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I   Introduction to the Problem 
 
When a population U under study is partitioned into C clusters i (i=1,…,C) as primary 
sampling units (P), each cluster i itself is partitioned into Mi subclusters j (j=1,…,Mi) as 
secondary sampling units (S), and each subcluster j contains Nij elements k (k=1,…,Nij) as 
tertiary sampling units (T), the total t of a study variable y (for instance, a certain part of costs 
per unit) can be written as 
 

1 1 1

i ijC M N

ijki j k
t y

= = =
=∑ ∑ ∑ .                                                (1) 

 
In (1), yijk denotes the value of y for the k-th element in the j-th subcluster of the i-th cluster. 
Here and in the following, the basic literature used is Särndal et al. (1992), Ardilly and Tillé 
(2006), Lohr (2010), and Quatember (2014a). 
 
If a proportion P of t and the total of another variable a (for instance, the overall costs of a 
unit) 
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= = =
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is of interest, then P is given by 

 
t

P
A

= . 

For the partial costs yijk  per unit, yijk = qijk · aijk applies.  
 
To estimate a total t of a variable y unbiasedly, the general Horvitz-Thompson (HT) estimator 
is given by 
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with πk, the first-order sample inclusion probabilities of elements k (k=1,…,n). Its variance is 
given by 
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1 This paper is a product of the contract project with the same name (available on [10/16/2014]: 
http://www.jku.at/content/e263/e16099/e16086/e173791/?view=PROD&feid=198&fp_id=3552) 
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with the covariance of the sample inclusion indicators Ik and Il: ∆kl = πkl – πk ⋅ πl. Therein, πkl 
denotes the second-order sample inclusion probabilities of two elements k and l of the 
population. This theoretical variance is estimated unbiasedly by 

 �
1 1

( )
n n kl k l

HT k l
kl k l

y y
V t

π π π= =

∆= ⋅ ⋅∑ ∑  

(see, for instance, Quatember 2014, p. 24ff, or Särndal et al., p. 42ff). 
 
Hence, the proportion P is estimated by 

 � HTt
P

A
= .  

Its variance is given by 

 �
2

1
( ) ( )HTV P V t

A
= ⋅ , 

which is estimated unbiasedly by 

 � � �
2

1
( ) ( )HTV P V t

A
= ⋅ . 

 
 
II   Three-stage element sampling 
 
In the case of a three-stage sampling scheme in a population U partitioned into clusters and 
subclusters as described at the beginning of Section I, a probability sample of size c is 
selected at the first stage with cluster inclusion probabilities πI (i=1,…,C). At the next stage, a 
probability sample of mi subclusters j is drawn within each of the c sample clusters i with 
conditional subcluster inclusion probabilities πji (j=1,…,Mi). At the third stage, within each 
of the sampled subclusters j of cluster i of the second stage, a probability sample of size nij is 
drawn with conditional inclusion probabilities πkij for all elements k (k=1,…,Nij). With these 
terms, the HT estimator of the three-stage process (3st) is given by 
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For proportional to size without replacement sampling (πPS), the inclusion probabilities at the 
different stages take on the values 
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at the first sampling stage with auxiliary size variable x, 
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at the second sampling stage with auxiliary size variable u, and 
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at the third sampling stage with auxiliary size variable z.  
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In such a three-stage probability sample with first-order element inclusion probabilities  

ijk i j i k ijπ π π π= ⋅ ⋅ , 

the Horvitz-Thompson (HT) estimator as defined in the previous section yields 

,
3 1 1 1 1 1 1 1 1
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Hence, this HT estimator can be written as 
 

,
3 1

c HT i
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π=
=∑          (2) 

 
with tHT,i, the HT estimator of ti, the total of y in cluster i. The HT estimator tHT,ij estimates 
unbiasedly the total of y in the j-th subcluster of the i-th cluster. 
 
For  
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the sum of the costs of variable a in the i-th cluster, 
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the sum of the costs a within the j-th subcluster of the i-th cluster, 
 k ijkz a= , 

the costs a of the k-th element of the j-th subcluster within the i-th cluster,  
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applies. Hence, for t3st, 
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applies.  
 
For the estimation of P, 

 � 3stt
P

A
=  

is used. A further improvement with respect to the estimation of P may be achieved by a ratio 
estimator 
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The variance of the HT estimator t3st according to (2) in a three-stage probability sample is 
written by 
  

3st P S TV V V V= + + .         (3) 

 
Obviously, the variance is partitioned into three components reflecting the three stages of 
sampling as three different sources of variation of t3st. In (3), 

 '
'1 ' 1

'
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t t
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with ∆ii’ , the covariance of the sample inclusion probability of clusters i and i’. ti denotes the 
total of y in cluster i. This is the variation with respect to sampling at the first stage of the 
process. Furthermore, VS, the variation of the estimator due to the second sampling stage, is 
given by 
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The variance Vi denotes the variance of 
1

im ij

j
j i

t

π=∑  with tij, the total of y in subcluster j of 

cluster i (see Formula (4.4.9) in Särndal et al. 1992, p.148). Eventually, the third-stage 
contribution to the overall variation of t3st is given by 
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Therein, Vij denotes the variance of the HT estimator tHT,ij according to (4.4.8) in ibid., p.148. 
This variance component completes the calculation of V3st. 
 
It is this variance that has to be estimated, when the results of a sample survey are to be 
presented in form of an approximate confidence. “It is good practice in the reporting of survey 
results to supply … the point estimates with their estimated standard errors, that is the square 
root of the estimated variances“ (ibid., p. 150). Variance (3) is unbiasedly estimated by 
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�

�
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with 
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From these formulae, the statistical properties of a two-stage sampling process can 
immediately be derived (see, for instance, Quatember 2014a, ch. 6). 
 
The calculation of a variance estimate according to (4) may be hard. In particular, the 
calculation of the second-order inclusion probabilities of selection units at the different stages 
of the sampling process can be cumbersome or even impossible for certain sampling 
procedures applied within the three stages of sampling. In particular, this applies for πPS 
sampling. One possibility to cope with this problem is the estimation of these probabilities (cf. 
Berger 2004). But, taking into account the theoretical and practical effort of this approach in 
three-stage sampling, a simpler variance expression than (4) has to be considered. 
 
 
III   Four Options for a Simplified Variance Estimation 
 
III.1   Option I 
 
The simplified option I, applicable as an estimator of the variance of t3st, uses only the first 

term � PV  of the variance estimator (4): 
  

 � , , ''
1 ' 1
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c c HT i HT iii
I

i i
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t t
V
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∆= ⋅ ⋅∑ ∑        (5) 

 
This means that only the covariance of the sample inclusion indicator on cluster level and the 

cluster second-order inclusion probabilities are needed. In fact, � PV  overestimates VP, but 

does not cover all other components of V3st. This means that � PV  provides a negatively biased 
estimator of V3st. But, experience shows that in many cases the amount of underestimation is 
small, especially, when the πi’s are small. A compensation of the negative bias using 
subsampling from the samples after the first stage was discussed by Srinath and Hidiroglou 
(1980). But, also this simplified biased variance estimator needs the second-order inclusion 
probabilities at the cluster level to be calculated, which is cumbersome, for example, for πPS 
sampling. 
 

For a fixed size first-stage probability sample, �
PV  can be written as 
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(cf. Särndal et al. 1992, p.153). 
 
III.2   Option II 
 
Another option (II) of a simplified variance estimator for without replacement sampling 
schemes is delivered by adapting the variance estimator that would have been obtained when 
the clusters would have been selected by a with-replacement sampling design. Usually, this 
will result in an overestimation of the true variance when the sampling is actually done 
without replacement.  
 
In a multi-stage sampling design, the specific variance estimator is given by 
 

 �
2

,
31

1

( 1)

c HT i
II sti

i

t
V t

c c p=

 
= ⋅ − ⋅ −  

∑        (7) 

 

with i
ip

c

π= , the probability for cluster i to be selected in the next step of the with-

replacement selection process (cf. Särndal et al. 1992, p.154). This expression incorporates 
also the variance due to the 2nd and 3rd stage of sampling by the variance of the weighted HT 
estimators tHT,i of the cluster totals ti with weights pi. Therein, tHT,i is given by 

 , 1 1

1i ijm n ijk
HT i j k

j i k ij

y
t

π π= =
= ⋅∑ ∑  

as presented in Section 2.  
 
Systematic probability proportional to size sampling without replacement following from a 

randomly ordered population is an example of a sample selection method, for which � IIV  
overestimates V3stThe result is a “conservative” confidence interval that can easily be 
calculated because no second-order inclusion probabilities from any of the stages are needed. 

For a small sampling fraction of clusters, c/C, the difference between V3st, and � IIV  will be 

negligible. Särndal et al. (1992) deliver an example for the actual calculation of � IIV  (ibid., 
p.152f). Because of the with-replacement sampling, it is possible to get different subsamples 

from the same cluster, and � IIV  captures both parts of the variance V3st: the one due to the 
selection of the clusters and the part of V3st arising from the estimation of the cluster totals ti 
at the following stages.  
 
III.3   Option III 
 
A third option III for the simplified estimation of the variance of t3st uses an estimation of the 
design effect of the sampling design defined as 

 3st

SI

V
deff

V
= , 

where VSI is the variance of the HT estimator of t in simple random sampling without 
replacement (SI). A biased estimator of deff is given by 
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V
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V
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the ratio of two variance estimates. Hence, a biased estimator � IIIV  of V3st can be defined by 
 

 � � �
III SIV deff V= ⋅ .         (8) 

 
For equal numbers ni of elements observed within the sample clusters, SI sampling at the 
different stages, and large C, the design effect is estimated by 

 � �1 ( 1)ideff nρ≈ + ⋅ −       

with �ρ , the estimated intra-class correlation coefficient measuring the homogeneity of units 

within the same clusters (cf., for instance, Ardilly and Tillé 2006, p.161). For a large 
population size N compared to the number of clusters C in the population, this measure has a 
range from zero to one. It reaches the value one for complete homogeneity within the clusters, 
which is the worst case of sampling with clusters with respect to the variance of the HT 
estimator (cf. Särndal et al. 1992, p.131). For ρ ≈ 0, meaning that each cluster has the same 
heterogeneity with respect to the study variable, the design effect approximately equals one 
and the variance of the three-stage process can be estimated by the SI variance formula. 
 
Nevertheless, one needs not only an estimate of deff but also an estimate of the variance of 
the HT estimator with SI sampling. Using data of the three-stage sample to estimate S2, the 
variance of y in the population, although the actual sampling was not SI element sampling, 

delivers a biased estimate of the true S2. Hence, � SIV  will have a bias of unknown extent.  
 
To take also account of possible unequal inclusion probabilities (like in πPS sampling), an 
estimator of the overall design effect is calculated by the design effect deffc due to clustering 
with clusters of unequal sample sizes ni and a design effect due to the unequal inclusion 

probabilities deffp. Kish (1987) described an estimator of deffc with the mean value in  of the 

within-cluster sample sizes, which substitutes the equal sample sizes ni within clusters in the 
formula above by 

 � �1 ( 1)ideffc nρ≈ + ⋅ −  

(cf., for instance, Gabler et al. 1999, or Ganninger et al. 2007). The part of the design effect 
with respect to unequal inclusion probabilities is estimated by 

 �

( )
2

1
2
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L

i ii

L

i ii

w n
deffp n

w n

=

=

⋅
= ⋅

⋅

∑

∑
 

with wi, the unique design weights of the weighting class i of L weighting classes (see also 
Gabler et al. 1999). Then, the variance of the three-stage HT estimator of t is estimated by 
 

 � � � �
III SIV deffp deffc V= ⋅ ⋅ .        (9) 

  
For SI sampling within each stage and equal numbers ni of elements observed within the 

sample clusters, � 1deffp=  applies. 



9 

 
III.4   Option IV 
 
Another variance estimation option IV makes use of resampling methods. These computer-
intensive methods use computer power instead of heavy calculations. One of these methods is 
the bootstrap. This resampling procedure was originally developed for i.i.d. situations (Efron 
1979). For its application in statistical surveys, different approaches are proposed (see, for 
instance, Shao and Tu 1995, p.246ff).  
 
The approach that directly mimicks the original idea makes use of the generation of a 
bootstrap population, from which the resamples are drawn by the original sampling scheme 
(see, for instance, Quatember 2014b, p.89ff). For this purpose, in a three-stage design, the 
generation of the bootstrap population from the original sample data has to consider all three 
stages. Therefore, within the sampled second stage clusters, the sample units k are replicated 
according to their third stage inclusion probabilities πkij. This results in set-valued estimators 
of the second-stage sample subclusters j with respect to the interesting variables. Then, these 
second stage units j have to be replicated according to their second stage inclusion 
probabilities πji. This results in set-valued estimators of the first-stage sample clusters i. 
Eventually, by replicating each generated cluster i according to its inclusion probability πi, the 
generation of a bootstrap population as a set-valued estimator of the entire population is 
finished. From this population, which can be called a pseudo-population (Quatember 2014b), 
a number of B resamples are drawn with the same sampling scheme as the one originally used 
in the survey and in each of these B resamples the estimator  

,
3 , 1

c HT i
st b i

i

t
t

π=
=∑   

is calculated according to (2)  (b=1,…,B). Then, the theoretical variance (3) of (2) is 
estimated by 
 

 � 2
3 , 3

1

1
( )

1

B

IV st b st
b

V t t
B =

= ⋅ −
− ∑         (10) 

 
with  

 3 3 ,
1

1 B

st st b
b

t t
B =

= ⋅∑ , 

the mean value of the estimators t3st,b from the B bootstrap samples. For (10) to be an accurate 
estimator of the true variance (3), the sample sizes have to be large enough at all three stages 
because if this is not the case, only a small number of units are replicated at all stages and 
resamples are drawn from only a small number of different values. 
 
 
IV   Interval Estimation 
 

With one of the options for the estimation of the variance of t3st (or �P ) presented in Section 
III, one can calculate an approximate (1−α)-confidence interval for the true t by 
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�

3 1 /2stt u Vα •−± ⋅           (11) 

 

Therein, �V •  denotes the used variance estimate and u1−α/2 the (1−α/2)-quantile of the standard 

normal distribution. For this interval to be valid, the central limit theorem must hold and �V •  
should be a consistent estimator of the true variance V(t3st) according to (3). 
 
Considering the computational and technical efforts of the different options discussed in 

Section III, Option II seems to be of interest for its use as �V •  in (11), if the sampling fraction 
c/C at the first stage is small. In this case, the overestimation of the true variance (3) by the 
with-replacement variance (7) will be “unimportant” (Särndal et al. 1992, p. 154) and one 
could as well draw with-replacement samples, so that the variance formula really fits to the 
applied sampling scheme. The variance estimator itself is design-based. 
 

The quality of Option III (Formula (9)) for its use as �V •  in (11), depends mainly on the 
quality of the estimation of the SI-variance with the data from the observed sample. 
Therefore, this option is model-based. 
 

If P is estimated by �P , the approximate confidence interval is given by 

� �
1 /2 2

1
P u V

Aα •−± ⋅ ⋅ . 

When the ratio estimator � ratP  from Section II is used, the interval 

� �
1 /2 2

1
ratP u V

Aα •−± ⋅ ⋅  

will be conservative, if the model holds that y and a are strongly positively correlated. 
 
 

V   Ways to Improve the Precision of the Estimation of a Total 
 
There are different ways to improve the precision of sample survey results regarding totals or 
functions of totals such as P (Section I). The first factor is the sampling scheme that is used to 
select the sample elements from the given population. An important component in this 
direction is the choice of the first-order sample inclusion probabilities πk for all elements k in 
the population (k ∈ U). The best of choices for these probabilities is to determine them 
proportional to the size of the study variable y. In this case, when  
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k
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every sample even of size n = 1 would provide the perfect Horvitz-Thompson estimator of t 
because 
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applies. Of course, as the yk’s are unknown in the population, the probabilities cannot be 
determined in this way. But, the estimator tHT would also have a small variance, when the πk’s 
can be determined according to a known auxiliary variable a, which is approximately 
proportional to y. 
 
Further improvement of the precision of the estimation of t can be achieved by a more 

efficient estimator compared to �P  (Section I). One possibility is the ratio estimator � ratP  
(Section II). 
 
These factors for a better performance of an estimator are already implemented in the process 
described in the sections above. A third factor is the structuring of the population. On the one 
hand, for given n, clustering is often a source for a decrease of precision. Nevertheless, 
different aspects such as travel costs may certainly indicate its use. One the other hand, certain 
variants of stratification at different stages of a three-stage process may increase the precision 
of the estimator tHT. Stratified simple random sampling with proportional allocation of the 
sample size n on the strata, for instance, is more efficient than an unrestricted simple random 
sample as long as the within-stratum mean values of the study variable y differ. The optimum 
allocation is achieved when the sample could be allocated on the strata proportional to the 
standard deviations of y in the strata. Hence, more auxiliary information would be necessary 
(cf. Särndal et al. 1992, Section 3.7.3). 
 
Another possibility that has the potential to improve the accuracy of a given estimator is post-
stratification (cf. ibid., Section 7.6). As an example, it may happen that, after a simple random 
sample is drawn from the population without stratification and the variable y of interest is 
observed therein, it turns out that the mean values of y differ between certain groups. For 
instance, in a survey on income, the sample means would differ between men and women 
included in the simple random sample. This means that regarding to the efficiency of the 
estimation of the overall mean it would have been better to stratify the sample proportional to 
the sizes of these two groups in the population already in the design-stage of the survey. Post-
stratification means the implementation of this idea in the estimation-stage of the survey 
process. If too many men are randomly selected for the simple random sample, lower weights 
should be assigned to them. If there are too few women, higher weights should be assigned to 
them to increase the importance of this too small sample group. Obviously, the efficiency of 
post-stratification of an unrestricted simple random sample lies somewhere between a 
stratified and an unrestricted simple random sample.  
 
For a three-stage process as described in Sections I and II, with proportional to size without 
replacement sampling and clustering at all three stages, proportional and optimum allocation 
and post-stratification are difficult to implement. The most probable way to include their 
effects in the estimation of the variance of the estimator would be based on simulation 
(Section III.4).  
 
Hence, the most effective instrument of improving the precision of the estimation of a 
parameter t or P in the given three-stage process would be to increase the sample size.  
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