts of Em−
Êm− X̂

Figure 25: The Hill plot of the negative parts of Em−
Êm− X̂

Figure 26: The t-Hill plot of the negative parts of Em−
Êm− X̂
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Figure 27: GPD fit of the exceedances of Em− Êm− X̂ over 0.0005
threshold.

Figure 28: GPD fit of the exceedances of −(Em−Êm−X̂) over 0.0005
threshold.
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Figure 29: The scatter-plot of the dependence between the water temperature and the Emis-
sion in real data
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Figure 30: Empirical check of the model

2.2.1. Empirical check of the model

In this paragraph we check by simulation study that model (9) can produce similar behavior as
the initial methane emission data. On Figure 29 is given the scatter-plot of the dependence between
the water temperature and the emission in real data.

In this simulation study we used symmetric thresholds c1 = c2 = 0.0005. However, Z ′s are not
symmetric, we use α1 = 1.91 and α2 = 3.03, as obtained in the above study. Figure 30 shows the
obtained simulated emission from this model.

2.3. Infinite moving average model, regressors: time, water level,soil temperatures

The main aim of the paper is to find a simplistic and reliable time series model of the methane
emission data in ecosystem in South Bohemia. In particular, when we consider response surface
model, where dependent variable is methane emission and independent variables (regressors) are
water level w and 5 soil temperatures t0, t5, t10, t20, t30. When we search for a response surface model
with most of interactions to be estimated, and we consider only the first 50 observations, estimable
are: intercept, cubic model in water level and t30, quadratic model in t0, t5, t10, t20, several pair
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Figure 31: The plot of Em− Êm.

interactions even with higher powers of water level and some of trilinear interactions are estimable.
This computation was made in Cocoa 4.7.5. software ([1]) and it also justifies the ecological intuition
that water level together with soil temperatures are very important factors. When employing first
100 of time observations, we are able to fit already Quartic model in water level, and also richer
models for other regressors, but we need assurance that coefficients of response surface model does
not vary significantly with time. Thus understanding of the time variation of the process, which is
the main aim of this paper, is the first step for a solid model building. The latter will be further
logical step of the investigation.

In this section by OLS procedure we estimate a regression model with deterministic part

Êm(t) = a+ b.t+ c.t2 + d.w + e.w2 + f.t0 + g.t20 + h.t5 + k.t25 + bilinearinteractions,

i.e.

Em(t) = Êm(t) +X(t) + Z(t)− Z−(t) + ε(t).I[−c1,c2](ε(t)), t ≥ 0, (10)

where the bilinear interactions are tw, tt0, tt5, wt0, wt5, t0t5. Here t stands for time, w is the water
level, t0, t5 are the soil temperatures with levels 0,−5cm respectively, and a, b, c, d, e, f, g, h, k are
unknown coefficients of non-interactions in the response surface model. The processes X, Z, Z−
and ε are as in the model (8).

For the sake of simplicity and parsimony of the model we have not introduced soil tempera-
tures bellow −5cm since the explanation of the resting variability was negligible. We received the
coefficients in Êm(t) by OLS procedure lm in R software.

Coefficients:

(Intercept) t t^2 w t_0 t_5 w^2

-1.680e-03 7.524e-06 -2.812e-09 2.624e-04 4.048e-04 7.270e-04 5.681e-07

t_0^2 t_5^2 tw tt_0 t:t_5 wt_0 wt_5 t_0:t_5

2.203e-04 2.052e-04 -1.401e-07 3.457e-07 -8.222e-07 7.237e-07 -1.484e-05 -4.506e-04

The residual standard error is 0.001349 and the plot of Em− Êm is given on Figure 31.
The partial autocorrelation function of X is plotted on Figure 32.
We modeled X by causal AR(12). We use the Yule-Walker estimators (see e.g. [4]) for the

coefficients of the model and obtained in software R 2.15.00.
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Figure 32: ACF of the process Em− Êm.

Figure 33: The plot of Em− Êm− X̂. Figure 34: Partial ACF of the residuals Em− Êm− X̂.

Coefficients:

ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8

0.4160 -0.0028 0.0899 0.0809 0.0958 -0.0115 -0.0453 -0.0125

s.e. 0.0223 0.0242 0.0242 0.0242 0.0243 0.0244 0.0244 0.0243

ar9 ar10 ar11 ar12 intercept

0.0332 0.0103 -0.0069 0.0989 0e+00

s.e. 0.0242 0.0242 0.0241 0.0223 1e-04

sigma^2 estimated as 1.264e-06: log likelihood = 10700.21, aic = -21372.43

The errors of Em − Êm − X̂ are plotted on Figure 33. Their partial autocorrelation function
shows that these residuals are almost independent (See Figure 34).

The histogram of the residuals Em− Êm− X̂ is given on Figure 35. The mean-excess plots of
the positive and negative parts of Em− Êm− X̂ (Figure 36 and Figure 37) show that the observed
random variables have Pareto like distribution.

The Hill plots for the positive and the negative parts of Em− Êm− X̂ are given on Figure 38
and 40.

The t-Hill plots for the positive and negative parts of Em− Êm− X̂ are given correspondingly
on Figure 39 and Figure 41.

We made the generalized Pareto fit of the exceedancess of Em − Êm − X̂ over c2 = 0.0005
threshold and obtained that the observed random variable is Pareto distributed, with α1 = 1.925528
(see Figure 42). Analogously the generalized Pareto fit of the exceedances of −(Em − Êm − X̂)
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Figure 35: The histogram of the positive parts of Em−
Êm− X̂.

Figure 36: The mean excess plot of the positive parts

of Em− Êm− X̂.

Figure 37: The mean excess plot of the negative parts

of Em− Êm− X̂.

Figure 38: The Hill plot of the positive parts of Em −
Êm− X̂.

Figure 39: The t-Hill plot of the positive parts of Em−
Êm− X̂
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Figure 40: The Hill plot of the negative parts of Em−
Êm− X̂

Figure 41: The t-Hill plot of the negative parts of Em−
Êm− X̂

Figure 42: GPD fit of the exceedances of Em− Êm− X̂ over 0.0005
threshold.

over c1 = 0.0005 threshold shows that it is Pareto(2.631860) distributed (see Figure 43).

3. Simulation study

In this section we consider Hill and t-Hill plots as defined above to compare the properties of
both estimators. Further on n is fixed, the dotted line presents the Hill plot the solid line is for
t-Hill plot. We investigate two cases.

Contaminated data from iid Pareto sample.
We simulated 1000 samples with n = 2500 observations of r.v. with distribution function

F (x) = (1− 1

xα
).0, 9 + (1− 1

xδ
).0, 1, x > 1

for α = 0.3, 0.4, 1, 1.2, 1.7 and δ = 0.1, 0.5, 1. Then we calculated separately both averages, of the
Hill and t-Hill estimators for k(n) = 1, 2, ..., n, together with the corresponding 0.95-confidence
intervals.

When α < 1 and δ ≥ 1 the Hill estimators are better than the t-Hill estimators. When α < 1
and δ < 1, or α ≥ 1 and δ > 1 the t-Hill estimators are comparable to the corresponding Hill
estimators.
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Figure 43: GPD fit of the exceedances of −(Em−Êm−X̂) over 0.0005
threshold.

Figure 44: α = 1, δ = 0.1 Figure 45: α = 1, δ = 0.5

The Figures 44-49 show the rate of convergence of the t-Hill and Hill estimators.
For α ≥ 1 and δ ≤ 1, the t-Hill estimators turned out to be better than the Hill estimators.

This investigation refine the conclusions made by [8], [9] and [25].
Moving average process. Further on we consider the infinite moving average process with

the following auto regressive form

Xi = 1.3Xi−1 − 0.7Xi−2 + Zi, i = 1, 2, ..., n.

This process is studied in [20] with respect to the Hill estimator.

• Pareto noise. Here Zi, i = 1, 2, ... are independent and Pareto(α) distributed. In each of
the following examples we simulated 1000 samples of n = 2500 such data. For each sample
we calculated the moving averages Xi, i = 1, 2, ..., n and finally plotted the Hill and the t-
Hill plots of the average of the corresponding estimators together with their 0.95 -confidence
intervals.

The Figures 50- 53 show that both estimators have similar behavior for fixed number of
upper order statistics. In this case we need k(n) = o(n) in order to obtain weakly consistent
estimators. Therefore they are appropriate only for very large samples. On our plots we have
k(n) = 10, 11, ..., 500.
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Figure 46: α = 1.2, δ = 1 Figure 47: α = 1.7, δ = 0.1

Figure 48: α = 1.7, δ = 0.5 Figure 49: α = 1.7, δ = 1

Figure 50: α = 0.3 Figure 51: α = 0.5

Figure 52: α = 1 Figure 53: α = 1.7
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Figure 54: α = 0.3, δ = 0.5 Figure 55: α = 0.3, δ = 1

Figure 56: α = 0.3, δ = 2 Figure 57: α = 0.5, δ = 0.3

• Moving average data with contaminated Pareto noise. In this case the innovations Zi, i =
1, 2, ..., n are independent and

G(x) = (1− 1

xα
).0, 9 + (1− 1

xδ
).0, 1, x > 1.

We made 100 samples of n = 10000 observations and calculated Xi, i = 1, 2, ..., n. Then we
plotted the Hill and the t-Hill plots of the averages of the corresponding estimators together
with their 0.95 -confidence intervals for different k. The results are very different from the
case of i.i.d. data.

It is well known that the MA data are dependent. In view of the regular variation of the tail of
the distribution of the noise component the largest values are determined by min{α, δ}. If some
innovation is huge it influences the following moving averages. Therefore both estimators are
not robust for 1/α, however, there are good estimators for 1/min{α, δ} (see Figures 54-59).

The rate of the convergence increases with α and therefore if our parameter is smaller we will
need more observations in order to obtain good estimation.

4. Discussion and Conclusions

The main aim of the paper is to find a parsimonious and reliable time series model of the methane
emission data in ecosystem in South Bohemia. In particular we consider response surface model,
where independent variable is methane emission and dependent variables (regressors) are water level
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Figure 58: α = 1, δ = 0.3 Figure 59: α = 2, δ = 0.3

and 5 soil temperatures in different depths. When we search for a response surface model with most
of possible interactions to be estimated, for considering only the first 50 observations intercept, cubic
model in water level and t30, quadratic models in other soil temperatures, several pair interactions
even with higher powers of water level and some of trilinear interactions are estimable. This justifies
the ecological intuition that water level together with soil temperatures are very important factors.
When employing first 100 of time observations, we are able to fit already Quartic model in water
level, and also richer models for other regressors, but we need assurance that coefficients of response
surface model does not vary significantly with time. Thus understanding of time variation of the
process, which is one of the main aims of this paper, is the fundamental step for a solid model
building. The latter will be further logical step of the investigation.

To summarize, we introduced the infinite moving average model with Pareto distributed posi-
tive parts of innovations for the statistically efficient estimation of the methane emission from the
sedge-grass marsh, South Bohemia, Czech Republic. We provide the proof of weak consistency of
t-Hill estimator for the case of dependent data. t-Hill estimator has a simple form and it provides
a nice trade-off between efficiency and robustness. Precise modeling of the methane emission from
the wetland ecosystems can be helpful to understand the rate and dynamics of emissions related to
biometeorological factors in site. Production and potential consumption of methane and possible
followed releasing from the soil are processes related to many factors. These factors are soil tem-
perature, water level and also more complex factors, which are difficulty measured directly, such
as availability of organic matter for bacteria and their competition of organic matter. We do not
consider the water level as a function of time because its complicated form. The further research
will be done to investigate this issue in more details. Anyhow, we have checked by simulation that
both models (8) and (9) are fitting the data well. More calibration (e.g. of thresholds c1, c2) may
give a potential for even a better fit.

Appendix

We will use the following inequality for distribution functions with regularly varying tails. If a
function H is regularly varying with exponent γ ∈ R, then for ε > 0 there exist t0(ε), such that for
t > t0(ε) and x ≥ 1,

(1− ε)xγ−ε ≤ H(tx)

H(t)
≤ (1 + ε)xγ+ε.

Its proof could be found in [14].
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Proof of the Theorem. Analogously to [20] we define

HX,k(n),n :=
1

k(n)

k(n)∑
i=1

{
X(i,n)

X(k(n)+1,n)

}−1
and

µ̂X,k(n),n(·) :=
1

k(n)

n∑
i=1

ε

{
Xi

X(k(n),n)
∈ (·)

}
, (11)

where HX,k(n),n is the denominator of (1). Integration by parts entails

HX,k(n),n =

∫ ∞
1

1

x

{
1

k(n)

n∑
i=1

ε

{
Xi

X(k(n)+1,n)
∈ dx

}}
=

=

∫ ∞
1

1

x
µ̂X,k(n),n (dx) = −

∫ ∞
1

1

x
d µ̂X,k(n),n (x,∞] =

= lim
x→1

1

x
µ̂X,k(n),n (x,∞]− lim

x→∞

1

x
µ̂X,k(n),n (x,∞] +

∫ ∞
1

µ̂X,k(n),n (x,∞] d
1

x
.

The positive measures µ̂X,k(n),n are Radon, therefore

lim
x→∞

1

x
µ̂X,k(n),n (x,∞] = 0

and

HX,k(n),n = µ̂X,k(n),n (1,∞]−
∫ ∞
1

µ̂X,k(n),n (x,∞]
1

x2
dx.

[20] prove that conditions of our theorem imply

µ̂X,k(n),n =⇒ µ, n→∞.

In view of the definition of µ we have

lim
n→∞

µ̂X,k(n),n (1,∞] = 1.

Then

lim
n→∞

HX,k(n),n = 1− lim
n→∞

{
∫ t

1

µ̂X,k(n),n (x,∞]
1

x2
dx−

∫ ∞
t

µ̂X,k(n),n (x,∞]
1

x2
dx}.

Consider

lim
n→∞

∫ t

1

µ̂X,k(n),n (x,∞]
1

x2
dx =

∫ t

1

µ (x,∞]
1

x2
dx =

t−α−1 − 1

−α− 1

and

lim
t→∞

lim
n→∞

∫ t

1

µ̂X,k(n),n (x,∞]
1

x2
dx =

1

α+ 1
.
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In order to apply Th. 4.2. of [3] we have to check that

lim
t→∞

lim
n→∞

P

{∫ ∞
t

µ̂X,k(n),n (x,∞]
1

x2
dx > ε

}
= 0. (12)

We need to change µ̂X,k(n),n with µX,k(n),n. We choose δ > 0 and consider

P

{∫ ∞
t

µ̂X,k(n),n (x,∞]
1

x2
dx > ε

}
=

= P

{∫ ∞
t

µX,k(n),n (
X(k(n),n)

b( n
k(n) )

x,∞]
1

x2
dx > ε

}
=

= P

{∫ ∞
t

µX,k(n),n (
X(k(n),n)

b( n
k(n) )

x,∞]
1

x2
dx > ε, |

X(k(n),n)

b( n
k(n) )

− 1| < δ

}
+

+P

{∫ ∞
t

µX,k(n),n (
X(k(n),n)

b( n
k(n) )

x,∞]
1

x2
dx > ε, |

X(k(n),n)

b( n
k(n) )

− 1| ≥ δ

}
.

[20] prove that conditions (3), (4) and (5) imply

X(k(n),n)

b( n
k(n) )

P−→ 1, n→∞. (13)

Therefore

0 ≤ P

{∫ ∞
t

µX,k(n),n (
X(k(n),n)

b( n
k(n) )

x,∞]
1

x2
dx > ε, |

X(k(n),n)

b( n
k(n) )

− 1| ≥ δ

}
≤

≤ P

{
|
X(k(n),n)

b( n
k(n) )

− 1| ≥ δ

}
converges to zero when n→∞.

In view of (13), there exists 0 < δ0 < 1 + α and nδ0 - large enough such that for all t > 1 and
n > nδ0 ,

P

{∫ ∞
t

µX,k(n),n (
X(k(n),n)

b( n
k(n) )

x,∞]
1

x2
dx > ε, |

X(k(n),n)

b( n
k(n) )

− 1| < δ

}
≤

≤ P

{∫ ∞
t

µX,k(n),n ((1− δ0)x,∞]
1

x2
dx > ε, |

X(k(n),n)

b( n
k(n) )

− 1| < δ

}
≤

≤ P
{∫ ∞

t

µX,k(n),n ((1− δ0)x,∞]
1

x2
dx > ε

}
.

Chebishev’s inequality guarantee that

P

{∫ ∞
t

µX,k(n),n ((1− δ0)x,∞]
1

x2
dx > ε

}
≤ 1

ε
E

∫ ∞
t

µX,k(n),n ((1− δ0)x,∞]
1

x2
dx.
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Identical distribution of X1,X2, ...,Xn entails
EµX,k(n),n ((1− δ0)x,∞] =

=
1

k(n)

n∑
i=1

P

{
Xi

b( n
k(n) )

∈ ((1− δ0)x,∞]

}
=

n

k(n)
P

{
X1

b( n
k(n) )

∈ ((1− δ0)x,∞]

}
=

=
n

k(n)
F ((1− δ0)x.b(

n

k(n)
)) =

n

k(n)
F (b(

n

k(n)
))
F ((1− δ0)x.b( n

k(n) ))

F (b( n
k(n) ))

.

Definition of b imply that when (4) is satisfied, then b( n
k(n) )→∞ and

lim
n→∞

n

k(n)
F (b(

n

k(n)
)) = 1.

Thus, in view of (3) and de Haan’s inequality for regularly varying functions, there exists
0 < δ1 < 1 + α and nδ1 - large enough such that for all x > 1 and n > nδ1 ,

EµX,k(n),n ((1− δ0)x,∞] ≤ (1 + δ1)((1− δ0)x)−α+δ1

and for all t > 1,∫ ∞
t

EµX,k(n),n ((1− δ0)x,∞]
1

x2
dx ≤ (1− δ0)−α+δ1

∫ ∞
t

(1 + δ1)x−α+δ1−2 dx =

= −(1− δ0)−α+δ1(1 + δ1).
t−α+δ1−1

−α+ δ1 − 1
= (1− δ0)−α+δ1(1 + δ1).

t−α+δ1−1

α− δ1 + 1
<∞.

We apply Fubini’s theorem and obtain that for all t > 1 and n > nδ,

P

{∫ ∞
t

µX,k(n),n ((1− δ0)x,∞]
1

x2
dx > ε

}

≤ 1

ε
E

∫ ∞
t

µX,k(n),n ((1− δ0)x,∞]
1

x2
dx =

=
1

ε

∫ ∞
t

EµX,k(n),n ((1− δ0)x,∞]
1

x2
dx ≤ (1− δ0)−α+δ1(1 + δ1)

ε
.
t−α+δ1−1

α− δ1 + 1
.

That is why

lim
t→∞

lim
n→∞

P

{∫ ∞
t

µX,k(n),n (
X(k(n),n)

b( n
k(n) )

x,∞]
1

x2
dx > ε, |

X(k(n),n)

b( n
k(n) )

− 1| < δ

}
= 0

and (12) is satisfied.
�

Proof of the Corollary. We check the conditions of the previous theorem. The random,
variables Xn, −∞ < n <∞, are identically distributed.

[20] prove that
µX,k(n),n =⇒ µ, n→∞.

25



[5] proves that under these settings

F (x) = P

 ∞∑
j=0

cjZj > x

 ∼ ∞∑
j:cj>0

cαj G(x) ∈ RV−α.

In view of the Mason’s condition we complete the proof. �
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