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| Introduction tothe Problem

When a population U under study is partitioned idtoclusters i (i=1,...,C) as primary
sampling units (P), each cluster i itself is patied into M subclusters j (j=1,...,M as
secondary sampling units (S), and each subclustentains N elements k (k=1,...,N as
tertiary sampling units (T), the total t of a studiriable y (for instance, a certain part of costs
per unit) can be written as

t= Zuczlzzvl:ll kNilyiJk : ) (1

In (1), v denotes the value of y for the k-th element injtttesubcluster of the i-th cluster.
Here and in the following, the basic literature duge Sérndal et al. (1992), Ardilly and Tillé
(2006), Lohr (2010), and Quatember (2014a).

If a proportion P of t and the total of anotheriahle a (for instance, the overall costs of a

unit)
— c Mi NJ
A= Zi=1zj‘=12k=1qik ’
is of interest, then P is given by

p=—.
A

For the partial costsjy per unit, yx = g - @k applies.

To estimate a total t of a variable y unbiasedig, general Horvitz-Thompson (HT) estimator
Is given by

- n yk
byr = qu;
K

with 1y, the first-order sample inclusion probabilitiesetdéments k (k=1,...,n). Its variance is
given by

V(ty) = ZkzlzlzlAH EE/T_,(%

! This paper is a product of the contract projethwie same name (available on [10/16/2014]:
http://www.jku.at/content/e263/e16099/e16086/e11378ew=PROD&feid=198&fp id=3552)
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with the covariance of the sample inclusion indicaitk and |: 4y = 75 — 7% L. Therein,Ti
denotes the second-order sample inclusion proliabilof two elements k and | of the
population. This theoretical variance is estimatediasedly by

V(i)=Y 3 B h

(see, for instance, Quatember 2014, p. 24ff, onddret al., p. 42ff).

Hence, the proportion P is estimated by

p=ltor
A
Its variance is given by

V(P) = iwm)

which is estimated unbiasedly by
~ ~ 1 -~
V(P) =EDV(LT)-

Il Three-stage element sampling

In the case of a three-stage sampling scheme wopalgtion U partitioned into clusters and
subclusters as described at the beginning of Sedti@ probability sample of size c is
selected at the first stage with cluster inclugpoobabilitiesty (i=1,...,C). At the next stage, a
probability sample of msubclusters j is drawn within each of the ¢ sangblsters i with
conditional subcluster inclusion probabilitigs; (j=1,...,M;). At the third stage, within each
of the sampled subclusters j of cluster i of theose stage, a probability sample of sizes
drawn with conditional inclusion probabilitieg|; for all elements k (k=1,...,y. With these
terms, the HT estimator of the three-stage pro(&s$is given by

Yi
3St Z| lZ] 1zq JI; )
7T

For proportional to size without replacement sangp(rPS), the inclusion probabilities at the
different stages take on the values

at the first sampling stage with auxiliary sizeiahle X,

T = Z Dm
j=1]

at the second sampling stage with auxiliary sizeabée u, and
o= A

WA

at the third sampling stage with auxiliary sizeiable z.




In such a three stage probability sample with 4inster element inclusion probabilities
i]k J\| m\u

the Horwtz-Thompson (HT) estimator as defineoh'e previous section yields

=2 3" lzmﬂ > DZ m:ynk -y Dzml;ﬂ”.

uk J\l “ lq\u
—
tHT,ij tHT i
Hence, this HT estimator can be written as
t — c tHT,i 2
3st Zi:l (@)

7T

with tyr;, the HT estimator of,,tthe total of y in cluster i. The HT estimater,j estimates
unbiasedly the total of y in the j-th subclustethod i-th cluster.

For
_ M; N
% _Zj=12k=1a1k '
the sum of the costs of variable a in the i-th telys

= Z:ilalk !

the sum of the costs a within the j-th subclustehe i-th cluster,

4= G
the costs a of the k-th element of the j-th sulieluwithin the i-th cluster,
—
77|'<\ij =1 G%’
PINR-H
T [—I Zkula’lk

S SN
j=1 lik

T=cC z, 1Zkula11k EZ] 1Zk 1a1k
| z. 121 12k 1a11k

applies. Hence, fogd;
lse 1 xm 1 g A
t,. =— S — o — —LV.
3st c liml m @JZZL q k=1 ijk
\—/—/
Amljk

and

applies.

For the estimation of P,
p=la
A
is used. A further improvement with respect tog¢sgmation of P may be achieved by a ratio
estimator



~ t
Pra = %

with

A
2—1 j=1 leDTnD']

The variance of the HT estimatagtaccording to (2) in a three-stage probability siemg
written by
Vg =Vp + Vst V. (3)

Obviously, the variance is partitioned into thremmponents reflecting the three stages of
sampling as three different sources of variatiotzfin (3),

V ZI lZI lA" G;GZ?

with Aji, the covariance of the sample inclusion probabdit clusters i and i'.jtdenotes the
total of y in cluster i. This is the variation witkspect to sampling at the first stage of the
process. Furthermore,sVthe variation of the estimator due to the secsaupling stage, is
given by
¢V,
Vs = Zi:l_'

7T

m L . . :
The variance Vdenotes the variance ozj_'l—' with t;, the total of y in subcluster j of
S
i
cluster i (see Formula (4.4.9) in Sarndal et al9219p.148). Eventually, the third-stage
contribution to the overall variation aktis given by

zilj

=l g7

V, z 3 1\'

Therein, \f denotes the variance of the HT estimatgj; taccording to (4.4.8) in ibid., p.148.
This variance component completes the calculatiofzg.

It is this variance that has to be estimated, Wihenresults of a sample survey are to be
presented in form of an approximate confidences“fjood practice in the reporting of survey
results to supply ... the point estimates with tlesiimated standard errors, that is the square
root of the estimated variances* (ibid., p. 150rnce (3) is unbiasedly estimated by

/\

U=y Sl g Y @
VP

with



o m m AlJ | HT ij HT jj V
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j=1 j=1 —l

1T,

i Ji 7{

and

n n kk\u yuk yijk'

k=1 k'=1
nl-<k\|1 k\lj ﬂl;‘\ij

From these formulae, the statistical properties aoftwo-stage sampling process can
immediately be derived (see, for instance, Quater®dk4a, ch. 6).

\7ij =

The calculation of a variance estimate according4p may be hard. In particular, the
calculation of the second-order inclusion probé&bsi of selection units at the different stages
of the sampling process can be cumbersome or ewgossible for certain sampling
procedures applied within the three stages of sampln particular, this applies fanPS
sampling. One possibility to cope with this problenthe estimation of these probabilities (cf.
Berger 2004). But, taking into account the thecedtand practical effort of this approach in
three-stage sampling, a simpler variance expressam(4) has to be considered.

11 Four Optionsfor a Simplified Variance Estimation
[11.1 Option |

The simplified option I, applicable as an estimatbithe variance ofs§, uses only the first
termVe of the variance estimator 4):

Vi=XlL ol HG?B;T (5)

This means that only the covariance of the sanmuleision indicator on cluster level and the
cluster second-order inclusion probabilities aredeel. In factVe overestimates ¥ but
does not cover all other components @f.Vlhis means tha' provides a negatively biased
estimator of \4s. But, experience shows that in many cases the anodwnderestimation is
small, especially, when th&'s are small. A compensation of the negative biasgu
subsampling from the samples after the first stage discussed by Srinath and Hidiroglou
(1980). But, also this simplified biased varianstireator needs the second-order inclusion
probabilities at the cluster level to be calculatetich is cumbersome, for example, fi?S
sampling.

For a fixed size first-stage probability samp?’e», can be written as

—DZ © g [ﬁ i _birie jz )

T



(cf. Sarndal et al. 1992, p.153).

[11.2 Option 11

Another option (ll) of a simplified variance estitoa for without replacement sampling

schemes is delivered by adapting the variance asiimthat would have been obtained when
the clusters would have been selected by a witlacement sampling design. Usually, this
will result in an overestimation of the true vaganwhen the sampling is actually done

without replacement.

In a multi-stage sampling design, the specificarace estimator is given by

~ 1 c
Vi = cllo— 1)§‘“ 1(

with p =—, the probability for cluster i to be selected mmetnext step of the with-
c

t

HT,i _ tgstj (7)

replacement selection process (cf. Sarndal et%2,1p.154). This expression incorporates
also the variance due to th& and 3" stage of sampling by the variance of the weigt&d
estimatorsr; of the cluster totals with weights p Therein, fir; is given by
n Yik
HT| Z -1
j\l “ lq\ij
as presented in Section 2.

Systematic probability proportional to size samgplimithout replacement following from a
randomly ordered population is an example of a $amsplection method, for whick
overestimates ¥The result is a “conservative” confidence intervahtt can easily be
calculated because no second-order inclusion pilitiebfrom any of the stages are needed.
For a small sampling fraction of clusters, c/C, tiierence between 3¢ andV, will be
negligible. Sarndal et al. (1992) deliver an examiplr the actual calculation of (ibid.,
p.152f). Because of the with-replacement sampiinig, possible to get different subsamples
from the same cluster, and captures both parts of the variancgis\the one due to the
selection of the clusters and the part @gf; ®rising from the estimation of the cluster totals
at the following stages.

[11.3 Option I

A third option 1l for the simplified estimation dhe variance ofst; uses an estimation of the
design effect of the sampling design defined as

deff = 3“

Sl
where \g is the variance of the HT estimator of t in simpdsdom sampling without
replacement (Sl). A biased estimator of deff isegiby
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deff = \//\3st ’
Vs

the ratio of two variance estimates. Hence, a biasématon u of Vgt can be defined by
\7||| = CTe\ﬁ:D/\\/g . (8)

For equal numbers; mf elements observed within the sample clusterssagpling at the
different stages, and large C, the design effegsisnated by

deff =1+ p(n-1)
with ,5 the estimated intra-class correlation coefficier@asuring the homogeneity of units
within the same clusters (cf., for instance, Axdilnd Tillé 2006, p.161). For a large
population size N compared to the number of clgstin the population, this measure has a
range from zero to one. It reaches the value onedimplete homogeneity within the clusters,
which is the worst case of sampling with clusteithwespect to the variance of the HT
estimator (cf. Sarndal et al. 1992, p.131). par 0, meaning that each cluster has the same
heterogeneity with respect to the study variabile, design effect approximately equals one
and the variance of the three-stage process castimeated by the Sl variance formula.

Nevertheless, one needs not only an estimate éfodéfalso an estimate of the variance of
the HT estimator with SI sampling. Using data & three-stage sample to estimafe tBe
variance of y in the population, although the acsampling was not Sl element sampling,

delivers a biased estimate of the trﬁel—&nceﬁg will have a bias of unknown extent.

To take also account of possible unequal inclugimbabilities (like inTPS sampling), an
estimator of the overall design effect is calcuddby the design effect deffc due to clustering
with clusters of unequal sample sizgsand a design effect due to the unequal inclusion
probabilities deffp. Kish (1987) described an estion of deffc with the mean valu;g of the
within-cluster sample sizes, which substitutesdfeal sample sizes within clusters in the
formula above by

deffc=1+p(n-1)
(cf., for instance, Gabler et al. 1999, or Gannirgieal. 2007). The part of the design effect
with respect to unequal inclusion probabilitiegssimated by

L
. W
dofp= o2 M

L 2
(X w m)
with w;, the unique design weights of the weighting claskL weighting classes (see also
Gabler et al. 1999). Then, the variance of theettatage HT estimator of t is estimated by

\7||| = (TGFH]EGTf@A\Qﬁ . (9)

For SI sampling within each stage and equal numbeds elements observed within the
sample clustersd/eﬁpzl applies.



[11.4 Option IV

Another variance estimation option IV makes useestimpling methods. These computer-
intensive methods use computer power instead ofyheaculations. One of these methods is
the bootstrap. This resampling procedure was ailyirdeveloped for i.i.d. situations (Efron
1979). For its application in statistical survegdferent approaches are proposed (see, for
instance, Shao and Tu 1995, p.246ff).

The approach that directly mimicks the original admakes use of the generation of a
bootstrap population, from which the resamplesdaeavn by the original sampling scheme
(see, for instance, Quatember 2014b, p.89ff). R purpose, in a three-stage design, the
generation of the bootstrap population from thgioal sample data has to consider all three
stages. Therefore, within the sampled second stiagéers, the sample units k are replicated
according to their third stage inclusion probaiaitri|;. This results in set-valued estimators
of the second-stage sample subclusters j with céspehe interesting variables. Then, these
second stage units j have to be replicated acayrdin their second stage inclusion
probabilities 1g|;. This results in set-valued estimators of thet-Btage sample clusters i.
Eventually, by replicating each generated clussarcording to its inclusion probability, the
generation of a bootstrap population as a set-dakstimator of the entire population is
finished. From this population, which can be calegseudo-population (Quatember 2014b),
a number of B resamples are drawn with the samelgagrscheme as the one originally used
in the survey and in each of these B resamplesgtimator

Cc t i

tBSt,b = Zi=1 ;

is calculated according to (2) (b=1,...,B). Thene ttheoretical variance (3) of (2) is
estimated by

~ 1 B _
Viv =——D (tp ~tse)” (10)
B-1 b=1

with

B

t3St :%@t\?st,b'

b=1
the mean value of the estimatoggdfrom the B bootstrap samples. For (10) to be anrate
estimator of the true variance (3), the samplessimer/e to be large enough at all three stages
because if this is not the case, only a small nurobeinits are replicated at all stages and
resamples are drawn from only a small number dééiht values.

[V Interval Estimation

With one of the options for the estimation of tlegiance of 4 (or IS) presented in Section
[ll, one can calculate an approximate-¢)-confidence interval for the true t by

9



A~

t3St * ul—alz V. (ll)

Therein,\7. denotes the used variance estimate anghhe (+a/2)-quantile of the standard

normal distribution. For this interval to be valitie central limit theorem must hold aﬁd
should be a consistent estimator of the true veear(s) according to (3).

Considering the computational and technical effatsthe different options discussed in
Section lll, Option Il seems to be of interest itsruse ad/. in (11), if the sampling fraction
c/C at the first stage is small. In this case,dlerestimation of the true variance (3) by the
with-replacement variance (7) will be “unimportar{Barndal et al. 1992, p. 154) and one
could as well draw with-replacement samples, st tthe variance formula really fits to the
applied sampling scheme. The variance estimatalf itsdesign-based.

The quality of Option Il (Formula (9)) for its uses V. in (11), depends mainly on the
quality of the estimation of the Sl-variance withetdata from the observed sample.
Therefore, this option is model-based.

If P is estimated b)IAD, the approximate confidence interval is given by
~ 1 ~
Pxu_,, ra V. .

When the ratio estimatdA?rat from Section Il is used, the interval

~ 1 <~
Prat + U_,/ ?B/.

will be conservative, if the model holds that y andre strongly positively correlated.

V Waysto Improvethe Precision of the Estimation of a Total

There are different ways to improve the precisibsample survey results regarding totals or
functions of totals such as P (Section I). Thd fisstor is thesampling schemthat is used to
select the sample elements from the given populathn important component in this
direction is the choice of the first-order sampielusion probabilitiesy for all elements k in
the population (kO U). The best of choices for these probabilitiegosdetermine them
proportional to the size of the study variablenytHis case, when

7, = —ne—,
Zk:lyk
every sample even of size n = 1 would provide tbdget Horvitz-Thompson estimator of t
because
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applies. Of course, as th@'syare unknown in the population, the probabilitenot be
determined in this way. But, the estimaitgr would also have a small variance, whenTikie
can be determined according to a known auxiliaryiabde a, which is approximately
proportional to y.

Further improvement of the precision of the estiomatof t can be achieved by a more

efficient estimator compared toP (Section 1). One possibility is the ratio estima®a
(Section I1).

These factors for a better performance of an ethinaae already implemented in the process
described in the sections above. A third factahesstructuringof the population. On the one
hand, for given ngclusteringis often a source for a decrease of precision.eNbgless,
different aspects such as travel costs may ceytaidicate its use. One the other hand, certain
variants ofstratification at different stages of a three-stage process nwgase the precision
of the estimatordy. Stratified simple random sampling with proporaibmllocation of the
sample size n on the strata, for instance, is rafiir@ient than an unrestricted simple random
sample as long as the within-stratum mean valudiseo$tudy variable y differ. The optimum
allocation is achieved when the sample could becated on the strata proportional to the
standard deviations of y in the strata. Hence, naowaliary information would be necessary
(cf. Sarndal et al. 1992, Section 3.7.3).

Another possibility that has the potential to imprdhe accuracy of a given estimatopost-
stratification (cf. ibid., Section 7.6). As an example, it mappen that, after a simple random
sample is drawn from the population without stredifion and the variable y of interest is
observed therein, it turns out that the mean vabfeg differ between certain groups. For
instance, in a survey on income, the sample meanddwdiffer between men and women
included in the simple random sample. This meaas tbgarding to the efficiency of the
estimation of the overall mean it would have beettdp to stratify the sample proportional to
the sizes of these two groups in the populatiosaaly in the design-stage of the survey. Post-
stratification means the implementation of thisaida the estimation-stage of the survey
process. If too many men are randomly selectethfosimple random sample, lower weights
should be assigned to them. If there are too fem&rg higher weights should be assigned to
them to increase the importance of this too snaafige group. Obviously, the efficiency of
post-stratification of an unrestricted simple ramdsample lies somewhere between a
stratified and an unrestricted simple random sample

For a three-stage process as described in Sedtems 11, with proportional to size without

replacement sampling and clustering at all thragest, proportional and optimum allocation
and post-stratification are difficult to implemerithe most probable way to include their
effects in the estimation of the variance of thénestor would be based on simulation
(Section 111.4).

Hence, the most effective instrument of improvimg tprecision of the estimation of a
parameter t or P in the given three-stage procesddvbe to increase tleample size
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