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Abstract The estimation of population total from sample data is an important task in 

empirical research. The basic features of the estimation process can be vividly 
illustrated by the generation of an artificial population called pseudo-population. It 
substitutes the original population in the estimation process with regard to the 
variable involved. Experience in teaching the sampling theory shows that this 
teaching concept has the potential of substantially improving the students’ 
comprehension of the basic concepts of the sampling theory. 
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1   Introduction 
 
The preface of Volume 29A of the “Handbook of Statistics” starts as follows: “Thirty five 
years ago, the Central Bureau of Statistics in Israel held a big farewell party for the then 
retiring Prime Minister of Israel, Mrs Golda Meir. In her short thank you speech, the prime 
minister told the audience: “you are real magicians, you ask 1,000 people what they think, and 
you know what the whole country thinks”. Magicians or not, this is what sample surveys are 
all about: to learn about the population from (often small) sample, dealing with issues such as 
how to select the sample, how to process and analyse the data, how to compute the estimates, 
and face it, since we are not magicians, also how to access the margin of error of the 
estimates” (Pfeffermann, Rao 2009, p.v). 
 
Classical sampling theory addresses the effect of different sampling strategies consisting of a 
sample design applied to select the sample units from the finite population, and estimation 
method, on the efficiency of the estimation of a parameter under study. In this field, the 
estimation of a total  

 kU
t y ,          (1) 

of a study variable y in a finite population U of size N plays a leading role in the estimation of 
parameters (U is abbreviated notation of the sum over all N units of population U). The 
reasons for its importance are as follows: Firstly, there are many cases where the total of a 
certain variable y is really the parameter of interest (for instance, the monthly total of private 
household consumption in all single-person households of a region or the number of 
unemployed people in the country). Secondly, statistical measures such as variance, 
covariance, or other moments, are also totals. Thirdly, a function of several totals, such as the 
harvest yields per hectare or the employment rate, may be the parameter under study.  
 
Experience in teaching the statistical sampling theory shows that students, particularly 
students with only little or even no knowledge of the probability theory, do not easily 
understand the idea behind certain estimators of the population total as presented in classical 



textbooks such as Cochran (1977), Särndal et al. (1992), and Lohr (2010). Hence, there is a 
need to illustrate these ideas in a vivid way. Section 2 of this paper suggests such a 
presentation by the pseudo-population concept. In Section 3, this concept is applied to the 
well-known Horvitz-Thompson estimator of the population total. Various other estimators of 
a total are presented under the unified roof of this teaching concept in Section 4. 
 
2   The pseudo-population concept 
 
For the purpose of estimating t by a probability sample s of size n (with s  U), the observed 
sample values of the study variable y have to be weighted simply because for the sample total 

of y, ks
y t  applies. Hence a point estimator t. of t is given by 

 k ks
t. y    .         (2) 

For this purpose, the weights k determine how many units of U a single sample value yk has 
to represent (k  s). In this respect, we speak of the weights as the respondents’ burden. 
 
For the purpose of increasing the comprehension of the estimation procedure, the rationale 
behind (2) can vividly be described as the generation of an artificial or “pseudo-population” 
U.* as a set-valued estimator of the original population U with respect to the parameter t (cf. 
here and in the following: Quatember 2015, p.9ff). To create U.*, each sample value yk of s 
delivers exactly k copies. From this point of view, the weights can be interpreted as the 

replication factors k of the process generating a pseudo-population U.* of size *
ks

N .   . 

Hence, for the actual generation of U.*, the variable value y1 of the first element of the sample 
s is replicated 1 times delivering 1 “clones” of y1 for the replications y.* in U.*, value y2 of 
the second sample element is replicated 2 times delivering 2 copies of y2, and so forth.  
 
As a population the pseudo-population U.* is extraordinary only in the fact that it contains not 
only whole but also parts of the whole units because, of course, the replication factors k are 
non-integers as a rule. Ignoring this fact in the notation, with the replicated variable y.* 
consisting of the replications of y, estimator t. of parameter t can be re-written as 

 *

*
kU .

t. y.  .          (3) 

Hence, the general estimator t. of the total t of a variable y in the population U is nothing else 
but the total of the replicated variable y.* in the pseudo-population U.*. (see Figure 1).  
 

 
 
Figure 1: Generating a pseudo-population for the estimator t.  
 
Obviously, for given distribution of study variable y, the quality of t. with regard to the 
estimation of t depends solely on the replication factors used in (2). 



 
3   The Horvitz-Thompson estimator 
 
In the well-known Horvitz-Thompson (HT) approach to the general estimator t., each sample 
unit has to represent exactly k = dk population units: 

 HT k ks
t y d           (4) 

Therein, the weights dk are defined as the reciprocals of the sample inclusion probabilities k 
of the population units (cf. Horvitz and Thompson 1952), which are completely determined 
by the sample design used to select the sample units. Therefore, the weights dk are called the 
design weights of the survey units. Replicating each yk-value of the sample k = dk = 1/k 
times (see Figure 1) guarantees that the HT estimator is unbiased for t.  
 
Within the pseudo-population concept presented in Section 2 describing the estimation 
process, this means that the sample value y1 is replicated d1 times, value y2 is replicated d2 
times, and so forth. This yields a specific composition of the pseudo-population UHT

* with 
respect to variable y, which depends solely on the sample design applied. Therefore, the HT 
estimator is called a design-based estimator and, for a given variable y, its accuracy depends 
solely on the sample design chosen to select the sample s. With the replications yHT

* 

consisting of the *
HT ks

N d   copies of y, estimator (4) can be re-written as 

 *
HT

*
HT HT ,kU

t y  .         (5) 

From the viewpoint of the pseudo-population concept, the HT estimator tHT of the total t of a 
variable y in U is nothing else but the total of the replicated variable yHT

* in the pseudo-
population UHT

*.  
 
The pseudo-population UHT

* with NHT
* elements has an expected size of E(NHT

*) = N, the size 
of the original population U. The actual size of UHT

* depends on the concrete design weights 
of the randomly selected sample units.  
 
For samples selected by the sample design of simple random sampling without replacement 
(SI), the HT approach (4) to estimate t is given by 

  HT ( SI ) ks

N
t y

n
         (6) 

because for the SI sample design k = n/N applies ∀ k  U. This means that the HT pseudo-
population UHT(SI)

* is created by simply replicating each y-value of the SI sample exactly k = 
N/n times, which results in a pseudo-population of fixed size NHT(SI)

* = N. For this particular 
sampling scheme, the HT pseudo-population has always the same size as the original 
population U. 
 
The optimum efficiency of the estimator tHT would be ensured by choosing the first-order 
sample inclusion probabilities πk proportional to yk, the “size” of population unit k with 
respect to study variable y, which, of course in practically impossible. Assuming yk > 0 and πk 

≤ 1 ∀ k  U with k
k

y
n

t
    for the probability proportional to size (PPS) sample design, the 

HT estimator is given by 

 HT ( PPS ) ks
k

t
t y t

y n
  


 , 

which means that tHT(PPS) would perfectly estimate t. 



One can see that for the PPS sample design, the HT approach generates a pseudo-population 

UHT(P)
* from the y-values in s with replication factors k

k

t

y n
 


. The fact that the size 

*
HT ( PPS ) s

k

t
N

y n



  of UHT(PSP)

* might not be equal to the true size N of U, is irrelevant with 

regard to the accuracy of tHT(PPS) because each generated pseudo-population UHT(PPS)
* 

reproduces exactly the interesting total t of y. If UHT(PPS)
* it actually contains less (more) than 

N elements, then this is compensated perfectly by reciprocally larger (smaller) values of the 
replications y* in UHT(PPS)

* compared to the values of y in U. Of course, to be applicable in 
practice, a positive auxiliary size variable x known for all population units has to serve as a 
substitute of study variable y in the calculation of the sample inclusion probabilities k. Then,  

 *
HT ( PPS )

( x ) * ( x )
HT ( P ) k HT ( PPS )s U

k

t
t x x t

x n
   


   

applies with the population total t(x) of variable x and its HT estimator ( x )
HT ( P )t . Hence, for PPS 

sampling with variable x approximately proportional to y, the HT estimator 

 HT( PPS ) ks
k

t
t y

x n
 


         (7) 

with replication factors k

k

t

x n
 


 will always be close to parameter t. 

 
4   Further estimators of a total 
 
After the idea to illustrate the estimation process by the pseudo-population concept was 
introduced in Section 2 and applied to the HT estimator in Section 3, it may as well be used 
for the illustration of other estimators of t. For example, the ratio estimator (R) of a total t is 
defined as 

  
( x )

R HT ( x )
HT

t
t t

t
.          (8) 

Therein, the HT estimator tHT is corrected by the ratio of the known population total t(x) of an 

auxiliary variable x in U and its HT estimator ( x )
HTt  calculated in s (cf., for instance, Särndal et 

al. 1992, p.181). Hence, also for the ratio estimator of t(x),  

 
( x )

( x ) ( x ) ( x )
R HT ( x )

HT

t
t t t

t
    

applies. 
 
Looking at (8), the estimation process can be described again by generating a pseudo-
population, in this case denoted by UR

*. However, compared to the HT estimator, the situation 
changes in a way that can easily be seen by re-writing (8) in the following way: 

 R k ks

HT

t y d c

t

  
         (9) 

with the “correction factor” c = t(x)/tHT
(x). Obviously, to generate UR

*, each sample value yk has 
to be replicated not only dk times but k = dk · c times (k  s) (see Figure 1). This means that 
compared to the HT estimator for the R estimator, the replication factor k is the product of 
the replication factor of the HT approach and the constant correction term c. The variable 
value y1 of the first sample element is replicated d1 · c times delivering d1 · c “clones” of y1 



for the replications yR
*, value y2 of the second sample element is replicated d2 · c times 

delivering this number of copies of y2 for yR
 *, and so on. The size of pseudo-population UR

* is 

given by * *
R k HTs

N d c N c    .  

 
For c being larger than one, the number NR

* of pseudo-population units will be larger than 
NHT

*, and vice versa. This underlines in a vivid way the idea of the R estimator. It differs from 
HT estimation at the replication stage of the generation of the pseudo-population, as shown in 

Figure 1. If for the auxiliary variable x ( x ) ( x )
HTt t  applies, it corrects the HT estimator tHT 

downwards, and vice versa, by reducing the number of copies k of each element k of the 
sample s compared to UHT

* in the generation of the R pseudo-population UR
*. Obviously, the 

efficiency of the estimation of t will then be increased if y and x are strongly positively 
correlated. 
 
Ignoring again in the notation the fact that UR

* might contain also parts of whole units, in the 
pseudo-population context, (9) can be re-written by 

 *
R

*
R R ,kU

t y  .         (10) 

Hence, the ratio estimator tR of the total t of variable y in the population U is nothing else but 
the total of the replicated variable yR

* in the population UR
*. With regard to auxiliary variable 

x,  

 *
R

( x ) * ( x )
R R ,kU

t x t   

applies in UR
* with the replications xR

* consisting of the k = dk · c replications of value xk for 
all sample units k. 
 

For *
HT ks

N d N  , a special ratio estimator tR(N) can be applied by using the true size N of 

U as the auxiliary information. This yields 

 R( N ) HT k k N* s
HT

HT

N
t t y d c

N
t

    
       (11) 

By the correction factor cN = N/NHT
*, the estimator tR(N) adapts the HT estimator tHT to the size 

N of the original population U. This can be interpreted as the generation a pseudo-population 
UR(N)

*, for which each sample value yk has to be replicated k = dk · cN times (k  s). Variable 
value y1 of the sample selected from the population U is replicated d1 · cN times delivering d1 · 
cN “clones” of y1 for the replications yR(N)

*, value y2 of the second sample element is replicated 
d2 · cN times delivering d2 · cN copies of y2 for yR(N)

*, and so forth. This creates a pseudo-
population UR(N)

* of correct size NR(N)
* = N. For this reason, estimator tR(N), which can also be 

expressed by 

 *
R( N )

*
R( N ) R( N ),kU

t y  , 

often performs better than tHT (cf., for instance, Särndal et al. 1992, Sect. 5.7). 
 
Another type of ratio estimation is based on known sizes Nh of H population strata and can be 
used to increase the efficiency of an estimator of t after the data collection (h = 1,…,H). Post-
stratification (P) corrects the HT estimators of the y-totals in the H different post-strata simply 
by applying (11) to each stratum. This results in the P estimator 

 
1 1 1

h

H H H
h

P R( N ),h HT ,h k k h* s
h h hHT ,h

HT ,h

N
t t t y d c

N
t

  

        


     (12) 



with the correction term ch = Nh/NHT,h
* within the h-th stratum, tHT,h, the HT estimator of the 

total th of y in stratum h, and sh, the part of the sample s that consists of population units 

belonging to the h-th post-stratum. Furthermore, 
h

*
k HT ,hs

d N  applies. 

 
From the pseudo-population point of view, the estimator tPS corrects the replication factors k 
= dk greating the HT pseudo-population UHT

* in such a way that the resulting estimated 
population UPS

* will be correctly distributed over the post-strata variable. As a consequence, 
the size NPS

* of the pseudo-population UPS
* equals the size N of the original population U. 

This shall correct for incorrect stratum sizes in the HT pseudo-population UHT
* and, for large 

n, pay off in terms of accuracy when the study variable is related to the stratum variable. 
 
The same idea builds the basis for the iterative proportional fitting approach (IPF) to 
determine efficiently the replication factors k in (2) (cf. Deming, Stephan 1940). This 
estimation method can be applied when there is a more-dimensional variable used for post-
stratification of sample s, for which only (one- or more-dimensional) marginal distributions 
are known. The iterative adjustment of the original HT design weights dk of the sample units 
starts with the first post-stratification or “fitting” variable by adapting these weights in the 
same way as for the P estimator. Consequently, the sum of the adapted design weights of the 
sample units belonging to each post-stratum h of the first variable will equal the true size of 
this stratum in population U and, hence, the sum of the corrected weights of the whole sample 
will equal N (h = 1,…, H). In the next step, these newly calculated weights are corrected again 
with respect to the true stratum sizes of the second post-stratification variable, which, in turn, 
will destroy the true representation of the first variable. This process is repeated for all fitting 
variables again and again until the stratum sizes of all these variables deviate from the true 
sizes in U by no more than a prescribed maximum. These final weights of elements k in s are 
the IPF weights dIPF,k and the total t of y is estimated by the IPF estimator 

 IPF k IPF ,ks
t y d  .         (13) 

 
Within the pseudo-population concept, the idea of the IPF estimator can be described in the 
following way: the process starts with the generation of a HT pseudo-population UHT

* of size 
*
HT ks

N d   applying the HT replication factors k = dk to all sample units. Then, in the first 

iteration step, by an adjustment of these replication factors, the composition of the HT 
pseudo-population is changed in the same way as in the P strategy to equal the true category 
sizes of the first marginal post-stratification variable used and, consequently, the size of this 
adapted pseudo-population already equals the true size N of the original population. In the 
second iteration step, this adapted pseudo-population is again adjusted by a correction of the 
replication factors, calculated for each k  s in the first step, with respect to the distribution of 
the second fitting variable. This, in turn, destroys the correct distribution of the pseudo-
population over the first variable. In the next step, the adjustment is done according to the 
third marginal variable, which again destroys the distribution according to the second 
variable, and so on. The process is repeated as long as the composition of the adjusted 
pseudo-population with respect to the marginal distribution of at least one post-stratification 
variable exceeds a prescribed limit of deviation from the true distribution. If the marginal 
deviations for all categories of all post-stratification variables fall below this limit, the 
iterative process is stopped and the current replication weights k are denoted by dIPF,k. When 
each sample unit k is replicated dIPF,k times, a pseudo-population UIPF

* of size NIPF
* = N with 

the replication variable yIPF
* is generated (see Figure 1), in which the IPF estimator is 

calculated by  



 *
IPF

*
IPF IPF ,kU

t y  .         (14) 

In the IPF approach, the estimator tIPF of the total t of variable y in the population U is nothing 
else but the total of the replicated variable yIPF

* in the population UIPF
*. The pseudo-

population UIPF
* corresponds closely to the original population U with respect to the marginal 

distributions of all post-stratification variables used, which shall have a positive effect on the 
performance of the estimation of t if y is related to the fitting variables applied. 
 
A last example for the application of the pseudo-population concept to facilitate students’ 
understanding of estimation procedures is the regression (REG) estimator tREG. For a single 
auxiliary variable x, tREG is given by 

 ( ) ( )
1 ( )x x

REG HT HTt t b t t            (15) 

with b1, the estimated regression coefficient 1 of the linear regression equation y = 1  x + b2 
+  with the residuals  (cf., for instance, Särndal et al. 1992, p.230ff). Setting 

( ) ( )11 ( )x x
HT

HT

b
g t t

t
    , expression (15) yields 

 REG k ks
t y d g   .         (16) 

For the REG estimator, tREG
(x) = t(x) applies again.  

 
Trying to describe the estimation method by the picture of generating a pseudo-population, 
the REG procedure creates a pseudo-population by k = dk  g times replicating each sample 
value yk (see Figure 1). This yields a pseudo-population UREG

* of size 
* *
REG k HTs

N d g N g    . Re-writing (16) from the pseudo-population point of view yields 

 *
REG

*
REG REG ,kU

t y           (17) 

Again, this means that the estimator, in this case tREG, of the total t of variable y in the 
population U is nothing else but the total of the replicated variable yREG

* in the population 
UREG

*. At the same time, for auxiliary variable x with the variable xREG
* of the replicated x-

values of s in UREG
*,  

*
REG

( x ) * ( x )
REG REG ,kU

t x t   

applies. This shall lead to a more efficient estimation of the total t of y when x and y are 
related (cf. Särndal et al. 1992, p. ch.6). 
 
5   Conclusion 
 
Experience with the pseudo-population approach in teaching the sampling theory shows that 
this representation of different sample strategies, consisting of the sample design and esti-
mation method, has the potential of improving students’ (or other users’) basic understanding 
of these concepts. One can describe, for instance, the Horvitz-Thompson estimator of the total 
of a study variable by the generation of a pseudo-population estimating the original finite 
population with respect to this parameter. For this purpose, the variable values observed in the 
sample are assigned to the units of the pseudo-population by replicating each of these values 
by a factor k that reflects the sample strategy. The Horvitz-Thompson estimator of the total 
in the original population then is nothing else but the total of the same variable in the pseudo-
population consisting of not only whole units, but also parts of whole units because the 
replications factors are non-integer as a rule. Further concepts of estimators of the total, such 
as the ratio or regression estimator, can be illustrated in the same way (see Table 1). With a 
fundamental methodological understanding, students and other users should be able to focus 



on questions concerning the difference between methods and their practical implementation is 
statistical software, for instance. 
 

Estimator Repl. factor k 
tHT dk 

tHT(SI) N/n 
tHT(P) t/(xk  n) 

tR dk  t
(x)/tHT

(x) 
tR(N) dk  N/NHT

* 
tPS dk  Nh/NHT,h

* 
tIPF dIPF,k 
tREG dk  [1+b1/tHT  (t(x)tHT

(x))] 
 
Table 1: The replication factors k (Figure 1) of different estimation procedures with regard of 
the total t in the pseudo-population approach to the sampling theory 
 
The idea of describing different procedures by the generation of a pseudo-population can also 
be successfully applied to many other aspects of the sampling theory and survey 
methodology. For example, the statistical compensation techniques for occurred nonresponse, 
weighting adjustment and data imputation, can also be presented under the single roof of the 
pseudo-population concept. But, for this paper, the emphasis was upon an understanding of 
the basics of the sampling theory. 
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