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Optimal designs for Copula Models

E. PERRONE and W.G. MLLER

Abstract Copula modelling has in the past decade become a standaid toany
areas of applied statistics. However, a largely neglectpe@ concerns the design
of related experiments. Particularly the issue of whetherdstimation of copula
parameters can be enhanced by optimizing experimentaltaomsdand how robust
all the parameter estimates for the model are with respettieddype of copula
employed. In this paper an equivalence theorem for (bitgrieopula models is
provided that allows formulation of efficient design algbms and quick checks of
whether designs are optimal or at least efficient. Some ebemilfustrate that in
practical situations considerable gains in design effyjaan be achieved. A natu-
ral comparison between different copula models with respedesign efficiency is
provided as well.

Key words: Copulas; Design measure; Fisher information; Stochasfpeddence.

1 Introduction

Due to their flexibility in describing dependencies and tbhegibility of separating
marginal and joint effects copula models have become a popelice for coping
with multivariate data. in many areas of applied statiséigs for insurances [29],
econometrics [28], medicine [19], marketing [2], spatidireme events (3 and 30),
time series analysis [22], even sports [15] and particylarfinance (1).

The concept of copulas, however, has only been rarely eragloyexperimen-
tal design with notable exceptions of spatial design in lr#] [23], and sequential
trials in [25]. The design question for copula parametanestion has to our knowl-
edge just been raised in [6], where a brute-force simulategaling optimization
was employed for the solution of a specific problem. By thiggrave provide the
necessary theory for fully embedding the situation intdropt design theory. Par-
ticularly we provide a Kiefer-Wolfowitz type equivalendesiorem [11] in Section 3
as a basis for a substantial analysis of the arising issubg iexample sections.
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2 E. PERRONE and W.G. MLLER

To be more concrete, let us consider a ve&tor= (xq,...,%) € 2" of control
variables, where?” C R' is a compact set. The results of the observations and of
the expectations in a regression experiments are the gector

y(X) = (yl(x)v yee . 7Ym(X))7
E[Y ()] =E[(V2,....Ym)] = n(x,B) = (N1(X, B),- ., Mm(X, B));

wheref3 = (B1,.. ., Bx) is a certain unknown (trend) parameter vector to be estiinate
andn;i(i=1,...,n) are known functions. In the remainder of the paper we willifoc
on the casen= 2, but generalizations of our results are possible.

Letus call~ (yi(x, 8)) the margins of eacYj foralli=1,...,mandcy (y(x,8), o)
the joint probability density function of the random vectowherea = (ay, ..., o)
are unknown (copula) parameters.

Definition 1. Let | = [0,1]. A two-dimensional copuléor 2-copulg is a bivariate
functionC: .# x .¢# — .# with the following properties:

1. for everyuy, up € .¥
C(u1,0) =0, C(u1,1) = ug, C(0,u2) =0, C(1,up) = Uy; 1)
2. for everyus, Uy, Uz, Ug € ¥ such that; < uz andup < ug,
C(uz,us) — C(us,up) — C(ug,us) +C(uz,up) > 0. (2)

Now letFv, v, be ajoint distribution function with marginafs, andFy,. Accord-
ing to Sklar’s theorem [27] there exists then a 2-cofliuch that

Fyiva (Y1, Y2) = C(Fy (Y1), P (Y2)) 3)

for all realsys, y». If iy, andFy, are continuous, the@ is unique; otherwiseC
is uniquely defined on R&Ry, ) x Rarn(Fy,). Conversely, ifC is a 2-copula anéfy,
andFy, are distribution functions, then the functiéy,y, given by (3) is a joint
distribution with marginal$y, andF,.

2 Design issues

We need to quantify the amount of information on both (trend aopula) sets
of parametersr andf3 respectively from the regression experiment embodieddn th
Fisher information matrix, which for a single informatiare(k+1) x (k+1) matrix

defined as
g(X) Mgq
mic )= (00 el ) @

where the submatrimpg(x) is the (k x k) matrix with the(i, j)th element defined
as
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and the submatricesg, (x) (kx 1) andmgq (x) (I x 1) are defined accordingly. Here
we model the dependence betwégrandY, with a copula function

CC{(FYl(yl(Xvﬁ))v FYZ(yZ(Xvﬁ)))

and find the density of that copula from

2

cr(y(x,B),a) = ﬁca(':ﬁ(yl(xaﬁ))aFYz(yZ(XaB)))'

Definition 2. A probability distribution functioré on the actual design spaée,
which is the class of all the probability distributions oe tRorel set?’, is called a
design measure

The Information Matrix on a general design measuM(§,8,a) =E(m(X, 3, a))
whereXis a random vector with distributiof.. So forr independent observations at
X1,-- -, %, the corresponding Information matrix is

M(&,B.a) = ZW. (%, B,a), ZW.—lf{ }

and the aim of approximate optimal design theory is conacbwith finding& * (8, a)
such that it maximizes some scalar functigfM(&,3,a)), the so-called design
criterion. In the following we will consider onlyD-optimality, i.e. the criterion
@(M) =logdetM, if M is non singular. There exist several well written monogsaph
on optimal design theory and its application, but in thisgrape follow mainly the
style and notation of [26].

3 Equivalence theory

The cornerstone of a theoretical investigation into optidesign is usually the for-
mulation of a Kiefer-Wolfowitz type equivalence relatiomhich is given in the
following theorem. It is a generalized version of a theoraweig without proof in

[10] and follows from a multivariate version of the basicdhem given in [26], its

full proof can be found in the supplementary material.

Theorem 1.For alocal parametervecto(rﬁ, a), the following properties are equiv-
alent:

1.&*is D optlmal
2.t [M(&",,a@) mx,B,a)] < (1),

vxe Z;
3.&* m|n|m|zemaxtr [M(E ,B,a)"tm(x,B,a)], overallé € =.
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This theorem allows us the use of standard design algoritunk as of the
Fedorov-Wynn-type [9, 31]. It also provides simple cheakd3-optimality through
the maxima ofl(x, &*) = tr [M(&*, B,a)~*m(x, B, a)], which is usually callegen-
sitivity function

Definition 3. For the comparison of two different designs define the ratio

(IM(E,B,G)I )”‘k*”
IM(E7,B,a)]

where(k+1) is the number of the model parameters, which is caleBfficiency
of the desigré with respect to the desigfl.

(6)

Note that the resulting optimal designs will now depend mdy apon the trend
model structure, but also upon the chosen copula and thitheghduced nonlinear-
ities potentially also on the unknown parameter valuesaf@and 3, which is why
we are resorting to localized designs around the va(es). A main question
of course concerns whether ignorance or wrong guesses afacbmction and/or
parameters may lead to inefficiencies of the designs.

4 Examples

4.1 Tools

For that purpose let us here give the list of copulas usedriexamples (for more
details see eg. 18 or 8). We provide the copula function aleitiy the so-called
Kendallst, which is a dependence measure that allows us to convenietdlte

different copulas (for a definition and a more exhaustive garson see 17).

Definition 4.
1. Product Copulawhich represents the independence case.

C(ug,uz) == ugl,

with 7 = 0.
2. Gaussian Copula.

72 —-2az120 + 2°

c 1 o(u)t o(up)t dzd
a(Ul,uz)—m /700 /700 eXp<— 2(1_02) ) Zl 227

with o € [-1,1] andt = 2 arcsir{a) .
3. Farlie-Gumbel-Morgenstern (FGM).

Ca (U1, Up) = Uglp[1+a(1—up)(1—-up)],
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with a € [-1,1] andT = 3a.
4. Clayton.

Qe

Ca(ug,up) = [max(u; @ +u,*—1,0)] 7,

with a € (0, +) andt = 55.
5. Frank.
(e — 1)(e "2 1)

e -1 ’

with o € (—w, 400), andr =1— 2(1— 1 [ S dt).

1
Ca(ug,up) = —Eln(l—i—

6. Gumbel. .
Ca (U1, Up) = exp(— [(=Inup)® + (= Inup)?] ),

with a € [1,+w) andT = 432

4.2 Thelinear case

Let us first consider a simple example reported in [9]. Fohaesign poink, we
may observe an independent pair of random variatilesdY,, such that

E[V1(X)] = Bo+ Bix+ B E[Ya(X)] = Bax+ B’ + Box®,  0<x< 1L

{Product Copulg
6 - 0.6
5t o5
4} -104
3k 403
2- 0.2
1F 0.1
0 L | | | | 1o
0 0.2 0.4 0.6 0.8 1

Fig. 1 Sensitivity function (left axis) and optimal design (rigitis) for the Fedorov example.
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This case is covered by Theorem 1 and employing the prodpeiaand Gaus-
sian margins. The optimal design which we have computed/engn Figure 1 and
is the same as reported in [9], namely

£ wi ) (0.16028 023033 7
“\x/ \ 0 038076 10 /°
Let consider a more general case, when the joint distribuiadescribed by a

Gaussian copula and we thus allow the random variaflesdY, to be dependent.
In this case the joint probability function of the randomteed’ = (Y1,Y>) is simply

Fy (y1,¥2) = Ca(@(y1 — N1(x,B)), @(Y2 — n2(x,B)))

—  Dy(ys— M1(X B2 - N2(x, B Q) ®)

where®,(-,-; a) denotes the bivariate normal cumulative distribution fiorcwith
correlationa € (—1,1) and @ denotes the cumulative distribution function of the
standard normal distributidN(0, 1) (see 16).

Our computations gave rise to the following

Corollary 1. For different values oftr the optimal design is the same as for the
independence case, which is the Gaussian caseanitin.

Note, that the sensitivity function now has a different Bga(with a maximum at
7) as we have an additional copula parameter. This coroharyever, is hardly sur-
prising as this fact coincides with the classic findings fa inultivariate Gaussian
distribution by [13].

But for a contrast consider now the Farlie-Gumbel-Morgemstopula. Follow-
ing our approach, we must calculate the density of the fancti

Ca(P(M1(X:B)), @(Y2(x; B))) =

D(Y1(x B))P(Y2(x: B))[1+ a(1— @(Y1(x;B))) (1 — @(Y2(x; B)))],
which eventually leads to expressions like

92 92
£ (- 35199 7y, (P01a068)). 0002
for the information matrix. These integrals are not ana8lty solvable, but we can
evaluate them numerically and we can use the algorithm ieraodfind the optimum
designs.

The results are subsumed in Table 1, which displays the hoBsdfficiency that
occurs by using the optimal desidri from (7) compared to the respective optimal
designs for various copula models and Kendall'st can be seen that these losses
are generally quite small, except perhaps for extreme sadtein the FGM model.
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FGM Clayton Frank

T a |D-efff a |D-efff a [D-eff

—0.15||-0.67|17.37| n.d| - [-1.37] 0.10

—0.10[|—0.45| 0.23| n.d| - [-0.90 0.10

—0.05||-0.22| 0.59| n.d| - [-0.45 0.10
0.05|| 0.22| 0.68|0.10] 0.16| 0.45 0.10
0.10|| 0.45| 0.39|0.22 0.13 0.90 0.10
0.15|| 0.67|10.18]|0.35 0.34| 1.37| 0.10
0.35| n.d| - |1.08 0.11] 3.51 0.11
0.75| n.d| - [6.00 0.27|14.13 0.16

Table 1 Losses in D-efficiency (in bold) by ignoring the dependemcpercent.

4.3 A binary bivariate model

Let us now do the same for a more elaborate case with potapiication in clin-
ical testing. We consider a bivariate binary respaf¥%eYi»), i = 1,...,n with four
possible outcome§(0,0),(0,1),(1,0),(1,1)} where 1 usually represents a success
and 0 a failure (of eg. a drug treatment). For a single obsiervaenote the joint
probabilities ofY; andYz by py, y, = pr(Yr =y1, Y2 =») for (y1,y> =0,1).

Now, define

p11=Co (1M, ™), Pro=T0—P11, Por=TB—P11, Poo=1—Ta—TB+ P11
9)

The complete log-likelihood for the bivariate binary motethen given by
n
1(6y) = ZlWili(G;y), 6 = (Br. B2, ), (10)
i=

wherew; are the design weights and the log-likelihood for a singlsentation is
given by
li(8y) = y1yz2logpia +Yy1(1—y2) logpio+
(11)
(1—-y1)y2logpo1+ (1—y1)(1—Y2)log poo.
As shown in [7] the Fisher information matrix for a single ebstion can then
be written as

apT< -1 1 T) Jp
M(8,é) === (P -+ ee | —, 12
(6,8) 00 1—p11— P1o— Po1 06 (12)

wherep = (p11, P10, Po1), P = diag(p) ande= (1,1,1)". Some useful formulae for
calculating information matrices in copula models can aksdound in [24].

The following example has initially been proposed in [6]eYlassumed marginal
probabilities of success given by the models
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log( " ) =Bo+Bax, =172 (13)
1_ TE 9 ’

wherex € [0,10] and the initial parameters wefle = [—-1,1] andf, = [-2,0.5].
They also investigated the three different copulas FrarkytGn and Gumbel in
order to make comparisons between the resulting desigris.thiat in their calcula-
tions they employed a brute-force simulated annealingrdlgo and had no means
for checking definitive optimality, which is now possiblerdligh the equivalence
theorem (1) provided. Note that the correlation range ifriotsed for these three
copulae chosen, but we are generally not dependent upochibiise (5).

So again by ignoring the dependence by not estimating thalaqguarameters,
i.e. using just a four parameter model, for all copulas thmesaptimal design is
found, which is given by

« (wi\ (042036022
&= (xi)_<>0 2.80679)'

Using this design as a benchmark we note the losses in Degféigias reported
in Table 2. These losses are now stronger than in the linessr @ad seem to (at
least for the Frank and Gumbel copula) grow with the depecelas is intuitive. In
Figure 2 we display the designs and sensitivity functiomaftepresentative case.

[6] also compared designs for various copula choices agaath other in their
Table 8. However, they have been using the same parametesvialr these copu-
las, which does not seem sensible. We instead provide a ¢@opalong the same

Kendall'st values in Table 2, which naturally now shows much smallecréisan-
cies.

{Clayton Copula with parameter 8.8 {Gumbel Copula with parameter 5.4

5- 41 5p -1
| L 4\/\/\0.5

1t J0z 1F | q0.z2
. I

L L L L L o L L L L L L
0 2 4 6 8 10 0 2 4 6 8 10

Fig. 2 The optimal designs and the sensitivity functions for theaby example (Clayton left,
Gumbel right). The copula parameters chosen corresponéndal'st = 0.816.
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Frank Clayton | Gumbel

T o |D-efff a |D-eff| a |D-eff
0.11)| 1.00 1.72/0.24 1.75|1.12 0.95
0.45|| 5.00 1.31{1.68 1.49(1.84 1.29
0.66((10.09 1.87|3.98 0.71|3.00 2.31
0.76|(15.00 2.89(6.42 2.84{4.21] 2.99
0.82|[20.00 3.10|8.89 9.48|5.45 3.25

Table 2 Losses in D-efficiency (in bold) by ignoring the dependemcpercent.

True Copuly Frank Clayton Gumbel
Assumed CopulClayton Gumbe|FranK Gumbe[FranK Clayton
1=011 224 0.67 199 270 0.82 2.75
1=045| 0.2 0.03 0.2 0.11 0.03 0.15
7 =0.66| 1.09 0.11f 1.04 1.28 0.14 1.57
1=0.76| 4.27 0.02 3.87] 4.08 0.0 4.73
1=0.82 8.24 0.0110.91] 10.99 0.0 8.43

Table 3 Losses in D-efficiency by comparing the true copula modeh e assumed one for a
fixed Kendall’s tau value.

5 Discussion

Although the effects of ignoring the copula parameter seeetrather mild judging
by our examples, we expect stronger effects for some moresymmetric copulae
(see eg. 12), which are subject to our current research.

In general, our theory forms the basis to investigate furthewcase examples
from the literature, like e.g. in [21] or eventually treatx@d discrete/continuous
type models like in [4]. Particularly for the latter, but alguite generally the meth-
ods provided in this paper can thus be expected to be valtatieal applications
from clinical trials, environmental sampling, industréadperiments, etc..

It is certainly of interest to extend the methods to modetsafbich the copula
parameters themselves are model-dependent such as im{@éh we plan to do
future research on.
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Supplementary material

Equivalence Theorem

Let us look at the design measure as a probability distdbutiinctioné on the
actual design space as opposed to the induced design spacePractically,= is
the class of all the probability distributions on the Borel & and is calleddesign
space For all the basics in what follows cf. [26].

For a given vector of parameteiB, a), let.#(g 4 be the set of the information
matrices generated §sanges over the class of all set of probability distribution
Z.

Then.Z(g q) is the convex hull of m(x, B, a) : xe Z7}.

Let give now the definition of two derivatives that will playp anportant role in
our theory.

Definition 5 (Gateaux and Fréchet derivative).
Considering two elementd; andM; in .#, the Gateaux derivative ofp at M; in
the direction oM, is:

1
Gp(M1,Mz) = lim —{@(M1 +eMz) — @(My)},
e—0t €
theFréchet derivative op atM; in the direction ofM; is:
.1
Fp(M1,M2) = lim —{@{(1—¢&)M1+ &Mz} — p(M1)}.
e—0t €

The following are the properties of the derivatives that wérted before:

Property 1.The concavity ofp implies that

%[(p{(l — &)M1+ M2} — @(My)]

is a non-increasing function fin 0 < € < 1. Hence whepis concaveF,(M1, M2)
exists if we allow the valug-o.

Itis clear that if we put = 1 in the previous equation, we obtafy(My,M,) >
@(M2) + ¢(My).

According to the definitions of Fréchet and Gateaux d¢ixiea, we can stress
the following relationship between themfy(My,M2) = Gy(M1, Mz — My).
Then, if we assume the differentiability ¢fit is clear that

Fo(M1, ) aiMi) = aiFp(Ma, Mi).

So, if M is a random matrix, the following equivalence holds:
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E{Fp(M1,M1)} = Fp{M1, E(M1)}

Theorem 2. Suppose to have a fixed parameters ve¢fir), a concave function
(0] on//l WhICh is also differentiable at all points OJZB ) wheregp(M) < —oo,
SO Where ap optimal measure exists.

Then the following are equivalent:

1. &* is g-optimal; _
2. Fp(M(&*,B,a),M(&,B,a)) <0,VE € =

3. Fp(M(&* Ba)L (x,B,0)) <0,¥xe 2 ; _ _
4. maxFe(M(&", B, @),m(x,B,)) = minmaxFy(M (£, B,a), m(x,f,d)).
Proof. Let us prove the theorem by double implications.

1) =2

&* is g-optimal.

This means thap(M(E*,E, a)) is maximal.
For the properties of the functiap, the following relation holds:

P{(1—&)M(&*,B,a) +eM(E.B,a)} — {M(E*,B,a)} <O

fore e [0,1] and all§ € =.
For all the elements O%(E ) holds that

(1-)M(E",B,a) + M(E,B,a@) = M{(1— £)&" + &}
and this means, from the definition of the Fréchet derieativat
Fo{M(&*,B,a),M(E.B,a)} <O
forall é € =.
(2)=(3)

Sincem(x, [3 a) are elements of the convex hu# ;5 7). the condition(iii ) fol-
lows directly from the hypothesis.

(3) = (4)

Let us observe that ik is a random vector with distributiod, the following
equivalence is verified:

So, it must be that:
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)@%}(F(P{M(Ea aa)vm(xa B_v 5)} Z 0

But, according to the hypothesis, we have that for the deSign

maxF,{M(&*,B,a),m(x,B,a)} <O0.

xeZ
Hence _ _
QQ???(F(P{M(E*vﬁva)vm(vava)} =0=
= @nQ%wa{M(E,E,07),m(><ﬁ,07)}-
4)=(1)

Suppose now that* satisfies the hypothesis, then

maxFy{M(&*,B,a),m(x,B,a))} =0

xeZ

, that means theﬁq,{M(E*,ﬁ, a),m(x,B,a)} <0,Vxe 2 . According to the defini-
— r — _
tion of the matriced € .#, anyM can be written aM(&,B8,a) = 3 Aim(x,3,a),
i=1

r
where 3 Aj =1andA; > 0foreveryi=1,...,r.
i=1

Thea, sincap is differentiable aM(E,E, a), it holds that:
Fp{M(E*,B,a),M(£,B,a)} = zi/\ipq,{m(g*, B,a),m(x,3,a)} <0

for everyé € =.
This means, clearly, that

@(M(E.B,a)) — @(M(&",B,a)) <0
for everyé € =, thené* is g-optimal.

D-optimality

Let consider now as design criterion the following function

_ [ logdetM if M is non-singular
P(M) = { —o0 otherwise

A design that maximizes suchgafunction is calledD-optimal design
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In the case of D-optimality the Fréchet and the Gateauivaléres have the fol-
lowing expression:

Gateaux derivative

logde{M; + M) —logdetM; = logde(l +eMM; 1) =
=log{l+¢& tr(MoM;1)}+0(e2) = ¢ tr(MM 1) +0O(g?)

HenceGy(My, M) = tr(MpM ).
Fréchet derivative
Fo(M1,Mp) = Gp(Mz,Mz — M) = tr((Mz — Mp)M; 1) =

= tr(MaMy* = lies1)) = tr(MoMg ) — (k+1)

where(k+1) is the number of the model parameters.
We are ready now to give an equivalence theorem which holtseiparticular
case of the D-criterion.

Theorem 3.For a fixed parameters vecto(rﬁ, a), the following properties are
equivalent:

1.¢&* |sD op_tlmal _
2.tr(M(&*,B,a)tm(x,B,a l<(k+)

xe X
3. E* m|n|m|zemaxtr M(&*,B,a)~tm(x, B,

€
a)),overallé € =.

Proof. The proof comes directly from the Theorem 2 by imputing thecket deriva-
tive for the D-criterion. O

References

[1] Umberto Cherubini, Elisa Luciano, and Walter Vecchid@mpula Methods in
Finance Wiley, July 2004.

[2] Peter J. Danaher and Michael S. Smith. Modeling Muliagr Distributions
Using Copulas: Applications in MarketingMarketing Science30(1):4-21,
2011.

[3] A. C. Davison, S. A. Padoan, and M. Ribatet. Statisticalddling of Spatial
Extremes Statistical Science27(2):161-186, May 2012.

[4] A. R. de Leon and B. Wu. Copula-based regression models foivariate
mixed discrete and continuous outcomstatistics in Medicing30(2):175—
185, 2011.

[5] Hakan Demirtas. Generating Bivariate Uniform Data Wil Range of Cor-
relations and Connections to Bivariate Binary D&ammunications in Statis-
tics - Theory and Methoggages online+, 2013.



14 E. PERRONE and W.G. MLLER

[6] N. G. Denman, J. M. McGree, J. A. Eccleston, and S. B. OuffiDesign
of experiments for bivariate binary responses modelled byuta functions.
Computational Statistics & Data AnalysB5(4):1509-1520, April 2011.

[7] Vladimir Dragalin and Valerii Fedorov. Adaptive desiifor dose-finding
based on efficacytoxicity respons#ournal of Statistical Planning and Infer-
ence 136(6):1800-1823, June 2006.

[8] Fabrizio Durante and Carlo Sempi. Copula Theory: Anddtrction. In
P. Bickel, P. Diggle, S. Fienberg, U. Gather, I. Olkin, S. @edPiotr Jaworski,
Fabrizio Durante, Wolfgang K. Hardle, and Tomasz Rycldlitors,Copula
Theory and Its Applicationyolume 198 ofLecture Notes in Statisticshap-
ter 1, pages 3-31. Springer Berlin Heidelberg, Berlin, idkidrg, 2010.

[9] V. V. Fedorov. The Design of Experiments in the Multiresigse CaseTheory
of Probability and its Applicationsl6(2):323-332,1971.

[10] Mark A. Heise and Raymond H. Myers. Optimal Designs fovaBiate Logis-
tic RegressionBiometrics 52(2):613—-624, 1996.

[11] J. Kiefer and J. Wolfowitz. The equivalence of two extrem problemsCana-
dian Journal of Mathematic4.2:363-366, 1960.

[12] Erich P. Klement and Radko Mesiar. How non-symmetrie aecopula be?
Commentat. Math. Univ. Carel47(1):141-148, 2006.

[13] Olaf Krafft and Martin Schaefer. D-Optimal designs éomultivariate regres-
sion model.Journal of Multivariate Analysis42(1):130-140, July 1992.

[14] Jing Li, Andras Bardossy, Lelys Guenni, and Min Liu. Gopula based ob-
servation network design approactEnvironmental Modelling & Software
26(11):1349-1357, November 2011.

[15] lan McHale and Phil Scarf. Modelling the dependence oélg scored
by opposing teams in international soccer match&atistical Modelling
11(3):219-236, June 2011.

[16] Christian Meyer. The Bivariate Normal Copul@ommunications in Statistics
- Theory and Method#2(13):2402—-2422,2013.

[17] F. Michiels and A. De Schepper. A Copula Test Space Mddelv To Avoid
the Wrong Copula Choice&Kybernetika 44(6):864-878, 2008.

[18] Roger B. Nelsen An Introduction to Copulas (Springer Series in Statistics)
Springer, 2nd edition, January 2006.

[19] Aristidis K. Nikoloulopoulos and Dimitris Karlis. Mtilvariate logit copula
model with an application to dental dat&tatist. Med. 27(30):6393-6406,
December 2008.

[20] Hohsuk Noh, Anouar E. Ghouch, and Taoufik Bouezmarni.pula-Based
Regression Estimation and Inferendeurnal of the American Statistical As-
sociation 108(502):676—688, March 2013.

[21] D. Oakes and J. Ritz. Regression in a bivariate copuldehoBiometrika
87(2):345-352, June 2000.

[22] Andrew J. Patton. A review of copula models for econotime series.Jour-
nal of Multivariate Analysis110:4-18, September 2012.

[23] Jurgen Pilz, Hannes Kazianka, and Gunter Spock. Saaances in Bayesian
spatial prediction and sampling desigdpatial Statistics1(0):65-81, 2012.



Optimal designs for Copula Models 15

[24] UIf Schepsmeier and Jakob Stober. Derivatives anddfisaformation of bi-
variate copulas. 55(2):525-542, 2014.

[25] Rene Schmidt, Andreas Faldum, Olaf Witt, and Joachim3Gé&daptive de-
signs with arbitrary dependence structuiom. J, 56(1):86—-106, January
2014,

[26] S.D. Silvey.Optimal Design (Science PaperbackS8hapman & Hall, Novem-
ber 1980.

[27] A. Sklar. Fonctions de repartition a n dimensions etdenargesPublications
de I'Institut de Statistique de Pari8:229-231, 1959.

[28] Pravin K. Trivedi and David M. Zimmer. Copula Modelingn Introduction
for PractitionersFoundations and Trends in Econometrit$1):1-111, 2006.

[29] Emiliano A. Valdez. Understanding relationships gsaopulas.North Amer-
ican Actuarial Journal2(1):1-25, 1998.

[30] Jennifer L. Wadsworth and Jonathan A. Tawn. Dependenaéelling for
spatial extremesBiometrikg 99(2):253-272, June 2012.

[31] Henry P. Wynn. The Sequential Generation of D-Optimuxp&imental De-
signs.The Annals of Mathematical Statistjekl (5):1655-1664, 1970.



