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Microergodicity effects on ebullition of methane modelled

by Mixed Poisson process with Pareto mixing variable

Pavlina Jordanova∗, Milan Stehĺık†, Jǐŕı Dušek ‡

Abstract

We model the process of exceedances of Ebullition of methane from wetlands
in the sedge-grass marsh, South Bohemia, Czech Republic by a Mixed Poisson
process with mixing variable that is Pareto distributed. We investigate the
properties of this process and describe it as a particular case of a counting
process. We define Mixed Poisson Pareto random variable, Exponential-Pareto
and Erlang-Pareto distribution and investigate their properties.

Keywords: Ebullition of methane, Mixed Poisson processes, Renewal pro-
cess, Pareto distribution.

1 Introduction

In general, ebullition is bubble transport of gasses from places with a high gas
production or concentration to neighboring environment mainly in the soil-water-air
interfaces. Ebullition is typical process for direct gas transport in wetland or aquatic
ecosystems where accumulated gas in deeper sediments transferred directly to the
atmosphere via gas bubbles. There are many factors that can affect bubble formation
and their releasing. One of them is a low solubility of methane in water. Solubility
of CO2 in water is 500-600 times greater than that of methane (see Yamamoto et al.
[1]). Next main physical factors which affect ebullition are temperature, hydrostatic
pressure, atmospheric pressure of air above soil or water and wind. Pressure affect we
can record during formation of gas bubbles and their following releasing. Methane
bubbles are trapped in soil pores and at once releasing at the time where pores filled
with a high pressure of gas. Bubbles suffer little dissolution during releasing from
the sediment through the water column. Martens and Klump [2] reported only a
15% change in bubble volume trough 3 m of water column.
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Modeling the dependence of the ebullition of methane on time is useful from
ecological point of view. In Jordanova et al. [3] we have modeled this dependence by
a time series model. The trend component is estimated by Ordinary Least Squared
technique. The noise component is presented by sum of an infinite moving average
model with Pareto-like positive and negative parts of the innovations and indepen-
dent identically distributed (i.i.d.) innovations with similar tail behavior. Pareto
tails have been justified also by robust tests for normality against Pareto tails (see
Stehĺık et al. [4]). Such a moving average time series could be considered as born by
a point process. The sums, extremes, exceedances and first passage times as char-
acteristics of this point processes, as well as the behavior of the sample covariance
function have been investigated in Davis and Resnick [5] and Resnick [6]. They con-
sider a sequence of non-negative i.i.d. innovations Z1, Z2, ... with regularly varying
d.f. G, i.e. such that

(1) 1−G(x) +G(−x) = P (|Zk| > x) = x−α.L(x),

where α > 0, L(x) is a slowly varying function at ∞ and

(2)
P (Zk > x)

P (|Zk| > x)
→ p ∈ (0, 1) and

P (Zk ≤ −x)

P (|Zk| > x)
→ q = 1− p, as x → ∞.

Denote by

(3) Xn =
∞∑
j=0

cjZn−j , −∞ < n < ∞,

a stationary sequence of moving averages, where at least one of the real numbers
cj , j = 0, 1, ... is positive and there exists δ ∈ (0, 1), δ < α such that

(4)

∞∑
j=0

|cj |δ < ∞.

For a sequence a1, a2, ... such that

(5) nP (|Z1| > an.x) → x−α, for all x > 0,

i.e. an = inf{x : P (|Z1| > x) ≤ 1
n}, Davis and Resnick [5] prove that although

the sequence {Xn, −∞ < n < ∞} does not obligatory satisfy the condition D′ of
Leadbetter [7] the point process

(6)

∞∑
k=1

ε(k/n,Xk/an) =⇒
∞∑
i=1

∞∑
k=1

ε(tk,jk.ci) t → ∞,

where {(tk, jk) : k = 1, 2, ...} is a homogeneous in time Poisson point process on
(0,∞)×R\{0}, with mean measure µ such that

µ(dt, dx) = dt×λ(dx), λ(dx) = α.p.x−α−1.I(0,∞)(x)(dx)+α.q.(−x)−α−1.I(−∞,0)(x)(dx).
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They also note that ”any stationary ARMA process driven by a noise sequence
of regularly varying tail probabilities will satisfy the hypotheses” of their theorems.

The main properties of the sequence of i.i.d. innovations follow from the
investigations of Resnick [8] and Weissman [9]. They prove that

(7)

∞∑
k=1

ε(k/n,Zk/an) =⇒
∞∑
k=1

ε(tk,jk) t → ∞.

In this paper we show that the intensity of the observed Poisson processes of
exceedances is not a constant. This intensity is usually considered as a constant
because the parameters of the process are estimated using only one sample path.
Our conclusions come from the fact that if we resample the data, in such a way
that to preserve the dependence structure of the process and its main properties we
obtain the process of the innovations that is an uncountable mixture of a moving
average processes and Lomax(shifted Pareto) mixing random variable (r.v.) plus
i.i.d. innovations. We investigate the properties of the limiting point processes
of exceedances. Particularly the counting process of the exceedances over a high
threshold turns out to be a Mixed Poisson process (MPP) with the inflated Lomax
(Shifted Pareto) mixing variable. The time-grid that we use is very helpful. From
ecological point of view, reaching a certain grid threshold we are touching a micro-
hierarchical level in the context of Addiscott and Mirza [10].

As a byproduct of our observations we define a MPP with Pareto mixing
variable and obtain some of its properties. We consider it as a particular case of
a counting process with dependent additive increments. We define Mixed Poisson
Pareto random variable. It describes the distribution of the number of the ”events”
up to time t in the case of the Pareto mixing variable. Exponential-Pareto distri-
bution appears as a distribution of the length of the interval between consecutive
events. Erlang-Pareto distribution is the distribution of the moment of the n-th
”event”. When we consider only exceedances of the mixed moving average process
the corresponding distributions appeared to be inflated. Some properties of the
defined variables are investigated. We obtain the relation between the probability
mass function(p.m.f.) of a MPP and p.m.f. of MPP with shifted mixing variable.

The Mixed Poisson processes and their properties are considered e.g. in Karlis
and Xekalaki [11] and in the monograph by Grandell [12]. The MPP with Gamma
mixing variable is a particular case of a counting process, related with a random time
changed renewal process. The times between renewals of this process are uncount-
able mixture of exponentials with gamma mixing variable. It is well known that
this distribution coincides with Pareto distribution. However due to the common
mixing variable they are dependent. The random change of time is just the random
scale change. The distribution of the time intersections of such a MPP with Gamma
mixing variable is a Negative binomial. Our theoretical results with respect to the
probability theory are analogous to these investigations.
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2 Microergodicity effects on ebullition

To interpret the above mentioned phenomena in statistical terminology, let us con-
sider the data and model (8) described in Jordanova et al. [3]. Therein we denoted
the time series of the sample at the moment t > 0 by Em(t), where Em stands
for the abbreviation of ”emissions”. In this section we have considered a quadratic
model with time as the entire regressor,

Emλ(t) = a+ bt+ c.t2 +Xλ(t) + Zλ(t)− Z−,λ(t) + ϵλ(t).I[−c1,c2](ϵλ(t)), t ≥ 0,(8)

where a ∈ R, b ∈ R, c ∈ R, Xλ(t) is a moving average process, ϵλ(t) ∼ N(0, σ2)
relates to standard diffusion, Zλ(t) = Pareto(α1)IPareto(α1)>c2(t) and Z−,λ(t) =
Pareto(α2)IPareto(α2)>c1(t), where IA(t) is an indicator function of the set A.

Here λ is the intensity of the point process of exceedances of the process

EmS,λ(t) = Emλ(t)− a− bt− c.t2, t ≥ 0

over a high threshold. As convolution of two homogeneous in time Poisson pro-
cesses(HPP) this point process is again HPP. (The index ”S” comes from ”Stationary
part of the process Emλ(t)”). Assuming that λ is a constant, the properties of the
corresponding point process of exceedences over a high threshold are well described
in Davis and Resnick [5] and Resnick [6] and references therein. The intensity of the
process of exceedences over a high threshold of EmS,λ(

t
λ) is 1. The point estimators

of a, b, c, α1 and α2, as well as the estimators of the coefficients of the moving
average process are given in Jordanova et al. [3].

Consider the process EmS,λ(t). If we observe only one sample path of the
process, then λ is a constant. Due to the approximation (6) λ have to be the same
for any sample path. By homogeneity in time of this process we could make different
time subinterval and to check if λ is the same. In view of stationarity of EmS,λ(t) if
λ is replaced with a random variable Λ that is independent on the noise components
included in the process, the new process EmS,Λ(t) is again stationary. Therefore we
include mixing variable Λ and check if it is a constant or not.

Lomax Fitting

Further on we consider the fitting of the mixing variable. For estimating the mixing
variable we use both, the strong law of large numbers for Homogeneous Poisson
processes with finite mean

Nu(t)

t
→ λu, t → ∞ a.s.,

and the strong law of large numbers for the MPP with finite mean of the time
intersections, i.e.

Nα,δ,u(t)

t
→ Λα,δ,u, t → ∞ a.s.,
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where {Nu(t) : t ≥ 0} is the number of exceedencess over the threshold u of the
process EmS,λ(t), i.e. λ is the mean number of exceedences of a unit time interval.
{Nα,δ,u(t) : t ≥ 0} is the number of exceedencess over the threshold u of the Mixed
process EmS,Λα,δ,u

(t) and Λα,δ,u is the mean number of exceedences during unit time
interval of this process. Due to the fact that in the model, described in Jordanova et
al.[3], we consider only one sample path, λ is a constant. Practically if we consider
many sample paths it would be a random variable, and we denote this r.v. by
Λα,δ,u. In order to obtain many sample paths we form subsamples of this sample.
To save the dependence structure of the process the observations in a subsample
are consecutive. The first sample contains all the data set. The second sample
contains the first half of the data. The third sample contains the second half of the
data. The fourth, fifth and sixth sample contain correspondingly the first, second
and third third of the data and so on. Finally we divide the interval to 10 equal
consecutive parts and obtain totaly 55 samples. In any of the intervals we calculate
the mean number of exceedances, so we obtain 55 realizations of the r.v. Λα,δ,u.

Case 1. u = 0.005. The following table contains the mean number of ex-
ceedencess over the threshold u = 0.005 in the corresponding subintervals described
above.
0.04327
0.07290 0.18278
0.09764 0.54650 0.27404
0.16603 0.36450 0.00000 0.36556
0.26412 0.26048 0.00000 0.63007 1.37152
0.31710 0.31289 1.09456 0.00000 0.54887 0.00000
0.14883 0.30435 1.27759 0.00000 0.00000 0.64065 0.00000
0.16985 0.49809 0.72901 0.00000 0.00000 0.00000 0.73113 0.00000
0.19099 0.91416 0.58583 1.63948 0.00000 0.00000 1.13305 2.46638 0.00000
0.21292 1.58851 0.52249 1.82775 0.00000 0.00000 0.00000 1.26316 2.74960 0.00000

In Jordanova et al. [3] we obtain that α > 2. Therefore we can use the moment
estimators of the parameters of the inflated Lomax distribution. Denote by p the
probability of the event ”There is no exceedences of u in the unit time interval”,
then

FΛα,δ,u
(x) = p+ (1− p).(1− (1 +

x

δ
)−α), x ≥ 0.

E Λα,δ,u =
δ.(1− p)

α− 1
,

E Λ2
α,δ,u =

2.δ2.(1− p)

(α− 2).(α− 1)2
,

The estimator of p is a result of the Strong Law of Large numbers.

p̂ =
The number of zeros

The number of observations
=

18

55
= 0.3272727

α̂ =
2.m2

n,1

(1− p̂).m2
n,2

+ 2 = 3.146497,
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Figure 1: The plot of the empirical
c.d.f. on the data above the threshold
u = 0.005 and the corresponding theo-
retical Lomax c.d.f.
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Figure 2: The plot of the empirical cdf
on the data above the threshold u =
0.0005 and the corresponding theoreti-
cal Lomax c.d.f.

δ̂ =
(α− 1).mn,1

1− p̂
= 1.785954,

where mn,1 is the average of the observations and mn,2 is the empirical second
moment. The plot of the empirical c.d.f. and corresponding estimated theoretical
c.d.f. are given on Figure 1.

Practically the random variable Λα,δ,u describes the overdispersion of the pro-
cess.

Case 2. For u = 0.0005 the mean numbers of exceedences over a unit time
interval, calculated by the corresponding subsample are given in the following table.
0.00212
0.00370 0.00985
0.00475 0.01755 0.01911
0.00687 0.01605 0.04225 0.03008
0.01299 0.01202 0.04110 0.10784 0.03937
0.02266 0.01211 0.04597 0.08693 0.12634 0.05085
0.02768 0.01347 0.04682 0.07012 0.17230 0.29507 0.05983
0.05837 0.01559 0.03704 0.09064 0.11203 0.23077 0.38802 0.07080
0.05634 0.02198 0.02888 0.07965 0.31250 0.13078 0.21313 0.72010 0.08333
0.06236 0.03125 0.02517 0.09054 0.16051 0.14286 0.43750 0.37743 0.64216 0.08850

The moment estimators of the corresponding parameters are

p̂ =
The number of zeros

The number of observations
= 0

α̂ =
2.m2

n,1

(1− p̂).m2
n,2

+ 2 = 2.705181,

δ̂ =
(α− 1).mn,1

1− p̂
= 0.1892441,

The plots of the empirical c.d.f. and the corresponding estimated theoretical
c.d.f. are given on Figure 2.
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3 Mixed Poisson process

In this section we consider a Mixed Poisson Process with Pareto mixing variable.
We investigate some of the properties of this process and describe it as a particular
case of a counting process with dependent additive increments. We define Mixed
Poisson Pareto random variable. It describes the distribution of the number of the
”events” up to time t. Exponential-Pareto distribution appears as a distribution of
the length of the interval between consecutive ”events”. Erlang-Pareto distribution
is the distribution of the moment of the n-th ”event”. Some properties of the defined
variables are investigated.

We denote by
d
= coincidence in distribution.

Denote by Λα,δ, α > 0, δ > 0, a Pareto distributed r.v. with cumulative
distribution function

(9) FΛα,δ
(x) =

{
0 , x ≤ δ

1− δα

xα , x > δ

Briefly Λα,δ ∼ Pareto(α, δ). It is well known that,

(10) EΛk
α,δ =

α.δk

α− k
, α > k, k ∈ R,

(11) ϕα(s) := Ee−s.Λα,δ = α.(δ.s)α.Γ(−α, δ.s), s > 0,

where Γ(x, t) =
∫∞
t yx−1.e−ydy, x is the upper incomplete gamma function and

lim
s↓0

sα.Γ(−α, s) = α−1.

Comments with respect to Γ(x, t), could be found in Olver et al [13] or in in Nadara-
jah and Kotz [14] where (11) is proved. We will use also Generalized exponential
integral

Ep(z) = zp−1.Γ(1− p, z),

for z ∈ R and p ∈ R. Some of its properties and numerical tables could be found in
Milgram [15] or Olver [13].

Let A be a sigma algebra with right - continuous filtration. Consider a prob-
ability space Ω = (Ω,A,P).

Definition 1. Let N be a standard homogeneous Poisson process in Ω,
(EN(1) = 1) and c(t) be a non-negative, non-decreasing and continuous function,
not obligatory starting from the coordinate beginning and c(t) → ∞, t → ∞. Denote
by Λα,δ a r.v. that have c.d.f. (9). Assume Λα,δ and N are independent. We call
the random process

{Nα,δ(t); t ≥ 0} = {N(Λα,δ.c(t)); t ≥ 0}
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Figure 3: Five sample paths of a homo-
geneous MPPP-process, (i.e. c(t) = t)
with parameters α = 2 and δ = 0.5.
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Figure 4: Five sample paths of a homo-
geneous Poisson process, with parame-
ter λ = 1.

a Mixed Poisson Process with Pareto mixing variable (MPPP-processes).
Briefly

{Nα,δ(t); t ≥ 0} ∼ MPPP (α, δ; c(t)), α > 0, δ > 0.

Figure 3 displays 5 sample paths of such a process. Due to the over-dispersion
we observe the bigger difference between the trajectories of MPPP-process than
between the trajectories of the homogeneous Poisson process with constant intensity
given in Figure 4. The mean of both processes coincides, when t = 1.

As a particular case of Mixed Poisson processes, the MPPP-processes have the
following properties (See e.g. Mikosch [16])

1.) it only has a finite number of jumps on any finite time interval;

2.) it has dependent additive increments;

3.) if c(t) = t it is homogeneous in time;

4.) it is over-dispersed;

5.) it has the order statistics property;

6.) it has Markov property.

The next theorem describes the distribution of the time intersections and finite
dimensional distributions (f.d.ds) of the Mixed Poisson Process with Pareto mixing
variable.

Theorem 1. If {Nδ,α(t); t ≥ 0} ∼ MPPP (α, δ; c(t)), α > 0, δ > 0, then

a.) for all t > 0

P (Nα,δ(t) = k) = α.
(δ.c(t))α

k!
Γ(k−α, δ.c(t)) = α.

(δ.c(t))k

k!
E1−k+α(δ.c(t)), k = 0, 1, ....

8



b.) For n ∈ N, 0 ≤ t1 < t2 < ... < tn, ki = 0, 1, ..., i = 1, 2, ..., n

(12) P (Nα,δ(t1) = k1, Nα,δ(t2) = k1 + k2, ..., Nα,δ(tn) = k1 + ... = kn) =

=
α.δα.c(t1)

k1 .(c(t2)− c(t1))
k2 ...(c(tn)− c(tn−1))

kn

k1!...kn!.c(tn)k1+...+kn−α
.Γ(k1+...+kn−α, δ.c(tn)) =

=
α.δk1+...+kn .c(t1)

k1 .(c(t2)− c(t1))
k2 ...(c(tn)− c(tn−1))

kn

k1!...kn!
.E1−(k1+...+kn)−α(δ.c(tn)).

c.) If c(t) = t, then for all t > 0, Nα,δ(t)
d
= Nα,δ.t(1).

Proof: We use the Total probability formula.
a.) P (Nα,δ(t) = k) = P (N(Λα,δ.c(t)) = k) =

=

∫ ∞

δ
P (N(y.c(t)) = k)PΛα,δ

(y)dy =

∫ ∞

δ

(y.c(t))k

k!
e−y.c(t)α.y−α−1δαdy =

=
α.δα

k!

∫ ∞

δ.c(t)
zk.e−z.

z−α−1

(c(t))−α−1

dz

c(t)
= α.

(δ.c(t))α

k!
Γ(k − α, δ.c(t)),

and y = z/c(t).
b.) Consider n ∈ N, 0 ≤ t1 < t2 < ... < tn, ki = 0, 1, ..., i = 1, 2, ..., n. The

independence and homogeneity of the Poisson process N and the Pareto distribution
of Λα,δ entail

P (Nα,δ(t1) = k1, Nα,δ(t2) = k1 + k2, ..., Nα,δ(tn) = k1 + ...+ kn) =

=

∫ ∞

δ
P (N(y.c(t1)) = k1, N(y.c(t2)) = k1+k2, ..., N(y.c(tn)) = k1+... = kn)PΛα,δ

(y)dy =

=

∫ ∞

δ
P (N(y.c(t1)) = k1).P (N(y.(c(t2)−c(t1))) = k2)...P (N(y.(c(tn)−c(tn−1))) = kn)PΛα,δ

(y)dy =

=

∫ ∞

δ

(y.c(t1))
k1

k1!
.e−y.c(t1).

(y.(c(t2)− c(t1)))
k2

k2!
.e−y.(c(t2)−c(t1))...

(y.(c(tn)− c(tn−1)))
kn

kn!
.

.e−y.(c(tn)−c(tn−1)).α.δα.y−α−1dy =

=
α.δα.c(t1)

k1 .(c(t2)− c(t1))
k2 ...(c(tn)− c(tn−1))

kn

k1!...kn!

∫ ∞

δ
yk1+...+kn−α−1.e−y.c(tn)dy =

=
α.δα.c(t1)

k1 .(c(t2)− c(t1))
k2 ...(c(tn)− c(tn−1))

kn

k1!...kn!.c(tn)k1+...+kn−α
.Γ(k1 + ...+ kn − α, δ.c(tn)).

c.) Follows immediately by a.).
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3.1 MPPP process and MPP distribution

Definition 2. We call a random variable ξ with probability mass function (p.m.f.)

(13) P (ξ = k) =
α.δα

k!
Γ(k − α, δ), k = 0, 1, ...

Mixed Poisson Pareto r.v. with parameters α > 0, δ > 0. Briefly ξ ∼
MPP (α, δ).

Remark: 1. Due to the following considerations, the MPP (α, δ) distribution
is proper.

∞∑
k=0

α.δα

k!
Γ(k − α, δ) = α.δα

∞∑
k=0

1

k!

∫ ∞

δ
e−y.yk−α−1dy =

= α.δα.

∫ ∞

δ
y−α−1.e−y

∞∑
k=0

yk

k!
dy = α.δα.

∫ ∞

δ
y−α−1dy = 1.

The limit interchange is valid here, as we can see from Lebesgue Theorem on

dominating convergence, having a sequence fn(y) =
∑n

k=0
yk

k! .

Any MPP r.v. could be presented as a Mixed Poisson distributed r.v. with
Pareto mixing variable.

Theorem 2. Let α > 0 and δ > 0. If ξα,δ ∼ MPP (α, δ), then there exists a
probability space and two random variables Λα,δ and NΛα,δ

defined on it such that
Λα,δ ∼ Pareto(α, δ),

P (NΛα,δ
= k|Λα,δ = y) =

yk

k!
e−y, y > δ, k = 0, 1, ...

and ξα,δ
d
= NΛα,δ

.

Proof: Consider the probability space born by N0(1), where

{N0(t); t ≥ 0} ∼ MPPP (α, δ; c(t) = t).

Then by Theorem 1 a.), N0(1)
d
= ξα,δ. By the Formula of total probability

P (NΛα,δ
= k) =

∫ ∞

δ
P (NΛα,δ

= k|Λα,δ = y)PΛα,δ
(y)dy =

∫ ∞

δ

yk

k!
e−yα.y−α−1δαdy =

= α.
δα

k!
Γ(k − α, δ), k = 0, 1, ....

Theorem 3. If ξα,δ ∼ MPP (α, δ), α > 0, δ > 0 then,

a.) Eξα,δ =
α.δ
α−1 , α > 1.

b.) Eξ2α,δ =
α.δ
α−1 + α.δ2

α−2 , α > 2.
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c.) V ar ξα,δ =
α.δ
α−1 + α.δ2

α−2 −
(

α.δ
α−1

)2
, α > 2.

d.) Ee−s.ξα,δ = α.δα
∑∞

k=0
e−sk

k! Γ(k − α, δ) = α.(δ(1− e−s))α.Γ(−α, δ.(1− e−s)) =

= α.Eα+1(δ.(1− e−s)), α > 0.

e.) Ezξα,δ = α.δα
∑∞

k=0
zk

k! Γ(k−α, δ) = α.(δ(1−z))α.Γ(−α, δ.(1−z)) = α.Eα+1(δ.(1−
z)), α > 0.

Proof: We will use that ξα,δ
d
= NΛα,δ

, where NΛα,δ
is described in Theorem

2.
a.) By Double expectations theorem or by properties of the MPP, and by (10)

we obtain

Eξα,δ = ENΛα,δ
=

∫ ∞

δ
E(NΛα,δ

|Λα,δ = y).PΛα,δ
(y)dy = EΛα,δ =

α.δ

α− 1
, α > 1.

b.) Eξ2α,δ = EN2
Λα,δ

=

=

∫ ∞

δ
E(N2

Λα,δ
|Λα,δ = y).PΛα,δ

(y)dy =

∫ ∞

δ
(y + y2).PΛα,δ

(y)dy =

= EΛα,δ + EΛ2
α,δ =

α.δ

α− 1
+

α.δ2

α− 2
, α > 2.

c.) V ar ξα,δ = Eξ2α,δ − (Eξα,δ)
2.

d.) By definition of Laplace Transform and as in the proof of Theorem 2, we
have

Ee−s.ξα,δ = Ee
−s.NΛα,δ =

∞∑
k=0

e−skP (NΛα,δ
= k) = α.δα.

∞∑
k=0

e−sk

k!
Γ(k − α, δ).

From the other side, by the properties of the Mixed Poisson processes we obtain

Ee−s.ξα,δ = Ee−Λα,δ(1−e−s) = α.(δ(1−e−s))α.Γ(−α, δ(1−e−s)) = α.Eα+1(δ.(1−e−s)).

e.) Analogously to d.).
Remark: 1. In Section 4.2. of the paper [17], Willmot considers the moment

generating function which coincides with ours.

3.2 MPPP process as a counting process.

Let Λα,δ ∼ Pareto(α, δ) and τΛα,δ
be a random variable defined on the same prob-

ability space and with the following conditional cumulative distribution function
(c.d.f.):

P (τΛα,δ
< x|Λα,δ = y) = 1− e−xy, x > 0, y > δ.

11



The last means that τΛα,δ
is an uncountable mixture of exponentials with Pareto

Mixing variable.

P (τΛα,δ
< x) = 1− P (τΛα,δ

≥ x) = 1−
∫ ∞

δ
P (τΛα,δ

≥ x|Λα,δ = y)PΛα,δ
(y)dy =

= 1− α.δα.

∫ ∞

δ
e−xy.y−α−1dy = 1− α.(x.δ)α.

∫ ∞

x.δ
e−z.z−α−1dz =

= 1− α.(x.δ)α.Γ(−α, x.δ), x > 0.

Definition 3. We call a random variable τα,δ with c.d.f.

(14) P (τα,δ < x) = 1− α.(x.δ)α.Γ(−α, x.δ) = 1− α.Eα+1(x.δ), x > 0,

Exponentially-Pareto distributed with parameters α > 0 and δ > 0. Briefly
τα,δ ∼ EP (α, δ).

Theorem 4. If τα,δ ∼ EP (α, δ), α > 0, δ > 0, then

a.) density has the form

Pτα,δ
(x) = α.δα.

(
−α.xα−1.Γ(−α, x.δ) + exp{−δ.x}δ−α.x−1

)
= α.δ.Eα(δ.x), x > 0,

b.) Pτα,δ
(x) = 1

x .Pτα,δ.x
(1), x > 0.

c.) Eτα,δ =
α

δ.(1+α) .

d.) Eτkα,δ =
α.k!

δk(k+α)
, k = 1, 2, ...

e.) V arτα,δ =
α.(2+2α+α2)
δ2(α+1)2(α+2)

.

f.) Ee−t.τα,δ = α.δα.t−α
∫∞
δ/t z

−α(1 + z)−1dz = α.δ.
∫∞
0 e−t.yEα(δ.y)dy.

g.) Scale property: τα,δ
d
= δ.τα,1.

h.) Let E1 be an exponential random variable with parameter 1 and Λα,δ ∼
Pareto(α, δ). Assume E1 and Λα,δ are independent, then

τα,δ
d
=

E1

Λα,δ
.

Proof: a.) Using the derivative of the c.d.f. and the results of Section 8.19 in
Olver [13] we obtain we obtain

Pτα,δ
(x) = α.δα.

(
−α.xα−1.Γ(−α, x.δ) + exp{−δ.x}δ−α.x−1

)
=

= α.δ(−α.(δ.x)α

δ.x
Γ(−α, x.δ)+

e−δ.x

δ.x
) = α.δ(− α

δ.x
Eα+1(δ.x)+E0(δ.x)) = α.δ.Eα(δ.x).

12



Proof of b.) and c.) is straightforward.
d.) We use the construction of this r.v. given in the beginning of the Section.

Eτkα,δ =

∫ ∞

δ
E(τkΛα,δ

|Λα,δ = y)PΛα,δ
(y)dy =

∫ ∞

δ

k!

yk
α.δα.y−α−1dy =

α.k!

δk(α+ k)
.

e.)V arτα,δ = Eτ2α,δ − (Eτα,δ)
2.

f.)Ee−t.τα,δ =

=

∫ ∞

δ
E(e

−t.τΛα,δ |Λα,δ = y)PΛα,δ
(y)dy =

∫ ∞

δ

y

y + t
α.δα.y−α−1dy =

For y = zt,

= α.δα.

∫ ∞

δ
(y + t)−1y−αdy = α.δα.t−α

∫ ∞

δ/t
z−α(1 + z)−1dz.

From the other side by definition of the expectation and a.) we obtain the last
part of this statement.

g.) It follows by Definition 3.
h.) We use the Total probability formula and (11). Let x > 0, then

P (
E1

Λα,δ
≥ x) =

∫ ∞

δ
P (

E1

Λα,δ
≥ x|Λα,δ = y)PΛα,δ

(y)dy =

=

∫ ∞

δ
P (E1 ≥ x.y)PΛα,δ

(y)dy =

∫ ∞

δ
e−x.y.PΛα,δ

(y)dy = Ee−x.Λα,δ =

= α.(δ.x)α.Γ(−α, δ.x), x > 0.

Remark: 1. In his paper Felgueiras [18] uses the notion ”Pareto scale mix-
ture of the X variable” for description of the variable that is fraction of independent
r.v. X and Beta(α, 1) distributed r.v. As is discussed in that paper, this distribu-
tion coincides with the one of the product of X and independent of it Pareto r.v.
Therefore due to the property described above in Th. 4., h.) we do not use just the
name ”Pareto mixture of the exponential r.v.” in Definition 3 or if we use it, we have
to notice that the word ”scale” in the description of Felgueiras [18] is substantial.
”Pareto scale mixture of the X variable” and ”Pareto mixture of the X variable”
are two different probability laws.

2. The Property h.) in the above Th. 4. describes clearly the relation between
the Exponentially-Pareto distribution and other continuous distributions, e.g. due
to the fact that the reciprocal value of a Pareto distributed r.v. coincides with the
power distribution the property h.) in the above Th. 4. could be explained also in
the terms of the power distribution.

3. When α = n ∈ N and δ = 1 this distribution coincides with the Exponential
integral distribution, for ν = 1 and m = 1, see Meijer and Baken [19].
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4. In view of the definition of the Hypergeometric functions we could express
Property f.) as

Ee−t.τα,δ =
t

t+ δ
.F (1, 1;α+ 1;

t

t+ δ
).

Definition 4. Let (τα,δ,1, τα,δ,2, ..., τα,δ,n), be a random vector with
(15)
P (τα,δ,1 ≥ x1, τα,δ,2 ≥ x2, ..., τα,δ,n ≥ xn) = α.[δ(x1+...+xn)]

α.Γ(−α, δ(x1+...+xn)),

xi ≥ 0, i = 1, 2, ..., n,
we call (τα,δ,1, τα,δ,2, ..., τα,δ,n) Exponentially-Pareto distributed random vec-
tor. Briefly (τα,δ,1, τα,δ,2, ..., τα,δ,n) ∼ EP(α, δ).

Remark: 1. In terms of the Generalized exponential integral (15) coincides
with the expression

P (τα,δ,1 ≥ x1, τα,δ,2 ≥ x2, ..., τα,δ,n ≥ xn) = α.Eα+1((x1 + ...+ xn).δ).

Theorem 5. If (τα,δ,1, τα,δ,2, ..., τα,δ,n) ∼ EP(α, δ) then

a.) for all i = 1, 2, ..., n, τα,δ,i ∼ EP (α, δ).

b.) Any subvector of this vector is again EP(α, δ) distributed random vector.

c.) Let E1, E2, ..., En be i.i.d. exponentially distributed random variables with
parameter 1 and Λα,δ ∼ Pareto(α, δ). Assume E1, E2, ..., En and Λα,δ are
independent, then

{τα,δ,1, τα,δ,2, ..., τα,δ,n)}
d
= { E1

Λα,δ
,
E2

Λα,δ
, ...,

En

Λα,δ
}.

d.) There exist a probability space, generated by Λα,δ ∼ Pareto(α, δ) and r.v.
(τ1, τ2, ..., τn) defined by

P (τ1 ≥ x1, τ2 ≥ x2, ..., τn ≥ xn) =

∫ ∞

δ
e−y.(x1+...+xn)PΛα,δ

(y)dy, xi ≥ 0, i = 1, 2, ..., n.

such that
(τα,δ,1, τα,δ,2, ..., τα,δ,n)

d
= (τ1, τ2, ..., τn).

Proof: a.) Replace redundant variables in (15) by zero and obtain the survival
function corresponding to (14).

b.) Analogously to a.) we obtain (15) for the corresponding random vector
and corresponding variables.

c.) We use the Total probability formula and (11). Let x1 ≥ 0, ..., xn ≥ 0,
then

P (
E1

Λα,δ
≥ x1, ....,

En

Λα,δ
≥ xn) =

∫ ∞

δ
P (

E1

Λα,δ
≥ x1, ...,

En

Λα,δ
≥ xn|Λα,δ = y)PΛα,δ

(y)dy =

14



=

∫ ∞

δ
P (E1 ≥ x1.y)...P (En ≥ xn.y).PΛα,δ

(y)dy =

∫ ∞

δ
e−(x1+...+xn).y.PΛα,δ

(y)dy =

= Ee−(x1+...+xn).Λα,δ = α.(δ.(x1 + ...+ xn))
α.Γ(−α, δ.(x1 + ...+ xn)).

d.) Use the Total probability formula.
2

Define

(16) Tα,δ,n = τα,δ,1 + τα,δ,2 + ...+ τα,δ,n

and denote the corresponding counting process by

(17) {Nα,δ(t); t ≥ 0} = {sup{i ≥ 0 : Tα,δ,i ≤ t}, t ≥ 0}.

The next theorem describes the distribution of the sum Tα,δ,n in a particular
case.

Theorem 6. Let for all n = 1, 2, ..., (τα,δ,1, τα,δ,2, ..., τα,δ,n) ∼ EP(α, δ) and
Tα,δ,n be the random variable, described in (16), then

a.)

(18) P (Tα,δ,n ≥ x) = α.(δ.x)α.

n−1∑
i=0

Γ(i− α, δ.x)

i!
, x ≥ 0

b.)

PTα,δ,n
(x) = α.δ.

(δ.x)α−1

(n− 1)!
Γ(n− α, δ.x) =

α.δn.xn−1

(n− 1)!
.Eα−n+1(δ.x), x ≥ 0.

c.) PTα,δ,n
(x) = 1

xPTα,δ.x,n
(1), x > 0.

Proof: a.) Let x ≥ 0. By the definition of Tα,δ,n, Theorem 5, the form of the
survival function of the Erlang distribution with parameters (n, y) and Pareto (α, δ)
distribution density function,

P (Tα,δ,n ≥ x) = α.δα.

∫ ∞

δ

n−1∑
i=0

e−yx.(yx)i

i!
y−α−1dy =

For t = xy

= α.δα.

n−1∑
i=0

1

i!

∫ ∞

δ
e−yx.(yx)iy−α−1dy = α.(δ.x)α.

n−1∑
i=0

1

i!

∫ ∞

x.δ
e−t.ti−α−1dy.

b.) Analogously to a.)

PTα,δ,n
(x) = α.δα.

∫ ∞

δ
yn

xn−1

(n− 1)!
e−x.yy−α−1dy = α.δ.

(δ.x)α−1

(n− 1)!
Γ(n− α, δ.x).

15



Definition 5. Let Tα,δ,n be a r.v. with survival function (18). We call such a
r.v. Erlang-Pareto distributed with parameters α > 0, δ > 0 and n ∈ N. Briefly
Tα,δ,n ∼ ErlP (α, δ, n).

Remarks 1. ErlP (α, δ, 1) distribution coincides with EP (α, δ) distribution.
2. When δ = 1 and α ∈ {n, n + 1, ...} this distribution coincides with the

Exponential integral distribution, for ν = n, m = 1 and n0 = α − n + 1 see Meijer
and Baken [19].

Theorem 7. Let Tα,δ,n ∼ ErlP (α, δ, n), then

a.) ETα,δ,n = n.α
δ.(1+α) .

b.) ET k
α,δ,n = α.(n+k−1)!

(n−1)!.δk(α+k)
, k = 1, 2, ...

c.) V arTα,δ,n = α.n.(n+(α+1)2)
δ2.(α+2)(α+1)2

.

d.)

Ee−t.Tα,δ,n =
α.δα.

tα

∫ ∞

δ/t

zn−α−1

(1 + z)n
dz.

e.) Let T1,n be an Erlang distributed random variable with parameters 1 and n
and Λα,δ ∼ Pareto(α, δ). Assume T1,n and Λα,δ are independent, then

Tα,δ,n
d
=

T1,n

Λα,δ
.

f.) Let {Nα,δ(t), t ≥ 0} ∼ MPPP (α, δ, c(t) = t), then

PTα,δ,n
(x) = δ.P (Nα−1,δ(x) = n− 1), x > 0.

Proof: a.) We use that ETα,δ,n = E(τα,δ,1 + τα,δ,2 + ... + τα,δ,n) = n.E τα,δ,1
and apply Theorem 4, c.).

b.) By Theorem 6, a) and Theorem 5, c.),
ET k

α,δ,n = E(τα,δ,1 + τα,δ,2 + ...+ τα,δ,n)
k =

=

∫ ∞

δ

(n+ k − 1)!

(n− 1)!yk
α.δα.y−α−1dy =

α.δα.(n+ k − 1)!

(n− 1)!

∫ ∞

δ
y−α−k−1dy =

=
α.(n+ k − 1)!

(n− 1)!.δk(α+ k)
.

c.) V arTα,δ,n = E T 2
α,δ,n − (E Tα,δ,n)

2.
d.) By Theorem 6, a) and Theorem 5, c.), for y = t.z,

Ee−t.Tα,δ,n =

∫ ∞

δ
E(e−t.Tα,δ,n |Λα,δ = y).PΛα,δ

(y)dy =

∫ ∞

δ

yn

(y + t)n
α.δα.y−α−1dy =
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=
α.δα.

tα

∫ ∞

δ/t

zn−α−1

(1 + z)n
dz.

e.) By the Total probability formula and (11) for x ≥ 0,

P T1,n
Λα,δ

(x) =

∫ ∞

δ
P T1,n

Λα,δ

(x|Λα,δ = y)PΛα,δ
(y)dy =

=

∫ ∞

δ
y.PT1,n(x.y).PΛα,δ

(y)dy = α.δα.

∫ ∞

δ
y
(x.y)n−1

(n− 1)!
e−x.yy−α−1dy = α.δ.

(δ.x)α−1

(n− 1)!
Γ(n−α, δ.x).

Theorem 8. Let τα,δ,1, τα,δ,2, ..., be a sequence of random variables with

(τα,δ,1, τα,δ,2, ..., τα,δ,n) ∼ EP(α, δ), for all n ∈ N.

Define {Nα,δ(t), t ≥ 0} as in (17), then

{Nα,δ(t), t ≥ 0} ∼ MPPP (α, δ; t).

Proof: Let t > 0 and k ∈ 0, 1, .... By (17) we have,

P (Nα,δ(t) = k) = P (Tα,δ,n+1 ≤ t < Tα,δ,n) = P (Tα,δ,n ≤ t)− P (Tα,δ,n+1 ≤ t).

By Theorem 6 and Theorem 1. a.). we obtain equality of one dimensional marginals.
Analogously for the f.d.ds of the process {Nα,δ(t), t ≥ 0}.

2

Consider Tα,δ,n, defined in (16). Denote by
ηb,α,δ(t) = t − Tα,δ,Nα,δ(t) - the length of the period (TNα,δ(t), t] since the last

”event” occur, and by
ηf,α,δ(t) = Tα,δ,Nα,δ(t)+1 − t - the length of the period (t, TNα,δ(t)+1] until the

next ”event” occur.
The next theorem describes the distributions of these two random variables.
Theorem 9. Suppose τα,δ,1, τα,δ,2, ..., is a sequence of random variables with

(τα,δ,1, τα,δ,2, ..., τα,δ,n) ∼ EP(α, δ), for all n ∈ N

and Tα,δ,n is the sequence, defined in (16). Then for all t > 0,

a.) for x1 ∈ [0, t]
P (ηb,α,δ(t) ≥ x1) = α(x1.δ)

α.Γ(−α, δ.x1);

b.) ηf,α,δ(t) ∼ EP (α, δ);

c.) for x1 ∈ [0, t] and x2 > 0

P (ηb,α,δ(t) ≥ x1, ηf,α,δ(t) ≥ x2) = α((x1 + x2).δ)
α.Γ(−α, δ.(x1 + x2)).
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Proof: c.) Consider a homogeneous Poisson process Nλ := {Nλ(t), t ≥ 0}
with intensity λ > 0 and Λα,δ ∼ Pareto(α, δ) that are independent, defined on one
and the same probability space and

{Nα,δ(t), t ≥ 0} d
= {NΛα,δ

(t), t ≥ 0}.

Then P (ηb,α,δ(t) < x1, ηf,α,δ(t) < x2) = P (t−x ≤ Tα,δ,Nα,δ(t) ≤ t, t < Tα,δ,Nα,δ(t)+1 ≤
t+ x2) =

= P (Nα,δ(t−x1, t] ≥ 1, Nα,δ(t, t+x2] ≥ 1) =

∫ ∞

δ
P (Ny(t−x1, t] ≥ 1, Ny(t, t+x2] ≥ 1)PΛα,δ

(y)dy =

=

∫ ∞

δ
(1− e−y.x1).(1− e−y.x2).α.δα.y−α−1dy =

= 1−
∫ ∞

δ
e−y.x1α.δα.y−α−1dy−

∫ ∞

δ
e−y.x2α.δα.y−α−1dy+

∫ ∞

δ
e−y.(x1+x2)α.δα.y−α−1dy =

= 1−α(x1.δ)
α.Γ(−α, δ.x1)−α(x2.δ)

α.Γ(−α, δ.x2)+α((x1+x2).δ)
α.Γ(−α, δ.(x1+x2)).

a.) is immediate consequences from c.) when replace x2 with zero.
b.) is immediate consequences from c.) when replace x1 with zero.
Note: Due to the fact that the support of ηb,α,δ(t) is bounded (it is [0, t]), the

distribution of ηb,α,δ(t) is truncated Exponentially Pareto distributed with parame-
ters α > 0 and δ > 0.

4 The Mixed Poisson Lomax Process

The relation between the discussed Lomax distribution and the discussed Pareto
distribution is just shifting. Particularly for α > 0 and δ > 0,

Λα,δ ∼ Pareto(α, δ) ⇐⇒ Λα,δ − δ ∼ Lomax(α, δ).

Therefore we start our discussion in this section with the relation between the p.m.f.
of a MPP with mixing variable Λ and the p.m.f. of the time intersections of the
MPP process with shifted mixing variable Λ− δ, where P (Λ− δ ≥ 0) = 1.

Theorem 10. Let Λ be a random variable that is a.s. greater than δ > 0
and let N be a HPP with intensity 1, independent on Λ and defined on the same
probability space. Then

(19) P (N(Λ− δ) = k) = eδ
k∑

j=0

(−δ)k−j

(k − j)!
P (N(Λ) = j), k = 0, 1, ...

Proof: By the total probability formula

P (N(Λ−δ) = k) =

∫ ∞

δ
P (N(y−δ) = k)PΛ(y)dy =

∫ ∞

δ

(y − δ)k

k!
e−(y−δ).PΛ(y)dy =

18



= eδ
∫ ∞

δ

e−y

k!

k∑
j=0

k!

j!(k − j)!
.yj .(−δ)k−j .PΛ(y)dy = eδ

k∑
j=0

(−δ)k−j

j!(k − j)!
.

∫ ∞

δ
e−y.yj .PΛ(y)dy =

= eδ
k∑

j=0

(−δ)k−j

(k − j)!
P (N(Λ) = j).

Now we will express the p.m.f. of the time intersections of a Mixed Poisson
Lomax Process in two different ways.

Corollary: Let Λα,δ ∼ Pareto(α, δ), i.e. Λα,δ − δ ∼ Lomax(α, δ). Then

a.)

P (N(Λα,δ − δ) = k) = α.δk.eδ.

k∑
j=0

(−1)k−j

(k − j)!.j!
.Eα−j+1(δ), k = 0, 1, ...

b.)

P (N(Λα,δ − δ) = k) = α.
δk

k!
.

∫ ∞

0
zk.e−δ.z.(1 + z)−α−1dz, k = 0, 1, ...

Proof: a.) By Theorem 1, a.) and the Poisson distribution of N(y), when
y ≥ 0,

P (N(Λα,δ − δ) = k) = eδ
k∑

j=0

(−δ)k−j

j!(k − j)!
.α.δα.

∫ ∞

δ
e−y.yj−α−1dy =

(20) = eδ
k∑

j=0

(−δ)k−j

(k − j)!
.
α.δα

j!
Γ(j − α, δ) = α.δk.eδ.

k∑
j=0

(−1)k−j

(k − j)!.j!
.Eα−j+1(δ).

b.) By the formula of total probability and Λα,δ − δ ∼ Lomax(α, δ),

P (N(Λα,δ − δ) = k) =

∫ ∞

0
P (N(y) = k).α.δα.(δ + y)−α−1dy =

=

∫ ∞

0

yk

k!
.e−y.α.δα.(δ + y)−α−1dy = α.

∫ ∞

0

(δ.z)k

k!
.e−δ.z.(1 + z)−α−1dz =

(21) = α.
δk

k!
.

∫ ∞

0
zk.e−δ.z.(1 + z)−α−1dz,

where y = δ.z. 2

Particularly

P (N(Λα,δ − δ) = 0) = eδ.P (N(Λα,δ) = 0),
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P (N(Λα,δ − δ) = 1) = eδ.(P (N(Λα,δ) = 1)− δ.P (N(Λα,δ) = 0)).

Remark: 1. In view of (20) and (21)

eδ.

k∑
j=0

(−1)k−j

(k − j)!.j!
.Eα−j+1(δ) =

∫ ∞

0

zk

k!
.e−δ.z.(1 + z)−α−1dy, k = 0, 1, ...

The distribution of the times between exceedances τΛα,δ−δ and the probability

density function of the time of the n-th exceedance T̃α,δ,n in the case of Lomax
mixing variable, i.e. if the counting process of the exceedances is N(Λα,δ − δ) is
given in the next theorem.

Theorem 11. Let Λα,δ ∼ Pareto(α, δ), i.e. Λα,δ − δ ∼ Lomax(α, δ). Then

a.)

P (τΛα,δ−δ ≥ x) = α.ex.δ.(x.δ)α.Γ(−α, δ.x) = α.ex.δ.Eα+1(δ.x), x > 0.

b.)

P
T̃α,δ,n

(x) =
α.δn.xn−1

(n− 1)!
.

∫ ∞

0
tn.(t+ 1)−α−1.e−x.t.δdt.

Proof. a.) For y = δ.z,

P (τΛα,δ−δ ≥ x) = α.δα.

∫ ∞

0
e−x.y(y + δ)−α−1dy = α.

∫ ∞

0
e−x.δ.z(1 + z)−α−1dz =

= α.ex.δ.

∫ ∞

1
e−x.u.δu−α−1du =

where z + 1 = u. For t = x.u.δ

= α.ex.δ.(x.δ)α.

∫ ∞

x.δ
e−t.t−α−1dt = α.ex.δ.(x.δ)α.Γ(−α, δ.x) = α.ex.δ.Eα+1(δ.x), x > 0.

b.) For y = z.δ, and identically distributed τΛα,δ−δ,1, τΛα,δ−δ,2, ..., such that

T̃α,δ,n = τΛα,δ−δ,1 + ...+ τΛα,δ−δ,n,

by formula of total probability, the Erlang p.d.f. and Pareto p.d.f.,

P
T̃α,δ,n

(x) = PτΛα,δ−δ,1+...+τΛα,δ−δ,n
(x) = α.δα.

∫ ∞

δ
(y−δ)n.

xn−1

(n− 1)!
.e−x.(y−δ).y−α−1dy =

=
α.δα.ex.δ.xn−1

(n− 1)!
.

∫ ∞

1
(z.δ−δ)ne−x.z.δ.(z.δ)−α−1dz.δ =

α.δn.xn−1.ex.δ

(n− 1)!
.

∫ ∞

1
(z−1)ne−x.z.δ.z−α−1dz =

=
α.δn.xn−1

(n− 1)!
.

∫ ∞

0
tn.(t+ 1)−α−1.e−x.t.δdt,
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Figure 5: P (N((Λ1,1 −
1).I{η = 1}) = 0) for various p.
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Figure 6: P (N((Λ1,1 −
1).I{η = 1}) = 3) for various p.

where t = z − 1. 2

Finally in this section we discuss the case of the inflated Lomax mixing vari-
able.

Suppose that the random variable η with

P (η = i) =

{
p , i = 0

1− p , i = 1

is independent on Λα,δ and defined on the same probability space. Here p ∈ [0, 1].
Due to N(0) = 0 a.s. and the formula of total probability we have

P (N((Λα,δ−δ).I{η = 1}) = 0) = p+(1−p).P (N(Λα,δ−δ) = 0) = p+(1−p).α.

∫ ∞

0
e−δ.z.(1+z)−α−1dz =

= p+(1−p).α.δα.eδ
∫ ∞

δ
e−t.t−α−1dt = p+(1−p).α.δα.eδ.Γ(−α, δ) = p+(1−p).α.eδ.Eα+1(δ).

For k = 1, 2, ...

P (N((Λα,δ−δ).I{η = 1}) = k) = (1−p).P (N(Λα,δ−δ) = k) = (1−p).α.
δk

k!
.

∫ ∞

0
zk.e−δ.z.(1+z)−α−1dz.

These probabilities as functions of p are illustrated on Figures 5 and 6.

Let us now find the tail functions of the inflated Exponential Lomax and
inflated Erlang Lomax distributions.

If τ0 = 0 a.s., then P (τ(Λα,δ−δ).I{η=1} ≥ x) = 1 for x ≤ 0 and

P (τ(Λα,δ−δ).I{η=1} ≥ x) = (1− p).α.ex.δ.(x.δ)α.Γ(−α, δ.x) = (1− p).α.ex.δ.Eα+1(δ.x),

for x > 0.
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Analogously suppose τ(Λα,δ−δ).I{η=1}, τ(Λα,δ−δ).I{η=1},1, τ(Λα,δ−δ).I{η=1},2, ..., are
identically distributed random variables, such that given Λα,δ and η are independent.
Denote by

T̃α,δ,n,p := τ(Λα,δ−δ).I{η=1},1 + ...+ τ(Λα,δ−δ).I{η=1},n.

Then by the formula of total probability

P
T̃α,δ,n,p

(x) = Pτ(Λα,δ−δ).I{η=1},1+...+τ(Λα,δ−δ).I{η=1},n(x) = (1−p).
α.δn.xn−1

(n− 1)!
.

∫ ∞

0
tn.(t+1)−α−1.e−x.t.δdt.

5 Discussion

Present paper introduces point process model for ebullition of methane emissions
from sedge-grass marsh station located in South Bohemia, Czech Republic. From
the biochemical point of view addressing of probability structure of ebullition is a
very important issue, since it allows experimenter to better understand tradeoff be-
tween classical diffusion and of methane and superdiffusion of bubbles released from
water. We provide simple Mixed Poisson Process with Pareto mixing for building an
accurate model since the data are possessing a clear heavy- tails pattern in residuals.
To our best knowledge this is the first probabilistically completely described model
for ebullition.
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