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Optimal designs for Copula Models

E. PERRONE and W.G. M̈ULLER

Abstract Copula modelling has in the past decade become a standard tool in many
areas of applied statistics. However, a largely neglected aspect concerns the design
of related experiments. Particularly the issue of whether the estimation of copula
parameters can be enhanced by optimizing experimental conditions and how robust
all the parameter estimates for the model are with respect tothe type of copula
employed. In this paper an equivalence theorem for (bivariate) copula models is
provided that allows formulation of efficient design algorithms and quick checks of
whether designs are optimal or at least efficient. Some examples illustrate that in
practical situations considerable gains in design efficiency can be achieved. A natu-
ral comparison between different copula models with respect to design efficiency is
provided as well.

Key words: Copulas; Design measure; Fisher information; Stochastic dependence.

1 Introduction

Due to their flexibility in describing dependencies and the possibility of separating
marginal and joint effects copula models have become a popular device for coping
with multivariate data. in many areas of applied statisticseg. for insurances [29],
econometrics [28], medicine [19], marketing [2], spatial extreme events (3 and 30),
time series analysis [22], even sports [15] and particularly in finance (1).

The concept of copulas, however, has only been rarely employed in experimen-
tal design with notable exceptions of spatial design in [14]and [23], and sequential
trials in [25]. The design question for copula parameter estimation has to our knowl-
edge just been raised in [6], where a brute-force simulated annealing optimization
was employed for the solution of a specific problem. By this paper we provide the
necessary theory for fully embedding the situation into optimal design theory. Par-
ticularly we provide a Kiefer-Wolfowitz type equivalence theorem [11] in Section 3
as a basis for a substantial analysis of the arising issues inthe example sections.
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Institut für Angewandte Statistik, JKU - Linz, Austria.
e-mail: elisa.perrone@jku.at, werner.mueller@jku.at

1



2 E. PERRONE and W.G. M̈ULLER

To be more concrete, let us consider a vectorxT = (x1, . . . ,xr) ∈ X of control
variables, whereX ⊂ R

r is a compact set. The results of the observations and of
the expectations in a regression experiments are the vectors:

y(x) = (y1(x), , . . . ,ym(x)),

E[Y(x)] = E[(Y1, . . . ,Ym)] = η(x,β ) = (η1(x,β ), . . . ,ηm(x,β )),

whereβ =(β1, . . . ,βk) is a certain unknown (trend) parameter vector to be estimated
andηi(i = 1, . . . ,n) are known functions. In the remainder of the paper we will focus
on the casem= 2, but generalizations of our results are possible.

Let us callFYi (yi(x,β )) the margins of eachYi for all i = 1, . . . ,mandcY(y(x,β ),α)
the joint probability density function of the random vectorY, whereα =(α1, . . . ,αl )
are unknown (copula) parameters.

Definition 1. Let I = [0,1]. A two-dimensional copula(or 2-copula) is a bivariate
functionC : I ×I −→ I with the following properties:

1. for everyu1, u2 ∈ I

C(u1,0) = 0, C(u1,1) = u1, C(0,u2) = 0, C(1,u2) = u2; (1)

2. for everyu1, u2, u3, u4 ∈ I such thatu1 ≤ u3 andu2 ≤ u4,

C(u3,u4)−C(u3,u2)−C(u1,u4)+C(u1,u2)≥ 0. (2)

Now letFY1Y2 be a joint distribution function with marginalsFY1 andFY2. Accord-
ing to Sklar’s theorem [27] there exists then a 2-copulaC such that

FY1Y2(y1,y2) =C(FY1(y1),FY2(y2)) (3)

for all realsy1, y2. If FY1 andFY2 are continuous, thenC is unique; otherwise,C
is uniquely defined on Ran(FY1)× Ran(FY2). Conversely, ifC is a 2-copula andFY1

and FY2 are distribution functions, then the functionFY1Y2 given by (3) is a joint
distribution with marginalsFY1 andFY2.

2 Design issues

We need to quantify the amount of information on both (trend and copula) sets
of parametersα andβ respectively from the regression experiment embodied in the
Fisher information matrix, which for a single information is a(k+ l)×(k+ l) matrix
defined as

m(x,β ,α) =

(

mβ β (x) mβ α(x)
mT

β α(x) mαα(x)

)

(4)

where the submatrixmβ β (x) is the(k× k) matrix with the(i, j)th element defined
as
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E
(

− ∂ 2

∂βi∂β j
log[cY(y(x,β ),α)]

)

(5)

and the submatricesmβ α(x) (k× l) andmαα(x) (l × l) are defined accordingly. Here
we model the dependence betweenY1 andY2 with a copula function

Cα(FY1(y1(x,β )),FY2(y2(x,β )))

and find the density of that copula from

cY(y(x,β ),α) =
∂ 2

∂y1∂y2
Cα(FY1(y1(x,β )),FY2(y2(x,β ))).

Definition 2. A probability distribution functionξ on the actual design spaceΞ ,
which is the class of all the probability distributions on the Borel setX , is called a
design measure.

The Information Matrix on a general design measure isM(ξ ,β ,α)=E(m(x̃,β ,α))
wherex̃ is a random vector with distributionξ . So forr independent observations at
x1, . . . ,xr , the corresponding Information matrix is

M(ξ ,β ,α) =
r

∑
i=1

wim(xi ,β ,α),
r

∑
i=1

wi = 1,ξ =

{

x1 . . . xn

w1 . . . wn

}

,

and the aim of approximate optimal design theory is concerned with findingξ ∗(β ,α)
such that it maximizes some scalar functionφ(M(ξ ,β ,α)), the so-called design
criterion. In the following we will consider onlyD-optimality, i.e. the criterion
φ(M) = logdetM, if M is non singular. There exist several well written monographs
on optimal design theory and its application, but in this paper we follow mainly the
style and notation of [26].

3 Equivalence theory

The cornerstone of a theoretical investigation into optimal design is usually the for-
mulation of a Kiefer-Wolfowitz type equivalence relation,which is given in the
following theorem. It is a generalized version of a theorem given without proof in
[10] and follows from a multivariate version of the basic theorem given in [26], its
full proof can be found in the supplementary material.

Theorem 1.For a local parameter vector(β̄ , ᾱ), the following properties are equiv-
alent:

1. ξ ∗ is D-optimal;
2. tr [M(ξ ∗, β̄ , ᾱ)−1m(x, β̄ , ᾱ)]≤ (k+ l), ∀x∈ X ;
3. ξ ∗ minimizemax

x∈X

tr [M(ξ ∗, β̄ , ᾱ)−1m(x, β̄ , ᾱ)], over allξ ∈ Ξ .
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This theorem allows us the use of standard design algorithmssuch as of the
Fedorov-Wynn-type [9, 31]. It also provides simple checks for D-optimality through
the maxima ofd(x,ξ ∗) = tr [M(ξ ∗, β̄ , ᾱ)−1m(x, β̄ , ᾱ)], which is usually calledsen-
sitivity function.

Definition 3. For the comparison of two different designs define the ratio

( |M(ξ ,β ,α)|
|M(ξ ′,β ,α)|

)1/(k+l)

(6)

where(k+ l) is the number of the model parameters, which is calledD-Efficiency
of the designξ with respect to the designξ ′.

Note that the resulting optimal designs will now depend not only upon the trend
model structure, but also upon the chosen copula and throughthe induced nonlinear-
ities potentially also on the unknown parameter values forα andβ , which is why
we are resorting to localized designs around the values(β̄ , ᾱ). A main question
of course concerns whether ignorance or wrong guesses of copula function and/or
parameters may lead to inefficiencies of the designs.

4 Examples

4.1 Tools

For that purpose let us here give the list of copulas used in our examples (for more
details see eg. 18 or 8). We provide the copula function alongwith the so-called
Kendallsτ, which is a dependence measure that allows us to conveniently relate
different copulas (for a definition and a more exhaustive comparison see 17).

Definition 4.
1. Product Copula,which represents the independence case.

C(u1,u2) := u1u2,

with τ = 0.
2. Gaussian Copula.

Cα(u1,u2)=
1

2Π
√

1−α2

∫ Φ(u1)
−1

−∞

∫ Φ(u2)
−1

−∞
exp

(

−z1
2−2αz1z2+ z2

2

2(1−α2)

)

dz1dz2,

with α ∈ [−1,1] andτ = 2
Π arcsin(α) .

3. Farlie-Gumbel-Morgenstern (FGM).

Cα(u1,u2) = u1u2[1+α(1−u1)(1−u2)],
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with α ∈ [−1,1] andτ = 2
9α.

4. Clayton.

Cα(u1,u2) =
[

max
(

u−α
1 +u−α

2 −1, 0
)]− 1

α ,

with α ∈ (0,+∞) andτ = α
α+2.

5. Frank.

Cα (u1,u2) =− 1
α

ln
(

1+
(e−αu1 −1)(e−αu2 −1)

e−α −1

)

,

with α ∈ (−∞,+∞), andτ = 1− 4
α (1− 1

α
∫ α

0
t

et−1dt).

6. Gumbel.

Cα(u1,u2) = exp
(

−
[

(− lnu1)
α +(− lnu2)

α] 1
α
)

,

with α ∈ [1,+∞) andτ = α−1
α .

4.2 The linear case

Let us first consider a simple example reported in [9]. For each design pointx, we
may observe an independent pair of random variablesY1 andY2, such that

E[Y1(x)] = β0+β1x+β2x
2,E[Y2(x)] = β3x+β4x

3+β5x4, 0≤ x≤ 1.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

0

0.1

0.2

0.3

0.4

0.5

0.6
8Product Copula<

Fig. 1 Sensitivity function (left axis) and optimal design (rightaxis) for the Fedorov example.
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This case is covered by Theorem 1 and employing the product copula and Gaus-
sian margins. The optimal design which we have computed is given in Figure 1 and
is the same as reported in [9], namely

ξ ∗ =

(

wi

xi

)

=

(

0.16 0.28 0.23 0.33
0 0.38 0.76 1.0

)

. (7)

Let consider a more general case, when the joint distribution is described by a
Gaussian copula and we thus allow the random variablesY1 andY2 to be dependent.
In this case the joint probability function of the random vector Y = (Y1,Y2) is simply

FY(y1,y2) = Cα(Φ(y1−η1(x,β )),Φ(y2−η2(x,β )))
= Φ2(y1−η1(x,β ),y2−η2(x,β );α)

(8)

whereΦ2(·, ·;α) denotes the bivariate normal cumulative distribution function with
correlationα ∈ (−1,1) andΦ denotes the cumulative distribution function of the
standard normal distributionN(0,1) (see 16).

Our computations gave rise to the following

Corollary 1. For different values ofα the optimal design is the same as for the
independence case, which is the Gaussian case withα = 0.

Note, that the sensitivity function now has a different scaling (with a maximum at
7) as we have an additional copula parameter. This corollary, however, is hardly sur-
prising as this fact coincides with the classic findings for the multivariate Gaussian
distribution by [13].

But for a contrast consider now the Farlie-Gumbel-Morgenstern copula. Follow-
ing our approach, we must calculate the density of the function:

Cα(Φ(Y1(x;β )),Φ(Y2(x;β ))) =

Φ(Y1(x;β ))Φ(Y2(x;β ))[1+α(1−Φ(Y1(x;β )))(1−Φ(Y2(x;β )))],

which eventually leads to expressions like

E
(

− ∂ 2

∂βi∂β j
log

[

∂ 2

∂y1∂y2
Cα(Φ(Y1(x;β )),Φ(Y2(x;β )))

])

for the information matrix. These integrals are not analytically solvable, but we can
evaluate them numerically and we can use the algorithm in order to find the optimum
designs.

The results are subsumed in Table 1, which displays the loss in D-efficiency that
occurs by using the optimal designξ ∗ from (7) compared to the respective optimal
designs for various copula models and Kendall’sτ. It can be seen that these losses
are generally quite small, except perhaps for extreme values ofτ in the FGM model.
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FGM Clayton Frank
τ α D-eff α D-eff α D-eff

−0.15 −0.67 17.37 n.d. - -1.37 0.10
−0.10 −0.45 0.23 n.d. - -0.90 0.10
−0.05 −0.22 0.59 n.d. - -0.45 0.10

0.05 0.22 0.68 0.10 0.16 0.45 0.10
0.10 0.45 0.39 0.22 0.13 0.90 0.10
0.15 0.67 10.18 0.35 0.34 1.37 0.10
0.35 n.d. - 1.08 0.11 3.51 0.11
0.75 n.d. - 6.00 0.27 14.13 0.16

Table 1 Losses in D-efficiency (in bold) by ignoring the dependence in percent.

4.3 A binary bivariate model

Let us now do the same for a more elaborate case with potentialapplication in clin-
ical testing. We consider a bivariate binary response(Yi1,Yi2), i = 1, . . . ,n with four
possible outcomes{(0,0),(0,1),(1,0),(1,1)} where 1 usually represents a success
and 0 a failure (of eg. a drug treatment). For a single observation denote the joint
probabilities ofY1 andY2 by py1,y2 = pr(Y1 = y1,Y2 = y2) for (y1,y2 = 0,1).

Now, define

p11=Cα(π1,π2), p10 = π1− p11, p01= π2− p11, p00 = 1−π1−π2+ p11.
(9)

The complete log-likelihood for the bivariate binary modelis then given by

l(θ ;y) =
n

∑
i=1

wi l i(θ ;y), θ = (β1,β2,α), (10)

wherewi are the design weights and the log-likelihood for a single observation is
given by

l i(θ ;y) = y1y2 logp11 + y1(1− y2) logp10+

(1− y1)y2 logp01+(1− y1)(1− y2) logp00.
(11)

As shown in [7] the Fisher information matrix for a single observation can then
be written as

M(θ ,ξi) =
∂p
∂θ

T (

P−1+
1

1− p11− p10− p01
eeT

)

∂p
∂θ

, (12)

wherep = (p11, p10, p01), P= diag(p) ande= (1,1,1)T . Some useful formulae for
calculating information matrices in copula models can alsobe found in [24].

The following example has initially been proposed in [6]. They assumed marginal
probabilities of success given by the models
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log

(

πi

1−πi

)

= βi0+βi1x, i = 1,2 (13)

wherex∈ [0,10] and the initial parameters wereβ1 = [−1,1] andβ2 = [−2,0.5].
They also investigated the three different copulas Frank, Clayton and Gumbel in
order to make comparisons between the resulting designs. Note that in their calcula-
tions they employed a brute-force simulated annealing algorithm and had no means
for checking definitive optimality, which is now possible through the equivalence
theorem (1) provided. Note that the correlation range is restricted for these three
copulae chosen, but we are generally not dependent upon thischoice (5).

So again by ignoring the dependence by not estimating the copula parameters,
i.e. using just a four parameter model, for all copulas the same optimal design is
found, which is given by

ξ ∗ =

(

wi

xi

)

=

(

0.42 0.36 0.22
> 0 2.80 6.79

)

.

Using this design as a benchmark we note the losses in D-efficiency as reported
in Table 2. These losses are now stronger than in the linear case and seem to (at
least for the Frank and Gumbel copula) grow with the dependence, as is intuitive. In
Figure 2 we display the designs and sensitivity functions for a representative case.

[6] also compared designs for various copula choices against each other in their
Table 8. However, they have been using the same parameter values for these copu-
las, which does not seem sensible. We instead provide a comparison along the same
Kendall’sτ values in Table 2, which naturally now shows much smaller discrepan-
cies.

0 2 4 6 8 10
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8Clayton Copula with parameter 8.89<
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8Gumbel Copula with parameter 5.45<

Fig. 2 The optimal designs and the sensitivity functions for the binary example (Clayton left,
Gumbel right). The copula parameters chosen correspond to Kendall’sτ = 0.816.
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Frank Clayton Gumbel
τ α D-eff α D-eff α D-eff

0.11 1.00 1.72 0.24 1.75 1.12 0.95
0.45 5.00 1.31 1.68 1.49 1.84 1.29
0.66 10.00 1.87 3.98 0.71 3.00 2.31
0.76 15.00 2.89 6.42 2.84 4.21 2.99
0.82 20.00 3.10 8.89 9.48 5.45 3.25

Table 2 Losses in D-efficiency (in bold) by ignoring the dependence in percent.

True Copula Frank Clayton Gumbel
Assumed CopulaClayton GumbelFrank GumbelFrank Clayton

τ = 0.11 2.24 0.67 1.99 2.70 0.82 2.75
τ = 0.45 0.26 0.03 0.26 0.11 0.03 0.15
τ = 0.66 1.09 0.11 1.04 1.28 0.14 1.57
τ = 0.76 4.27 0.02 3.87 4.08 0.01 4.73
τ = 0.82 8.24 0.01 10.91 10.96 0.01 8.43

Table 3 Losses in D-efficiency by comparing the true copula model with the assumed one for a
fixed Kendall’s tau value.

5 Discussion

Although the effects of ignoring the copula parameter seem to be rather mild judging
by our examples, we expect stronger effects for some more non-symmetric copulae
(see eg. 12), which are subject to our current research.

In general, our theory forms the basis to investigate further showcase examples
from the literature, like e.g. in [21] or eventually treat mixed discrete/continuous
type models like in [4]. Particularly for the latter, but also quite generally the meth-
ods provided in this paper can thus be expected to be valuablefor real applications
from clinical trials, environmental sampling, industrialexperiments, etc..

It is certainly of interest to extend the methods to models for which the copula
parameters themselves are model-dependent such as in [20],which we plan to do
future research on.
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Supplementary material

Equivalence Theorem

Let us look at the design measure as a probability distribution functionξ on the
actual design spaceΞ as opposed to the induced design spaceX . Practically,Ξ is
the class of all the probability distributions on the Borel setX and is calleddesign
space. For all the basics in what follows cf. [26].

For a given vector of parameters(β ,α), let M(β ,α) be the set of the information
matrices generated asξ ranges over the class of all set of probability distributionon
X .

ThenM(β ,α) is the convex hull of{m(x,β ,α) : x∈ X }.
Let give now the definition of two derivatives that will play an important role in

our theory.

Definition 5 (Gâteaux and Fŕechet derivative).
Considering two elementsM1 andM2 in M , theGâteaux derivative ofφ at M1 in
the direction ofM2 is:

Gφ (M1,M2) = lim
ε→0+

1
ε
{φ(M1+ εM2)−φ(M1)},

theFréchet derivative ofφ atM1 in the direction ofM2 is:

Fφ (M1,M2) = lim
ε→0+

1
ε
{φ{(1− ε)M1+ εM2}−φ(M1)}.

The following are the properties of the derivatives that we defined before:

Property 1.The concavity ofφ implies that

1
ε
[φ{(1− ε)M1+ εM2}−φ(M1)]

is a non-increasing function ofε in 0< ε ≤ 1. Hence whenφ is concave,Fφ (M1,M2)
exists if we allow the value+∞.

It is clear that if we putε = 1 in the previous equation, we obtain:Fφ (M1,M2)≥
φ(M2)+φ(M1).

According to the definitions of Fréchet and Gâteaux derivatives, we can stress
the following relationship between them:Fφ (M1,M2) = Gφ (M1,M2−M1).

Then, if we assume the differentiability ofφ it is clear that

Fφ (M1,∑aiMi) = ∑aiFφ (M1,Mi).

So, if M̃ is a random matrix, the following equivalence holds:
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E{Fφ (M1,M̃1)}= Fφ{M1,E(M̃1)}

Theorem 2.Suppose to have a fixed parameters vector(β̄ , ᾱ), a concave function
φ onM(β̄ ,ᾱ) which is also differentiable at all points ofM(β̄ ,ᾱ) whereφ(M)<−∞,
so where aφ optimal measure exists.

Then the following are equivalent:

1. ξ ∗ is φ -optimal;
2. Fφ (M(ξ ∗, β̄ , ᾱ),M(ξ , β̄ , ᾱ))≤ 0, ∀ξ ∈ Ξ ;
3. Fφ (M(ξ ∗, β̄ , ᾱ),m(x, β̄ , ᾱ))≤ 0, ∀x∈ X ;
4. max

x∈X

Fφ (M(ξ ∗, β̄ , ᾱ),m(x, β̄ , ᾱ)) = min
ξ∈Ξ

max
x∈X

Fφ (M(ξ , β̄ , ᾱ),m(x, β̄ , ᾱ)).

Proof. Let us prove the theorem by double implications.
(1)⇒ (2)

ξ ∗ is φ -optimal.
This means thatφ(M(ξ ∗, β̄ , ᾱ)) is maximal.
For the properties of the functionφ , the following relation holds:

φ{(1− ε)M(ξ ∗, β̄ , ᾱ)+ εM(ξ , β̄ , ᾱ)}−φ{M(ξ ∗, β̄ , ᾱ)} ≤ 0

for ε ∈ [0,1] and allξ ∈ Ξ .
For all the elements ofM(β̄ ,ᾱ) holds that

(1− ε)M(ξ ∗, β̄ , ᾱ)+ εM(ξ , β̄ , ᾱ) = M{(1− ε)ξ ∗+ εξ}

and this means, from the definition of the Fréchet derivative, that

Fφ{M(ξ ∗, β̄ , ᾱ),M(ξ , β̄ , ᾱ)} ≤ 0

for all ξ ∈ Ξ .

(2)⇒ (3)

Sincem(x, β̄ , ᾱ) are elements of the convex hullM(β̄ ,ᾱ), the condition(iii ) fol-
lows directly from the hypothesis.

(3)⇒ (4)
Let us observe that if ˜x is a random vector with distributionξ , the following

equivalence is verified:

E[Fφ{M(ξ , β̄ , ᾱ),m(x̃, β̄ , ᾱ)}] =
= Fφ{M(ξ , β̄ , ᾱ),E[m(x̃, β̄ , ᾱ)]} =

= Fφ{M(ξ , β̄ , ᾱ),M(ξ , β̄ , ᾱ)} = 0.

So, it must be that:
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max
x∈X

Fφ{M(ξ , β̄ , ᾱ),m(x, β̄ , ᾱ)} ≥ 0

But, according to the hypothesis, we have that for the designξ ∗

max
x∈X

Fφ{M(ξ ∗, β̄ , ᾱ),m(x, β̄ , ᾱ)} ≤ 0.

Hence
max
x∈X

Fφ{M(ξ ∗, β̄ , ᾱ),m(x, β̄ , ᾱ)}= 0=

= min
ξ

max
x∈X

Fφ{M(ξ , β̄ , ᾱ),m(x, β̄ , ᾱ)}.

(4)⇒ (1)

Suppose now thatξ ∗ satisfies the hypothesis, then

max
x∈X

Fφ{M(ξ ∗, β̄ , ᾱ),m(x, β̄ , ᾱ))}= 0

, that means thatFφ{M(ξ ∗, β̄ , ᾱ),m(x, β̄ , ᾱ)}≤ 0,∀x∈X . According to the defini-

tion of the matricesM ∈M , anyM can be written asM(ξ , β̄ , ᾱ) =
r
∑

i=1
λim(xi , β̄ , ᾱ),

where
r
∑

i=1
λi = 1 andλi > 0 for everyi = 1, . . . , r.

Then, sinceφ is differentiable atM(ξ , β̄ , ᾱ), it holds that:

Fφ{M(ξ ∗, β̄ , ᾱ),M(ξ , β̄ , ᾱ)}=
r

∑
i=1

λiFφ{M(ξ ∗, β̄ , ᾱ),m(x, β̄ , ᾱ)} ≤ 0

for everyξ ∈ Ξ .
This means, clearly, that

φ(M(ξ , β̄ , ᾱ))−φ(M(ξ ∗, β̄ , ᾱ))≤ 0

for everyξ ∈ Ξ , thenξ ∗ is φ -optimal.
⊓⊔

D-optimality

Let consider now as design criterion the following function:

φ(M) =

{

logdetM if M is non-singular
−∞ otherwise

A design that maximizes such aφ function is calledD-optimal design.
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In the case of D-optimality the Fréchet and the Gâteaux derivatives have the fol-
lowing expression:

Gâteaux derivative

logdet(M1+ εM2)− logdetM1 = logdet(I + εM2M−1
1 ) =

= log{1+ ε tr(M2M−1
1 )}+O(ε2) = ε tr(M2M−1

1 )+O(ε2)

Hence,Gφ (M1,M2) = tr(M2M−1
1 ).

Fréchet derivative

Fφ (M1,M2) = Gφ (M1,M2−M1) = tr((M2−M1)M
−1
1 ) =

= tr(M2M−1
1 − I(k+l)) = tr(M2M−1

1 )− (k+ l)

where(k+ l) is the number of the model parameters.
We are ready now to give an equivalence theorem which holds inthe particular

case of the D-criterion.

Theorem 3.For a fixed parameters vector(β̄ , ᾱ), the following properties are
equivalent:

1. ξ ∗ is D-optimal;
2. tr(M(ξ ∗, β̄ , ᾱ)−1m(x, β̄ , ᾱ))≤ (k+ l), ∀x∈ X ;
3. ξ ∗ minimizemax

x∈X

tr(M(ξ ∗, β̄ , ᾱ)−1m(x, β̄ , ᾱ)), over allξ ∈ Ξ .

Proof. The proof comes directly from the Theorem 2 by imputing the Fréchet deriva-
tive for the D-criterion. ⊓⊔
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Fabrizio Durante, Wolfgang K. Härdle, and Tomasz Rychlik,editors,Copula
Theory and Its Applications, volume 198 ofLecture Notes in Statistics, chap-
ter 1, pages 3–31. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[9] V. V. Fedorov. The Design of Experiments in the Multiresponse Case.Theory
of Probability and its Applications, 16(2):323–332, 1971.

[10] Mark A. Heise and Raymond H. Myers. Optimal Designs for Bivariate Logis-
tic Regression.Biometrics, 52(2):613–624, 1996.

[11] J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems.Cana-
dian Journal of Mathematics, 12:363–366, 1960.

[12] Erich P. Klement and Radko Mesiar. How non-symmetric can a copula be?
Commentat. Math. Univ. Carol., 47(1):141–148, 2006.

[13] Olaf Krafft and Martin Schaefer. D-Optimal designs fora multivariate regres-
sion model.Journal of Multivariate Analysis, 42(1):130–140, July 1992.
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